
SJTU-SE346, Spring 2019

Chao Li, PhD.

李超 博士

计 算 机 体 系 结 构

Computer Architecture

Lecture 9. CMP and Multicore System

第九讲、片上多处理器与多核系统

2

Review

• Classification of parallel architectures

• Shared-memory system

• Cache coherency problem

• Snooping protocol

• A simple write-through invalidation protocol

• 3-state MSI protocol

3

Exercises

• How would register allocation affect semantics in a parallel program

(showing below) running on a multiprocessor?

P1 P2

A = 1;

flag = 1;

/* Assume the initial value of A and flag is 0 */

while (flag == 0); /*spin idly */

print A;

• What would happen if a cache has the block in modified state and it

observes a BusRd transaction on the bus?

4

Outlines

• Thread-Level Parallelism

• Introduction to Multicore

• Design Space Exploration

• From Multicore to Manycore

5

Thread-Level Parallelism

• Thread: a basic unit of processor utilization

– Has all the states necessary to allow it to execute

– Thread in the same process share code and data

• The term thread here is often used in a casual way:

– May be a subpart of a parallel program (the real “thread”)

– May be an independent program (a heavyweight process)

• Thread-Level Parallelism

– The use of multiple thread of execution that are inherently parallel

– The grain size is the amount of computation within each thread

6

The Need for Multithreading

• Long memory stalls are unlikely to be hidden by available

ILP – the utilization of FU drops dramatically

• Modern processors typically use hardware multithreading

to keep the otherwise idle on-chip resources busy

• Multithreaded Processor: can execute multiple instruction

streams from multiple threads in parallel

– Duplicates processor resources, such as registers and PC

– Addition of logic to the pipeline to switch between threads

Logical Processor 0 Memory

(DRAM)
Cache MC

InterconnectLogical Processor 0

7

Style of Multithreading

• Fine-grained (interleaved) multithreading

– Switches between threads on each clock cycle

– Slows down the execution of an individual thread

• Coarse-grained multithreading

– Long latency stalls trigger the thread switch

– Short-latency events cannot be hidden

• Simultaneous multithreading (SMT) 同步多线程
– Instructions may be issued from multiple threads during the

same cycle (e.g., Intel’s Hyper-Threading)

8

SMT and Eckert-Mauchly Award

9

Impacts of SMT on Utilization

• Multithreaded processor improves hardware utilization in

different dimensions

Without MT Fine-grained MT Simultaneous MT

c
lo

c
k

Thread 1 Thread 2 Thread 3 Thread 4

Vertical
waste

Horizontal
waste

10

Impacts of SMT on Utilization

• SMT can exploit the parallelism of independent

programs or the parallelism in a single program

• The scheduling and mixing of instructions is done

by hardware (no compiler support)

• Requires fetching from multiple program counters

and accessing multiple complex register sets

11

Chip Multi-Processor (CMP)

• Multiprocessors have been around a long time

– Just not on a single chip (e.g., supercomputers, mainframes)

• CMP is a special type of multiprocessor

– Multiple cores fit on a single processor socket

• Also known as multicore processors

• In general, multicore processors are:

– Shared-memory multiprocessor

– Multiple Instruction Multiple Data (MIMD)

12

CMP vs. SMT

• CMP: chip multi-processing

– Multiple physical cores that have unique resources

– L1 cache, TLB, PC, GPR are unique; L2 cache may be shared

• SMT: simultaneous multithreading

– Multiple threads that share all the processor resources

– Caches and TLBs are shared, PC and GPR unique

• HT: hyper threading

– Intel's SMT technology

13

Parallelism Comparison

A summary of the various “ranges” of parallelism that
different processor architectures may attempt to exploit.

14

Outlines

• Thread-Level Parallelism

• Introduction to Multicore

• Design Space Exploration

• From Multicore to Manycore

15

Why Multicore?

• Single-core superscalar processors cannot fully exploit TLP

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

Only a single thread can
run at any given time

Without SMT With SMT

Both threads can run
concurrently

Can’t simultaneously use the
same FU on a single core

With SMT

16

Why Multicore? (Cont’d)

• Multi-core architectures explicitly exploits TLP

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

Threads can run on
separate cores

Core 2

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

Core 1

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

Core 2

FU1 FU2

Decoder

Scheduler

Inst. Fetch

Rename

Core 1

SMT Dual-core: 4 threads can
run concurrently

17

Why Multicore? (Cont’d)

• Single core SMT:

– Mostly still only exploits instruction-level parallelism

– To execute the tasks faster we must increase the clock frequency

– Drastically increases power consumption and heat dissipation

– increasingly time-consuming design, difficult verification

• Multicore solution:

– Great with thread-level parallelism

– Integrating two or more cores on the same chip

– Utilizing cores running at an efficient frequency level

– Uses proven processor designs with lower manufacturing cost

18

Power Efficiency of Multicore

A 15%
Reduction
in Voltage

Frequency

Reduction

Power

Reduction

Performance

Reduction

15% 45% 10%

Area = 1

Voltage = 1

Freq. = 1

Power = 1

Perf. = 1

Area = 2

Voltage = 0.85

Freq. = 0.85

Power = 1.1

Perf. ~ 1.8

Single Core Dual Core

V.S.

19

Case Study: Large Superscalar vs. CMP

• Assumption: Identical processing technology, same die

area, same off-chip resources, same clock frequency

6-issue superscalar processor 4×2-way chip-multiprocessor

20

Case Study: Large Superscalar vs. CMP (Cont’d)

Performance comparison of SS and CMP (relative
to a single 2-issue processor running alone)

• Large Superscalar:

– Extract ILP from a

single thread

– Requires minor

programmer effort

• CMP:

– Some ILP + Some

fine-grained TLP

– Requires more

programmer effort

– Favors large amount

of parallelism

21

Typical Multicore Cache Organization

• Private L1 + Shared L2

• Example:

– Dual-core Xeon Processors L1 CacheC
o

re
 1

L1 CacheC
o

re
 2

L2 Cache

Memory

hyper-threads

• Both L1 and L2 are private

• Example:

– AMD Athlon, Intel Pentium D L1 CacheC
o

re
 1

C
o

re
 2

L2 Cache

L1 Cache

L2 Cache

22

Multicore Example

Intel Core i7 block diagram

23

ARM Cortex-A9 block diagram

Multicore Example

24

Silicon Hive HiveFlex CSP2x00 block diagram

Multicore Example

25

Multicore Example

AMD’s High-Performance Zen CPU

26

General Server/Mobile/Embedded Multicores

ISA Micro arch # of Core Coherence Interconnect

AMD

Phenom
X86 3-way OOO 4 Directory P2P

Intel

Core i7
X86 4-way OOO 2~8 Broadcast

P2P

Sun

Niagara
SPARC 2-Way In-order 8 Directory Crossbar

Intel

Atom
X86 2-way In-order 1~2 Broadcast Bus

ARM

Cortex A9
ARM 3-way OOO 1~4 Broadcast Bus

XMOS

XS1-G4
XCORE 1-way in-order 4 None Crossbar

The microarchitecture of the above cores is traditional
and based on a powerful conventional uniprocessor.

27

High-Performance Multicore/Manycore

ISA Micro arch # of Core Coherence Interconnect

AMD

Radeon
N/A 5-way VLIW 160 None N/A

NVIDIA

G200
N/A 1-way In-order 240 None

N/A

Intel

Larrabee
X86 2-Way In-order Up to 48 Broadcast

Bidirectional

Ring

IBM

Cell
POWER 2-way In-order 8 SPUs None

Bidirectional

Ring

Microsoft

Xenon
POWER 2-way In-order 3 Broadcast Crossbar

The above cores are more specialized and are
targeted to high-performance computing

28

Architectural Challenges of Multicore

• Shared resource management

• ILP and TLP tradeoffs and balance

• Grain size vs. number of cores

• On-/Off- chip bandwidth requirements

• Latencies (execution, cache, memory) reduction

• Multiple domains in terms of power management

• Partitioning resources between threads/cores

• Memory coherence/consistency

• On-die interconnects

• ……

29

Multicore Resource Contention

A core is not an independent processor but rather a part of

a larger on-chip system sharing resources with other cores

threads contend for LLC, MC, bus, prefetching hardware...

The performance degradation relative to running solo for two
different schedules of SPEC CPU2006 applications on an Intel
Xeon X3565 quad-core processor (two cores share an LLC).

30

Outlines

• Thread-Level Parallelism

• Introduction to Multicore

• Design Space Exploration

• From Multicore to Manycore

31

Design Space: Choosing Cores

• A small number of complex, heavyweight processor core

– Emphasizes low thread latency over core area

• A larger number of simple, lightweight processor core

– Emphasizes core area over thread latency

• General processor cores

– Small, power-efficient cores

– Large, high-performance cores

• Specialized cores

– Accelerators for a particular class of tasks

How to mix different processor core?

32

Design Space: Choosing Cores (Cont’d)

Alpha processors were also identified by EV numbers:

• EV4: early CMOS microprocessor

• EV5: with secondary cache on chip

• EV6: supports out-of-order execution

• EV8: includes simultaneous multithreading

Core Peak

Power

Avg.

Power

Norm.

Perf

EV4 5.0 3.7 1.00

EV5 9.8 6.9 1.30

EV6 17.8 10.7 1.87

EV8 92.88 46.4 2.14

EV8

EV6

EV4

EV5

Relative sizes of the Alpha cores

Power and relative performance
of Alpha processor cores

33

Heterogeneous Chip Multiprocessors

• Also knowns as asymmetric chip multiprocessors

– Match each application to the core best suited to meet its

performance demands

– Provide better area-efficient coverage of the whole spectrum

of workload demands

• Single-ISA Heterogeneous CMP

– CMPs comprising a heterogeneous set of processor cores all

of which can execute the same ISA

• The heterogeneity comes from:

– Raw execution bandwidth (superscalar width), cache sizes,

and other characteristics (e.g., in-order vs. out-of-order).

34

Heterogeneous-ISA Chip Multiprocessor

• It is beneficial to choose a diverse set of ISAs

– ARM’s Thumb, Intel’s x86-64, and DEC’s Alpha.

• To reap the benefits of the heterogeneity

– Applications should be able to migrate freely between the cores

• Challenges: runtime state is kept in ISA-specific form

– Migration involves expensive program state transformation

• Typical migration process involves:

– Process scheduling: reschedule the process on another core

– Page table manipulation: change page table mappings

– Binary translation: translation until a specific point

– State transformation: transform program states for execution

35

Classification of Heterogeneous Multicore
D

if
fe

re
n

t
IS

A
S

a
m

e
 I
S

A

Different CoresSame Cores

??

Cores of Different
Capabilities

Homogeneous
Multi-/Many- Core

Heterogeneous-ISA
Chip Multiprocessors

36

Outlines

• Thread-Level Parallelism

• Introduction to Multicore

• Design Space Exploration

• From Multicore to Manycore

37

Multicore vs Manycore

• Manycore:

– Large number of cores

– Optimized for higher degree of parallelism

– Higher throughput

– Lower single thread performance

• Multicore:

– Small number of cores

– Optimized for both parallel and serial codes

– Utilizing OOO, deeper pipelines, etc.

– More emphasis on high single thread performance

38

Tilera’s Tile Architecture

• Repeated Tile Approach:

– Compute + router

– Modular, scalable, coherent

– Short design cycle

S

Processor
Core

Core + Switch = Tile

Scales to large numbers of cores
billion-transistor computer architecture era

39

Intel Many Integrated Core (MIC) Architecture

• Intel Xeon Phi Coprocessor:

– A many-core processor with up to 61 single in-order cores

– Each of the cores supports four hyper threads

– The L2 caches between the cores are fully coherent

– Runs an OS inside, which may take up a processor core

• It is a co-processing element providing optimal power

performance efficiency to the overall system

In a PCIe card form factor

40

Intel’s Single-Chip Cloud Computer (SCC)

• Integrate a cloud of computers on chip

– Basically, it is a many-core architecture

– In a sense, the SCC is a microcosm of cloud datacenter

• SCC does not have hardware support for cache coherence

– Uses message passing as its primary programming paradigm

41

Discussion: Multicore and “Dark Silicon”

• Ref: http://www.darksilicon.org/

http://www.darksilicon.org/

42

Summary

• Thread, Multithreading, SMT

• CMP and multicore

• Benefits of multicore

• Multicore system architecture

• Heterogeneous multicore system

• Heterogeneous-ISA CMP

• Multicore and manycore

• Design challenges

43

References

• 课本内容：J. Hennessy, D. Patterson. Computer

Architecture, Fifth Edition: A Quantitative Approach.

– Chapters: 3.12, 5.2

• 其它参考：K. Olukotun et al., 《Chip Multiprocessor

Architecture: Techniques to Improve Throughput and

Latency 》, Synthesis Lectures on Computer Architecture.

– Chapters: 1, 2.1

• 其它阅读：
– R. Kumar et al. “Heterogeneous Chip Multiprocessors”. Computer,

2005. IEEE

– G. Blake et al. “A Survey of Multicore Processors”, Signal

Processing Magazine, 2009. IEEE

44

Exercises

• Can we keep adding cores to a CPU? Why?

• What are the opportunities of multicore design optimization?

