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Review 

• Amdahl’s Law， Little’s Law 

• CPI, memory latency 

• Processor/Server power estimation 

• Trace-/Execution- driven simulation 

• Simulation acceleration, sampling and checkpointing 

• Workload characterization 
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Towards More Powerful Computer Systems 

• A linear speedup if n times more resources make it possible to treat a 

given task in n times less time than the reference system 

• A linear scaleup if n times more resources make it possible to deal with 

an n times larger problem in the same time as the reference system 
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Flynn’s Classification of Parallel Architectures 

• SISD: Single Instruction Single Data 

– One stream of instructions on a single stream of data 

– e.g. Uniprocessors 

• SIMD: Single Instruction Multiple Data 

– The same stream of instruction is applied to disjoint sets of data 

– vector supercomputers 

• MISD: Multiple Instruction Single Data 

– No commercial multiprocessor of this type has been built to date  

• MIMD: Multiple Instruction Multiple Data 

– Each node executes its own instruction stream on its own data 

– The architecture of choice for general-purpose multiprocessors 
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The Increased Importance of Multiprocessing 

• More ILP can be inefficient 

– Especially for server applications 

 

• Cloud-oriented processing 

– Massive data and internet requests 

 

• Less motivation for scaling up 

– Increasing desktop performance is less important 

 

• Better return on investment:  

– replication rather than unique design 
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Topics to be Discussed in the Following Weeks 

• Thread-Level Parallelism 

– Multiprocessor system consists of multiple chips 

– Single-chip systems with multiple cores (multicore) 

 

• Data-Level Parallelism 

– Many-core accelerators 

– Interconnection network 

 

• Request-Level Parallelism 

– Multicomputer system that is a cluster of servers 

– Data center and warehouse-scale computers 
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Outlines Today 

• Multiprocessor Architecture 

 

• Cache Coherence Problem 

 

• Snooping Protocol 
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Common Memory Hierarchies in Multiprocessors 
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Two Classes of Multiprocessors 

• Multiple processors share the same physical memory 

• Uniform memory access (UMA) 

Centralized Shared-Memory 

• Physically separate memories for each processor 

• Non-uniform memory access (NUMA)  

Distributed Shared-Memory 

• Classification depending on the memory organization 

• Shared memory means the address space is shared 
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Centralized Shared Memory 

P 1 P n 

Cache Cache 

Memory I/O 

P 1 

Cache 

• Often referred to as symmetric multiprocessors (SMPs) 

– Processors have equal access time to any memory locations 
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Distributed Shared Memory (DSM) 
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• Two major benefits 

– Scalable memory bandwidth 

– Low-latency local access 

• Key disadvantages 

– Complex communication 

– Higher node-node latency 
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Comparison of Different MIMD Systems 

• Multiprocessors (both SMP and DSM) 

– Tightly coupled architecture 

– Processors connected via bus or interconnect network 

– Consists of a few processors (2 ~ dozens) 

– A single shared address space  

– Communicate data implicitly via load and store 

– Thread-level parallelism 

• Multicomputers, Clusters (WSCs) 

– Loosely coupled architecture 

– Individual computers connected on a local area network 

– Consists of large number of nodes 

– Multiple private address spaces 

– Explicitly passing messages among the processors 

– Request/Task level parallelism 
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Outlines 

• Multiprocessor Architecture 

 

• Cache Coherence Problem 

 

• Snooping Protocol 
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Expectation of Shared Memory System 

• Leveraging parallelism to improve performance 

 

• But more importantly,  the results of a parallel program 

that uses multiple processes to be no different when the 

processes run on different physical processors than 

when they run on the same physical processor 
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The Cache Coherence Problem 

• Both private and shared data exist 

– Private data (local) is used by a single processor 

– Shared data (global) is used by multiple processors 

 

• Shared data have multiple copies, spread throughout the 

caches, and are manipulated by different processors 

 

• A cache coherence problem arises when different CPUs 

see different values for the same memory location 

– e.g. have an incoherent view of the memory 

cache coherence : 缓存一致性 
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Write-back Cache w/o Coherence 
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Results: P1: X=10, P2: X=10, P3: X=20 
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Write-through Cache w/o Coherence 

Read 

P 1 P 3 

 

 

Memory 

I/O 

P 2 

X=10 

X=10 

C
ac

h
e

 

C
ac

h
e

 

C
ac

h
e

 

1 

2 

X=10 

20->X 

3 

4 

5 

Results: P1: X=10, P2: X=20, P3: X=20 

Write 

20->X 



18 

 

Coherence Issue in Uniprocessors 

1. Memory can be directly accessed by devices 
using DMA (Direct Memory Access) 

2. The latest value will be in the write-back cache, 
if the data item is not flushed to the memory 

3. The DMA device sitting on the bus will read a 
stale value in main memory 

CPU DMA 
X: new value 

X’: old value 

X X 
Cache External Memory 

X’ 
X’ 

• Coherence problems arise even in uniprocessors when 

certain I/O operations occur 
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Intuitive Thinking of Coherence 

• What a memory should do? 

It provides a set of locations holding values, and when a location 
is read it should return the last value written to that location 

• Similarly, a coherent shared-memory system should be: 

Reading memory address X should return the last value written 
at address X by any processor 

– What if two CPUs write to the same location simultaneously? 

– What if the time between read and write is so close? 

The word “last” may not be well defined for a parallel system 
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Cache Coherency: Precise Definition 

Condition 1: program order 

 

 

 

 “Read after write” works for a single processor 

• If processor P1 writes N to location X, the following read of X by 
P1 should return N (if no other writes of X occur in between) 

CPU P1 CPU P1 

writes N reads N 

Assuming no other 
writes in between 

Timeline for 
address X 

In a sequential program, the 
“last” operation is determined 

by program order  
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Cache Coherency: Precise Definition 

Condition 2: write propagation 

 

 

 

 Writes can eventually get to the other processors 

• If another processor P2 writes N to location X, processor P1 will 
eventually be able to read the updated value from location X. 

CPU P2 CPU P1 

writes N reads N 

Timeline for 
address X 

Assuming no other writes in 
between + sufficient time 
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Write Serialization 

• Conditions 1 & 2 are necessary, but not sufficient 

P11 P1 P2 

W1: a=1 

P21 P1 P2 

W2: a=0 

P21 P1 P2 

See W1 first 

P22 

P22 

P22 

See W2 first 

T1 

T2 

T3 

Bus 

Bus 

Bus 

$ $ $ $ 

$ $ $ $ 

$ $ $ $ 



23 

 

Cache Coherency: Precise Definition 

Condition 3: write serialization 

 

 

 

 Writes to the same location are serialized  

• If processors P1 and P2 both write to location X, all processors 
see the same order of the two writes.  

CPU P1 CPU P2 

write1 

Timeline for 
address X 

All processors should see write2 after write1 

write2 
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Cache Coherency: A Formal Definition 

• The results of any execution of a parallel program are 

such that, for each location, it is possible to construct a 

hypothetical serial order of all operations to the location 

which is consistent with the results of execution, and:  

 

1. Memory operations issued by any particular processor occur 

in the above sequence in the order issued by that processor 

 

2. The value returned by each read operation is the value 

written by the last write to that location in the serial order 

A multiprocessor memory system is coherent if: 
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Cache Coherency: A Formal Definition (Cont’d)  

• Think about a shared memory 

system without caches 

– The memory would impose a 

serial order on all the read and 

write operations to the location 

– the reads/writes to the location 

from any individual processor 

should be in program order 
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Any interleaving that preserves the 
individual program orders is reasonable 

Since the serial order must be consistent, it is important that all 
processors see the writes to a location in the same order 
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Coherence vs. Consistency 

• Coherence: (一致性，强调读出值的异同) 

– Defines what values can be returned by a read 

– Looks at the same memory location 

• Consistency: (一贯性，强调读的时间概念) 

– Defines when a written value will returned by a read 

– Includes operations to other locations 

 

P1 P2 

A = 1; 

flag = 1; 

/* Assume the initial value of A and the flag is 0 */ 

while (flag == 0); /*spin idly */ 

print A; 

The above program orders (if flag==1, then A=1) within P1 and P2 ‘s 
accesses are not implied by coherence 
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Outlines 

• Multiprocessor Architecture 

 

• Cache Coherence Problem 

 

• Snooping Protocol 
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Discussion 

What are the benefits and problems of 

shared-cache system? 

P 1 P n 

Shared Cache 

Memory 
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Enforcing Coherence 

Two Classes of Protocols 

• Snooping Protocol 

– Monitoring all transactions on the interconnect (snooping) 

– Every cache has a copy of the sharing status 

– Normally faster if there is enough bandwidth 

• Directory-based Protocol 

– Does not broadcast on the interconnect 

– The sharing status is kept in a single directory 

– Easier to support a large number of processors 

The key to implementing coherence is tracking the state of 

any sharing of a data block 

Snoop [snup]  n. 探听，窥探 
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Cache Coherence Through Bus Snooping 

Basic Facts 

• Multiple processors with local caches are placed on a shared bus 

• All the writes will be shown as a transaction on the bus to memory 

• All transactions are visible to all processors in the same order 

• Each processor continuously “snoops” on the bus 

 

 

P 1 P n 

Cache Cache 

Memory 
cache-memory 

transaction 

Bus snoop 
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P 1 P n 

Cache Cache 

Memory 

Memory requests issued by processor 

Bus transactions generated from other caches 

Cache Coherence Through Bus Snooping 

Basic Facts 

• Enhanced cache: now receives requests from two sides 

• The cache can be viewed as having two controllers: 

– A processor-side controller 

– A bus-side controller (snooper) 
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Snooping Protocol 

• The protocol is a distributed algorithm, specified by: 

– A set of states associated with local cache blocks 

– A state transition diagram (a finite state machine) 

– The actual actions associated with each state transition 

• Two way to maintain cache coherence 

– Update-based  : updating other cached copies on a write 

– Invalidation-based : invalidating other cached copies on a write 

 

 
Write-updated protocol for 

write-through caches 

Write-update protocol for 

write-back caches 

Write-invalidate protocol for 

write-through caches 

Write-invalidate protocol for 

write-back caches 

Four combinations of cache coherence designs 
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• Interconnect and memory transactions are atomic: only 

one bus transaction is in progress at a time 

 

• All writes to a location are serialized by the order in which 

they appear on the shared bus (bus order)  

 

• Upon processor write, broadcast invalidation; next read 

from other processors will trigger cache miss 

A Simple Example: Write-Through Invalidation 
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A Simple Example: Write-Through Invalidation 

• Two states per block in each cache: 

valid (V) , invalid (I). The  “not 

present” state is treated as invalid 

 

• The notation A/B means if you 

observe A then generate B 

 

• From the processor side, the 

requests can be either read (PrRd) 

or write (PrWr). 

 

• From the bus side, the cache 

controller may observe/generate 

transactions bus read (BusRd) or 

bus write (BusWr), or do nothing. 

Invalidation-based coherence protocol for a write-through no-allocate cache 

V 

I 

PrRd / -- ; PrWr / BusWr 

PrRd / BusRd 

BusWr / -- 

PrWr / BusWr 

Processor initiated transaction 

Bus initiated transaction 
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Problems with Write-Through Cache 

• High bandwidth requirements with write-through 

– All write operation goes to shared bus and memory 

Q. Consider a processor running at 1GHz. Suppose the average CPI is 
1.5, and 15% of all instructions are stores, and each store write writes 8 
bytes of data. How many processors will a 1 GB/s bus be able to 
support without becoming saturated? 

 

A. 0.15 stores/instruction * (1/1.5) instruction/cycle * 1G cycles per 
second = 0.1G stores per second. Total write-through bandwidth is 0.8GB 
of data per second per processor (ignoring read misses and other 
information). A 1GB/s bus will therefore support only 1 processor.    

• Write-back caches saves bandwidth for SMPs 

– Require more sophisticated coherence protocols 
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A 3-state (MSI) Write-Back Invalidation Protocol 

• Saves the bandwidth of the shared bus 

 

• Features 3 states: modified (M), Shared (S), Invalid (I) 

 

• 2 possible processor requests: PrRd and PrWr 

 

• 3 possible bus-side requests: 

– Bus Read (BusRd) 

– Bus Read Exclusive (BusRdX): ensures write propagation 

– Bus Write Back (BusWB) 
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A 3-state (MSI) Write-Back Invalidation Protocol 

M 

I 

PrRd / -- ; PrWr / -- 

PrWr / BusRdX BusRd / Flush 

PrRd / -- 

BusRd / -- 

Processor initiated transaction 

S 

Bus initiated transaction 

BusRdX / -- 
BusRdX / Flush 

PrRd / BusRd 
PrWr / BusRdX 
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A 3-state (MSI) Write-Back Invalidation Protocol 

Processor Action State in P1 State in P2 State in P3 Bus Action Data Supplied By 

1. P1 reads x 

2. P3 reads x 

3. P3 writes x 

4. P1 reads x 

5. P2 reads x 
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A 3-state (MSI) Write-Back Invalidation Protocol 

Processor Action State in P1 State in P2 State in P3 Bus Action Data Supplied By 

1. P1 reads x S - - BusRd Memory 

2. P3 reads x S - S BusRd Memory 

3. P3 writes x I - M BusRdx Memory 

4. P1 reads x S - S BusRd P3 Cache 

5. P2 reads x S S S BusRd Memory 
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A 3-state (MSI) Write-Back Invalidation Protocol 

Processor Action State in P1 State in P2 State in P3 Bus Action Data Supplied By 

1. P1 reads x S - - BusRd Memory 

2. P3 reads x S - S BusRd Memory 

3. P3 writes x I - M BusRdx Memory 

4. P1 reads x S - S BusRd P3 Cache 

5. P2 reads x S S S BusRd Memory 
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A 4-state (MESI) Write-Back Invalidation protocol  

• An extension to MSI 

• Its variants are used in 

many modern processors 

• Four States: 

– M: Modified 

– E: Exclusive-Clean 

– S: Shared 

– I: Invalid 

• The E State means only 

this cache has a copy and 

it has not been modified 
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Summary 

• SIMD, MIMD, TLP 

• Multiprocessors, UMA and NUMA 

• Definition of cache coherency 

• Cache coherency and memory consistency 

• Basic facts of the snooping protocol 

• A simple write-through invalidation protocol 

• 3-state MSI protocol 
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Exercises 

• How would register allocation affect semantics in a parallel program 

(showing below) running on a multiprocessor? 

P1 P2 

A = 1; 

flag = 1; 

/* Assume the initial value of A and flag is 0 */ 

while (flag == 0); /*spin idly */ 

print A; 

• What would happen if a cache has the block in modified state and it 

observes a BusRd transaction on the bus?  


