
SJTU-SE346, Spring 2019

Chao Li, PhD.

李超 博士

计 算 机 体 系 结 构

Computer Architecture

Lecture 8. Multiprocessor and TLP

第八讲、多处理器和线程级并行

2

Review

• Amdahl’s Law， Little’s Law

• CPI, memory latency

• Processor/Server power estimation

• Trace-/Execution- driven simulation

• Simulation acceleration, sampling and checkpointing

• Workload characterization

3

Towards More Powerful Computer Systems

• A linear speedup if n times more resources make it possible to treat a

given task in n times less time than the reference system

• A linear scaleup if n times more resources make it possible to deal with

an n times larger problem in the same time as the reference system

4

Flynn’s Classification of Parallel Architectures

• SISD: Single Instruction Single Data

– One stream of instructions on a single stream of data

– e.g. Uniprocessors

• SIMD: Single Instruction Multiple Data

– The same stream of instruction is applied to disjoint sets of data

– vector supercomputers

• MISD: Multiple Instruction Single Data

– No commercial multiprocessor of this type has been built to date

• MIMD: Multiple Instruction Multiple Data

– Each node executes its own instruction stream on its own data

– The architecture of choice for general-purpose multiprocessors

5

The Increased Importance of Multiprocessing

• More ILP can be inefficient

– Especially for server applications

• Cloud-oriented processing

– Massive data and internet requests

• Less motivation for scaling up

– Increasing desktop performance is less important

• Better return on investment:

– replication rather than unique design

6

Topics to be Discussed in the Following Weeks

• Thread-Level Parallelism

– Multiprocessor system consists of multiple chips

– Single-chip systems with multiple cores (multicore)

• Data-Level Parallelism

– Many-core accelerators

– Interconnection network

• Request-Level Parallelism

– Multicomputer system that is a cluster of servers

– Data center and warehouse-scale computers

7

Outlines Today

• Multiprocessor Architecture

• Cache Coherence Problem

• Snooping Protocol

8

Common Memory Hierarchies in Multiprocessors

9

Two Classes of Multiprocessors

• Multiple processors share the same physical memory

• Uniform memory access (UMA)

Centralized Shared-Memory

• Physically separate memories for each processor

• Non-uniform memory access (NUMA)

Distributed Shared-Memory

• Classification depending on the memory organization

• Shared memory means the address space is shared

10

Centralized Shared Memory

P 1 P n

Cache Cache

Memory I/O

P 1

Cache

• Often referred to as symmetric multiprocessors (SMPs)

– Processors have equal access time to any memory locations

11

Distributed Shared Memory (DSM)

$

Memory I/O

Processor

Interconnection Network

Memory I/O

Processor

$

Memory I/O

Processor

$

Memory I/O

Processor

$

$

Memory I/O

Processor

$

Memory I/O

Processor

• Two major benefits

– Scalable memory bandwidth

– Low-latency local access

• Key disadvantages

– Complex communication

– Higher node-node latency

12

Comparison of Different MIMD Systems

• Multiprocessors (both SMP and DSM)

– Tightly coupled architecture

– Processors connected via bus or interconnect network

– Consists of a few processors (2 ~ dozens)

– A single shared address space

– Communicate data implicitly via load and store

– Thread-level parallelism

• Multicomputers, Clusters (WSCs)

– Loosely coupled architecture

– Individual computers connected on a local area network

– Consists of large number of nodes

– Multiple private address spaces

– Explicitly passing messages among the processors

– Request/Task level parallelism

13

Outlines

• Multiprocessor Architecture

• Cache Coherence Problem

• Snooping Protocol

14

Expectation of Shared Memory System

• Leveraging parallelism to improve performance

• But more importantly, the results of a parallel program

that uses multiple processes to be no different when the

processes run on different physical processors than

when they run on the same physical processor

15

The Cache Coherence Problem

• Both private and shared data exist

– Private data (local) is used by a single processor

– Shared data (global) is used by multiple processors

• Shared data have multiple copies, spread throughout the

caches, and are manipulated by different processors

• A cache coherence problem arises when different CPUs

see different values for the same memory location

– e.g. have an incoherent view of the memory

cache coherence : 缓存一致性

16

Write-back Cache w/o Coherence

Read

P 1 P 3

Memory

I/O

P 2

X=10

X=10

C
ac

h
e

C
ac

h
e

C
ac

h
e

1

2

X=10

20->X

3

4

5

Write

Results: P1: X=10, P2: X=10, P3: X=20

17

Write-through Cache w/o Coherence

Read

P 1 P 3

Memory

I/O

P 2

X=10

X=10

C
ac

h
e

C
ac

h
e

C
ac

h
e

1

2

X=10

20->X

3

4

5

Results: P1: X=10, P2: X=20, P3: X=20

Write

20->X

18

Coherence Issue in Uniprocessors

1. Memory can be directly accessed by devices
using DMA (Direct Memory Access)

2. The latest value will be in the write-back cache,
if the data item is not flushed to the memory

3. The DMA device sitting on the bus will read a
stale value in main memory

CPU DMA
X: new value

X’: old value

X X
Cache External Memory

X’
X’

• Coherence problems arise even in uniprocessors when

certain I/O operations occur

19

Intuitive Thinking of Coherence

• What a memory should do?

It provides a set of locations holding values, and when a location
is read it should return the last value written to that location

• Similarly, a coherent shared-memory system should be:

Reading memory address X should return the last value written
at address X by any processor

– What if two CPUs write to the same location simultaneously?

– What if the time between read and write is so close?

The word “last” may not be well defined for a parallel system

20

Cache Coherency: Precise Definition

Condition 1: program order

 “Read after write” works for a single processor

• If processor P1 writes N to location X, the following read of X by
P1 should return N (if no other writes of X occur in between)

CPU P1 CPU P1

writes N reads N

Assuming no other
writes in between

Timeline for
address X

In a sequential program, the
“last” operation is determined

by program order

21

Cache Coherency: Precise Definition

Condition 2: write propagation

 Writes can eventually get to the other processors

• If another processor P2 writes N to location X, processor P1 will
eventually be able to read the updated value from location X.

CPU P2 CPU P1

writes N reads N

Timeline for
address X

Assuming no other writes in
between + sufficient time

22

Write Serialization

• Conditions 1 & 2 are necessary, but not sufficient

P11 P1 P2

W1: a=1

P21 P1 P2

W2: a=0

P21 P1 P2

See W1 first

P22

P22

P22

See W2 first

T1

T2

T3

Bus

Bus

Bus

$ $ $ $

$ $ $ $

$ $ $ $

23

Cache Coherency: Precise Definition

Condition 3: write serialization

 Writes to the same location are serialized

• If processors P1 and P2 both write to location X, all processors
see the same order of the two writes.

CPU P1 CPU P2

write1

Timeline for
address X

All processors should see write2 after write1

write2

24

Cache Coherency: A Formal Definition

• The results of any execution of a parallel program are

such that, for each location, it is possible to construct a

hypothetical serial order of all operations to the location

which is consistent with the results of execution, and:

1. Memory operations issued by any particular processor occur

in the above sequence in the order issued by that processor

2. The value returned by each read operation is the value

written by the last write to that location in the serial order

A multiprocessor memory system is coherent if:

25

Cache Coherency: A Formal Definition (Cont’d)

• Think about a shared memory

system without caches

– The memory would impose a

serial order on all the read and

write operations to the location

– the reads/writes to the location

from any individual processor

should be in program order

P1 P2 P3 P’ h
y
p

o
th

e
tic

a
l s

e
ria

l o
rd

e
r

Any interleaving that preserves the
individual program orders is reasonable

Since the serial order must be consistent, it is important that all
processors see the writes to a location in the same order

26

Coherence vs. Consistency

• Coherence: (一致性，强调读出值的异同)

– Defines what values can be returned by a read

– Looks at the same memory location

• Consistency: (一贯性，强调读的时间概念)

– Defines when a written value will returned by a read

– Includes operations to other locations

P1 P2

A = 1;

flag = 1;

/* Assume the initial value of A and the flag is 0 */

while (flag == 0); /*spin idly */

print A;

The above program orders (if flag==1, then A=1) within P1 and P2 ‘s
accesses are not implied by coherence

27

Outlines

• Multiprocessor Architecture

• Cache Coherence Problem

• Snooping Protocol

28

Discussion

What are the benefits and problems of

shared-cache system?

P 1 P n

Shared Cache

Memory

29

Enforcing Coherence

Two Classes of Protocols

• Snooping Protocol

– Monitoring all transactions on the interconnect (snooping)

– Every cache has a copy of the sharing status

– Normally faster if there is enough bandwidth

• Directory-based Protocol

– Does not broadcast on the interconnect

– The sharing status is kept in a single directory

– Easier to support a large number of processors

The key to implementing coherence is tracking the state of

any sharing of a data block

Snoop [snup] n. 探听，窥探

30

Cache Coherence Through Bus Snooping

Basic Facts

• Multiple processors with local caches are placed on a shared bus

• All the writes will be shown as a transaction on the bus to memory

• All transactions are visible to all processors in the same order

• Each processor continuously “snoops” on the bus

P 1 P n

Cache Cache

Memory
cache-memory

transaction

Bus snoop

31

P 1 P n

Cache Cache

Memory

Memory requests issued by processor

Bus transactions generated from other caches

Cache Coherence Through Bus Snooping

Basic Facts

• Enhanced cache: now receives requests from two sides

• The cache can be viewed as having two controllers:

– A processor-side controller

– A bus-side controller (snooper)

32

Snooping Protocol

• The protocol is a distributed algorithm, specified by:

– A set of states associated with local cache blocks

– A state transition diagram (a finite state machine)

– The actual actions associated with each state transition

• Two way to maintain cache coherence

– Update-based : updating other cached copies on a write

– Invalidation-based : invalidating other cached copies on a write

Write-updated protocol for

write-through caches

Write-update protocol for

write-back caches

Write-invalidate protocol for

write-through caches

Write-invalidate protocol for

write-back caches

Four combinations of cache coherence designs

33

• Interconnect and memory transactions are atomic: only

one bus transaction is in progress at a time

• All writes to a location are serialized by the order in which

they appear on the shared bus (bus order)

• Upon processor write, broadcast invalidation; next read

from other processors will trigger cache miss

A Simple Example: Write-Through Invalidation

34

A Simple Example: Write-Through Invalidation

• Two states per block in each cache:

valid (V) , invalid (I). The “not

present” state is treated as invalid

• The notation A/B means if you

observe A then generate B

• From the processor side, the

requests can be either read (PrRd)

or write (PrWr).

• From the bus side, the cache

controller may observe/generate

transactions bus read (BusRd) or

bus write (BusWr), or do nothing.

Invalidation-based coherence protocol for a write-through no-allocate cache

V

I

PrRd / -- ; PrWr / BusWr

PrRd / BusRd

BusWr / --

PrWr / BusWr

Processor initiated transaction

Bus initiated transaction

35

Problems with Write-Through Cache

• High bandwidth requirements with write-through

– All write operation goes to shared bus and memory

Q. Consider a processor running at 1GHz. Suppose the average CPI is
1.5, and 15% of all instructions are stores, and each store write writes 8
bytes of data. How many processors will a 1 GB/s bus be able to
support without becoming saturated?

A. 0.15 stores/instruction * (1/1.5) instruction/cycle * 1G cycles per
second = 0.1G stores per second. Total write-through bandwidth is 0.8GB
of data per second per processor (ignoring read misses and other
information). A 1GB/s bus will therefore support only 1 processor.

• Write-back caches saves bandwidth for SMPs

– Require more sophisticated coherence protocols

36

A 3-state (MSI) Write-Back Invalidation Protocol

• Saves the bandwidth of the shared bus

• Features 3 states: modified (M), Shared (S), Invalid (I)

• 2 possible processor requests: PrRd and PrWr

• 3 possible bus-side requests:

– Bus Read (BusRd)

– Bus Read Exclusive (BusRdX): ensures write propagation

– Bus Write Back (BusWB)

37

A 3-state (MSI) Write-Back Invalidation Protocol

M

I

PrRd / -- ; PrWr / --

PrWr / BusRdX BusRd / Flush

PrRd / --

BusRd / --

Processor initiated transaction

S

Bus initiated transaction

BusRdX / --
BusRdX / Flush

PrRd / BusRd
PrWr / BusRdX

38

A 3-state (MSI) Write-Back Invalidation Protocol

Processor Action State in P1 State in P2 State in P3 Bus Action Data Supplied By

1. P1 reads x

2. P3 reads x

3. P3 writes x

4. P1 reads x

5. P2 reads x

39

A 3-state (MSI) Write-Back Invalidation Protocol

Processor Action State in P1 State in P2 State in P3 Bus Action Data Supplied By

1. P1 reads x S - - BusRd Memory

2. P3 reads x S - S BusRd Memory

3. P3 writes x I - M BusRdx Memory

4. P1 reads x S - S BusRd P3 Cache

5. P2 reads x S S S BusRd Memory

40

A 3-state (MSI) Write-Back Invalidation Protocol

Processor Action State in P1 State in P2 State in P3 Bus Action Data Supplied By

1. P1 reads x S - - BusRd Memory

2. P3 reads x S - S BusRd Memory

3. P3 writes x I - M BusRdx Memory

4. P1 reads x S - S BusRd P3 Cache

5. P2 reads x S S S BusRd Memory

41

A 4-state (MESI) Write-Back Invalidation protocol

• An extension to MSI

• Its variants are used in

many modern processors

• Four States:

– M: Modified

– E: Exclusive-Clean

– S: Shared

– I: Invalid

• The E State means only

this cache has a copy and

it has not been modified

42

Summary

• SIMD, MIMD, TLP

• Multiprocessors, UMA and NUMA

• Definition of cache coherency

• Cache coherency and memory consistency

• Basic facts of the snooping protocol

• A simple write-through invalidation protocol

• 3-state MSI protocol

43

References

• 课本内容：J. Hennessy, D. Patterson. Computer

Architecture, Fifth Edition: A Quantitative Approach.

– Chapters: 5.1, 5.2

• 其它参考：D. Culler et al., 《Parallel Computer

Architecture: A Hardware/Software Approach》,

Second Edition.

– Chapters: 5.1, 5.2, 5.3.1

44

Exercises

• How would register allocation affect semantics in a parallel program

(showing below) running on a multiprocessor?

P1 P2

A = 1;

flag = 1;

/* Assume the initial value of A and flag is 0 */

while (flag == 0); /*spin idly */

print A;

• What would happen if a cache has the block in modified state and it

observes a BusRd transaction on the bus?

