
SJTU-SE346, Spring 2019

Chao Li, PhD.

李超 博士

计 算 机 体 系 结 构

Computer Architecture

Lecture 7. Performance Evaluation

第七讲、性能分析与评测简介

2

Review

• Physical components of a disk

• Design good drive interfaces

• ATA/SCSI

• Data striping and data mirroring

• DAS, NAS, SAN

• Flash memory, SLC/MLC

3

Outlines

• Quantitative Analysis

• Analytical Evaluation

• Architecture Simulation

• Workload Design

4

Evaluation Metrics

• Events frequency

• Interval durations

• Parameter sizes

Typical metrics

• Higher is better metrics , e.g., productivity, speed

• Lower is better metrics, e.g., responsiveness, cost

• Nominal is better metrics, e.g., utilization

A general classification

• Allows unambiguous comparison

• Allows one to develop models

• Meaningful and easy to estimate

Characteristics of good metrics

5

Amdahl’s Law

• Suppose that

– The fraction f of a program is parallelizable

– The other 1-f is purely sequential

– Parallelizable part has linear speedup

• Then the effective speed with n processors, is given by:

The theoretical speedup is always limited by the part
of the task that cannot benefit from the improvement

(1)
()

1 /

S
S n

f f n

lim
𝑛→∞

𝑺(𝒏)

𝑺(𝟏)
=
𝟏

𝟏 − 𝒇

6

Calculating CPI

Example:

Suppose we have made the following measures:

 Frequency of FP operations = 25%

 Average CPI of FP operations = 4.0

 Average CPI of other instructions = 1.33

Then:

 CPI original = (4×25%)+(1.33×75%) = 2.0

𝑪𝑷𝑰 =
𝑰𝑪𝒊 × 𝑪𝑷𝑰𝒊

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒖𝒏𝒕

𝑪𝑷𝑼 𝒕𝒊𝒎𝒆 = 𝑰𝑪𝒊 × 𝑪𝑷𝑰𝒊 × 𝑪𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆 𝒕𝒊𝒎𝒆

7

Memory Performance Analysis

𝑴𝒊𝒔𝒔𝒆𝒔

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏
= 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆 ×

𝑴𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒔

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔 𝒕𝒊𝒎𝒆
= 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆 + 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆 ×𝑴𝒊𝒔𝒔 𝑷𝒆𝒏𝒂𝒍𝒕𝒚

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒎𝒆𝒎𝒐𝒓𝒚 𝒂𝒄𝒄𝒆𝒔𝒔 𝒕𝒊𝒎𝒆
= 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆𝑳𝟏 + 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆𝑳𝟏×𝑴𝒊𝒔𝒔 𝑷𝒆𝒏𝒂𝒍𝒕𝒚𝑳𝟏

𝑴𝒊𝒔𝒔 𝑷𝒆𝒏𝒂𝒍𝒕𝒚𝑳𝟏
= 𝑯𝒊𝒕 𝒕𝒊𝒎𝒆𝑳𝟐 + 𝑴𝒊𝒔𝒔 𝒓𝒂𝒕𝒆𝑳𝟐×𝑴𝒊𝒔𝒔 𝑷𝒆𝒏𝒂𝒍𝒕𝒚𝑳𝟐

8

Outlines

• Quantitative Analysis

• Analytical Modeling

• Architecture Simulation

• Workload Design

9

Little’s Law

• Suppose that in a stable system:

– λ = the average job arrival rate (number per unit time)

– W =The average waiting time in the system for an item

• Then the average length in the queuing system is:

L W

Example:

Assume requests arrive at 100 per minute and stay on
average of 30 seconds. This means the average
number of requests in the buffer is L= 100 × 0.5 = 50

10

BW =
𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 latency 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

=
𝐿𝐿𝐶 𝑚𝑖𝑠𝑠𝑒𝑠+𝑝𝑟𝑒𝑓𝑒𝑡𝑐ℎ𝑒𝑠 ∗#𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ∗𝑐𝑎𝑐ℎ𝑒 𝑙𝑖𝑛𝑒 𝑠𝑖𝑧𝑒

𝑎𝑐𝑐𝑒𝑠𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + con𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

• Factors that affect BW

– Cache miss

– Data prefetch

Another Example: BW Estimation

11

Usefulness of Little’s Law in Practice

• Queueing systems are widely used to model the

performance of computing systems

• Measurement of response time can be challenging

– Could be impractical or very time-consuming

12

Usefulness of Little’s Law in Practice (Cont’d)

• Instantaneously evaluate system response

– An indirect estimation approach

– The queue length can be measured instantaneously

– Estimate response time using the Little’s Law

Estimate of response time using a transducer

13

On The Evaluation of Energy and Power

• Dynamic Power

– C: load capacitance

– V: supply voltage (typically less than 1.5 V)

– A: activity factor (a fraction between 0 and 1)

– f : operating frequency

𝑷 =a × 𝑪𝑽𝟐𝑨𝒇

• Frequency typically scales linearly with voltage

– i.e., f = kV, Thus, the combined 𝑉2𝑓 portion of the dynamic

power equation has a cubic impact on power dissipation

14

Server Speed vs. Server Power

• The CPU power-to-frequency relationship is cubic

• Server speed typically depends on frequency

• A cubic relationship between speed and power?

• Experimental results show that the power-to-speed

relationship is almost linear

– Due to limited voltage/frequency levels

– Not applied to many components in the server

15

Estimating Computer Power

• A liner model of computer power is widely used:

– Pdyn : dynamic power

– Pidle : idle power (can be seen as static power)

– U: system utilization, an indicator of system activity

total dyn idleP P U P

Example:

Assume the average CPU utilization is 30%, the
nameplate power (maximum power demand) is 180W
and the idle power is 100W. This means the average
power is P = 100+ (180-100)×0.3 = 124W

16

Estimating Computer Power (Cont’d)

• Pros:

– Gives full system average

power evaluation

– Use server/CPU utilization as

machine-level activities

– Fairly good estimation when

server numbers are large

• Cons:

– Fail to predict peak power

17

Outlines

• Quantitative Analysis

• Analytical Evaluation

• Architecture Simulation

• Workload Design

18

Computer Architect’s Toolbox

• How accurate is the simulation model

• How long does it take to run a simulation

• How long does it take to develop the simulator

• What fraction of the design space can we explore

Accuracy Evaluation
Time

Development
Time Coverage

19

Functional Simulation

• Models only the functional characteristics of ISA

– No timing issue is considered

– Basically a instruction-set emulator

• One important application is validation of the design

– Rather than evaluating system performance characteristics

• It can also generate instruction and address traces

– Can be used as inputs to other simulation tools !

20

Trace-Driven Simulation

• Takes program instruction and address traces into a

detailed microarchitecture timing simulator

• Separates functional simulation from the timing simulation

• Disadvantages:

– The need to store the trace files (can be huge)

– Will not accurately model the effects along mis-predicted paths

Mis-predicted instructions are nullified – they do not show up in
a trace file generated via function simulation, although they may

affect cache and/or predictor contents

21

Execution-Driven Simulation

• The de-facto simulation approach today

• Combines functional with timing simulation

• Achieves higher accuracy than trace-driven simulation

• At the cost of increased development/evaluation time

• Examples:

– SimpleScalar, GEMS, Simics, M5, PTLSim …

22

Simulation Approach Comparison

Function

Simulation

Trace-Driven

Simulation

Execution-Driven

Simulation

Development Time Excellent Poor Very Poor

Evaluation Time Good Poor Very Poor

Accuracy Excellent Very good Excellent

Coverage Poor Excellent Excellent

• Full system simulation

– Trace-driven simulation and execution-driven simulation

• More simulator/tools?

– Check:

http://pages.cs.wisc.edu/~arch/www/tools.html

http://pages.cs.wisc.edu/~arch/www/tools.html
http://pages.cs.wisc.edu/~arch/www/tools.html
http://pages.cs.wisc.edu/~arch/www/tools.html

23

Simulation Acceleration

• Cycle-accurate simulation is slow

– Simulates a microarchitecture on a cycle-by-cycle basis

• Sampled Simulation

– Only a small fraction of the total dynamic instruction count, are

simulated in a cycle-accurate manner.

– requires accurately provide a sampling unit’s architecture starting

image (ASI) , i.e., register and memory states, etc.

24

Simulation Acceleration (Cont’d)

• Fast-Forwarding

– Constructs the architecture state through functional simulation

– Switch between functional and execution-driven simulation

• Checkpointing

– Stores the register/memory state prior to a sampling unit

– Just need to load the data and update simulator during runtime

Fast-forwarding through
functional simulation

Checkpointing

25

Outlines

• Quantitative Analysis

• Analytical Evaluation

• Architecture Simulation

• Workload Design

26

Workload

• Workload: the mixture of programs and operating

system commands that users run on a machine

• Workloads are preferably to be

– Real Applications

– Modified Applications

• Naive programs can be used in some circumstances

– Kernels

– Toy Benchmarks

– Synthetic Benchmarks

27

Benchmark Suite

• Benchmark Suite:

– put together collections of benchmarks to quantitatively measure

the performance of systems with a variety of applications

• Popular benchmark suites in the past

– SPEC 95, SPEC CPU 2000, SPEC CPU 2006 …

– TPC-A, TPC-C, TPC-W…

– LINPACK

• Example of emerging benchmarks suites today

– CloudSuite 3.0 (http://cloudsuite.ch/)

– Rodinia (http://www.cs.virginia.edu/~skadron/wiki/rodinia/)

– Hibench (https://github.com/intel-hadoop/HiBench)

http://cloudsuite.ch/
http://cloudsuite.ch/
http://www.cs.virginia.edu/~skadron/wiki/rodinia/
http://www.cs.virginia.edu/~skadron/wiki/rodinia/
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench

28

Example: CloudSuite Overview

• Data Analytics

– Naive Bayes classifier on a Wikimedia dataset

• Data Caching

– A Twitter caching server using a twitter dataset

• Data Serving

– Yahoo! Cloud Serving Benchmark (data store application)

• Graph Analytics

– Perform graph analytics on large-scale datasets

• In-Memory Analytics

– collaborative filtering algorithm in-memory with user-movie rating data

• Media Streaming

– A streaming server for hosted videos of various lengths and qualities

• Web Search

– relies on the Apache Solr search engine framework

• Web Serving

– Traditional web services with dynamic and static content delivery

29

Workload Design

• Workload Characterization

– To understand the behavior of the various benchmarks

– Through various hardware monitors, simulators, etc.

• Principal Component Analysis (PCA)

– A mature statistical data analysis technique

– Transforms a number of possibly correlated variables into a

small number of uncorrelated principal components

• Cluster analysis

– Pick up most diverse benchmarks, e.g. through K-means

30

Workload Design (Cont’d)

• Determine a reduced but representative workload

Schematic overview of the PCA-based workload reduction method

(1) Characterization

Reference Workload

Consisting of n programs

(2) PCA

(3) Cluster Analysis

Reduced Workload

Consisting of m programs

m < n

31

Applications of PCA-Based Design

Finding regions not covered by
a benchmark suite

Example PCA space as a function of
two principle components

• Workload Analysis

– To visualize the workload space

– Reason about how benchmarks differ from each other

• Workload Reduction

– Build a small set of representative benchmarks

32

Multi-Program Benchmark

• Single-Program Benchmark is relatively simple:

– A benchmark is a program plus a specific input

• Multi-Program Benchmark can be complex

– Each program may have a different runtime

– Different interactions depending on how they align with each other

• Issues with Multi-program benchmark

– Load imbalance

– Resource contention (program alignment matters)

33

Multi-Program Benchmark Example:

• B - A set of single-program benchmarks

• T - The terminating condition for the benchmark

• F - The selection function with decides which member of B
to run on a particular core when that core becomes idle

• S - the initial state for F

A multi-program benchmark can be described as a 4-tuple

34

Summarize Performance

• SPECRatio:

– normalize execution times to a reference computer

𝑺𝑷𝑬𝑪𝑹𝒂𝒕𝒊𝒐 =
𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒓𝒂𝒕𝒆𝒅

𝑺𝑷𝑬𝑪𝑹𝒂𝒕𝒊𝒐𝑨
𝑺𝑷𝑬𝑪𝑹𝒂𝒕𝒊𝒐𝑩

=
𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝑩
𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝑨

=
𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑨
𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑩

• The use of geometric mean to calculate average

– SPECRatio is a ratio rather than absolute execution time

35

Summarize Performance

• Chooses the appropriate average

– depending on how the metric is computed

• Arithmetic mean is meaningful when:

– The metric is obtained by dividing A by B

– B is weighed equally among the benchmarks

• Harmonic mean is meaningful when:

– The metric is obtained by dividing A by B

– A is weighed equally among the benchmarks

36

Example: System Throughput

• Normalized Turnaround Time (NTT)

𝑵𝑻𝑻𝒊 =
𝑻𝒊
𝑴𝑷

𝑻𝒊
𝑺𝑷

Multiprogram execution time

Single-program execution time

• Average Normalized Turnaround Time (ANTT)

𝑨𝑵𝑻𝑻 =
𝟏

𝒏
 𝑵𝑻𝑻𝒊

• IPC Throughput:

𝑰𝑷𝑪 𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒕𝒑𝒖𝒕 =
𝟏

𝒏
 𝑰𝑷𝑪𝒊

37

Experimental Lifecycle

Vague idea

1. Understand the problem,
frame the questions,
articulate the goals.

2. Select metrics that will help
answer the questions.

3. Identify the parameters that
affect behavior

By. Carla Ellis @ Duke

“groping around”
 experiences

Hypothesis

Model

Initial
observations

Experiment

Data, analysis,
interpretation

Results & final
Presentation

38

Summary

• Amdahl’s Law

• Calculating CPI

• Analyzing memory access time

• Little’s Law

• Estimating server power

• Trace-/Execution- driven simulation

• Simulation acceleration

• Concepts of workload characterization

• Multi-programmed workload

39

References

• 课本内容：J. Hennessy, D. Patterson. Computer

Architecture, Fifth Edition: A Quantitative Approach.

– Chapters: 1.5, 1.8, 1.9, 2.1, 2.2

• 其它参考：L. Eeckhout, 《Computer Architecture

Performance Evaluation Methods 》, Synthesis

Lectures on Computer Architecture.

– Chapters: 2, 3, 5.2, 5.5, 5.6, 6.1, 6.2

40

Exercises

• Consider a processor that has the following property

– F = 2.0GHz is the full frequency without frequency scaling

– U = 60% is average utilization rate (the proportion of non-idle state)

– It can enable Turbo Boost with a duty cycle of D = 0.2 (the fraction of active period)

– Under Turbo Boost, the processor could temporarily increase the frequency by B = 10%.

Suppose T = 2s is the time the program would spend without frequency scaling. What is the

estimated execution time when the Turbo Boost is enabled?

• Describe effective simulation method and metrics to evaluate the following systems

– a. A 1000-processor massively parallel computer system

– b. The performance of an ATM-based LAN system

– c. A battlefield-communication system

– d. A cellular network in a large city

• What are the emerging workloads that you know?

