
SJTU-SE346, Spring 2019

Chao Li, PhD.

李超 博士

计 算 机 体 系 结 构

Computer Architecture

Lecture 2. Instruction Set Architecture

第二讲、指令集架构

2

Review

• ENIAC (1946) used decimal representation; 10 vacuum

tubes per digit; could store 20 numbers of 10 digits each

• From a transistor to integrated circuit

• The feature size of a fabrication process : minimum lateral

dimensions of the transistors. Moore’s Law revisited

• From a single server to a data center

• Scalability issue (scale out/up). Exponential growth of

computing vs. Skyrocketing power/energy demand

3

Outlines

• Instruction Set Architecture

• ISA: Programmer’s View

• ISA: Microarchitecture Level Design

– Simple Pipeline Implementation

4

Aspects of Computer Design

• Architecture (instruction set architecture)

– Compiler designer’s view: functional appearance (visible

state) to its immediate user or programmer

• Implementation (micro-architecture)

– CPU designer’s view: logical structure or organization (e.g.,

pipeline design) that implements the architecture

• Physical Design (chip realization)

– IC designer’s view: physical structure (with design

optimization) the embodies the implementation

5

Instruction Set Architecture

• Basic view of ISA: it defines data and control flow

– Storage resources that hold data (e.g., memory and their addressing)

– Instructions that transform data (e.g., arithmetic/logic, floating point)

• Another view of ISA:

– Defines set of programmer visible state

– Defines instruction format and semantics

• Many possible implementations exist for a single ISA

– IBM 360 implementations: model 30 (1964), z900 (2001)

– x86 implementations: 8086 (1978), 80186, 286, 386, ...

– MIPS implementations: R2000, R4000, R10000, …

6

Architecture Evolution

Complex Instruction Sets

(Vax, Intel 432 1977-80)

Single Accumulator

(EDSAC 1950)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

High-level Language Based

(B5000 1963)

General Purpose Register Machines

Stack Architectures

(B6500 1963, HP3000/70)

Reduced Instruction Sets

 (MIPS, SPARC, PowerPC . . .1987)

Load/Store Architecture

 (CDC 6600, Cray 1 1963-76)

7

Four Classic Architectures

Stack Accumulator

Register-Memory Register-Oriented

Operations that perform i++

PUSH &i ;

PUSH 0x01;

ADD;

Operations that perform i++

LDA &i ;

ADDA 0x01;

STA &i;

Operations that perform i++

MOVE d0, &i ;

INC d0;

MOVE &i, d0;

Operations that perform i++

LD r7, &i ;

ADD r7, 0x01, r7;

ST r7, &i;

8

Complex Instruction Set Computer (CISC)

• Dominant style through mid-80’s

• Easy for compiler, fewer code bytes

• Stack-oriented instruction set

– Use stack to pass arguments, save program counter

– Explicit push and pop instructions

• Register memory architecture:

– Arithmetic instructions can access memory

• Condition codes:

– Set as side effect of arithmetic and logical instructions

9

Reduced Instruction Set Computer (RISC)

• Modern version of RISC dates back to the 1980s

• Fewer, simpler instructions

– Might take more to get given task done

– Can execute on small and fast hardware

• Register-oriented instruction set

– Many registers (typical 32) for arguments, return pointer, etc.

• Load-store architecture:

– Only load/store instruction can access memory

• No condition codes

10

Example of CISC: IA32 Processors

• Intel-compatible processors (called “IA32” by Intel or “x86”

colloquially. IA32 is short for “Intel Architecture, 32-bit”

• Starting in 1978 with 8086, dominate market today

– More features are added as time goes on

– x86 has not yet been competitive in the personal mobile device.

 X86-64: 64-bit version of the x86 instruction set

 IA-64: a radically new ISA for high performance

 for Itanium family of 64-bit Intel microprocessors

Comparison of Different Concept

11

IA32 Registers

• 80386 CPU contains 8 GPRs, each 32 bits

• EIP (Intel’s PC) stores the address of the next instruction

• Condition codes store status information about the most

recently executed arithmetic operation

General-purpose register

- can be used as operand,
such as integer and FP

Special-purpose register

- specific defined function,
such as condition codes,
processor status, PC, etc.

12

Processor State

• Processor State: the information held in the processor

at the end of an instruction to provide the processing

context for the next instruction.

– PC, general register values, special register values, etc.

• Programmer visible state to the processor (and

memory) plays a central role in computer organization

for both hardware and software

– If the processing of an instruction can be interrupted then the

hardware must save and restore the state transparently

• Not to be confused with Processor Power State

13

Example of RISC: MIPS Processors

• Example of RISC

• Originally an acronym for “Microprocessor without

Interlocked Pipeline Stages”

• Elegant example of the ISA designed since the 1980s

– In 1981, a team led by John Hennessy at Stanford University

started work on what would become the first MIPS processor

• Widely studied in the CA course around the world 

14

MIPS Registers

15

MIPS Instruction Overview

opcode (6) rs (5) rt (5) rd (5) 00000 func (6)

Register-Register: rd ← (rs) func (rt)

opcode (6) rs (5) rt (5) offset (16)

opcode (6) rs (5) rt (5) offset (16)

Load/Store: rt ← Mem[(rs) + offset]

add $s1, $s2, $s3 # register add: $s1 = $s2 + $s3

lw $s1, 10($s2) # load word: $s1 = Mem[$s2 + 20]

beq $s1, $s2, 25 # if ($s1==$s2) then go to [PC+4+100]

Branch: go to offset×4 if (rs) equal to (rt)

opcode (6) target (26)

j 2500 # unconditional absolute jump to new address

Jump: go to target×4 (append 10000 to PC <31:28> to get new address

16

Outlines

• Instruction Set Architecture

• ISA: Programmer’s View

• ISA: Microarchitecture Level Design

– Simple Pipeline Implementation

17

Compilation to Machine Code

• The variable x and a are assigned to $s1 and $s2,respectively

• The base address of the array A is in $s0

x = a + A[2] lw $t0, 8($S0)

add $s1, $s2, $t0

Source code Assembly language code

Compiler:

Assembler:

Converts each assembly language instruction into a bit pattern

(machine code) that hardware understands

18

HW/SW Interface

How to
program
machine

What
needs to
be built

ISA defines the interface between software and hardware

19

Layers of Computer System Architecture

Declares the signals
that drive I/O device

controllers Declares the way
addresses are

translated

• An interface declares a set of operations

– Different layers communicate vertically via the shown interfaces

20

• ISA Typically divided into two parts:

• User ISA: Gets application’s work done

– This is the subset of an ISA targeted by compilers when

mapping an algorithm specified in a high-level language to

machine instructions

• System ISA: Manages (shared) resources

– This is the subset of an ISA carefully programmed in

assembly language for low-level O/S subsystems (e.g.,

scheduler, virtual memory, device drivers)

User ISA and System ISA

21

The “User” ISA

• Refers to those aspects of the instruction set that are

visible to an application program

– Data flow

– ALU operations

– Control flow

Add

Sub

And

Compare

…

Load byte

Load word

Store multiple

Push

…

Jump

Jump equal

Call

Return

…

Add single

Mult. double

Sqrt double

…

Integer Memory Control Flow Floating Point

Overview of User ISA

22

The “System” ISA

• Refers to those aspects of the instruction set that are

visible to supervisor software, such as the O/S, which is

responsible for managing hardware resources

• Overview of System ISA:

– Privilege levels

– Control registers

– Instructions that manage key resources

• Processor (scheduling, time-sharing)

• Memory (isolated address spaces)

• I/O (e.g., isolated disk storage space)

23

Different Interfaces

Q: micro-architecture an interface ？

24

Interface Design

• “Ideal” instruction set changes continually

– Technology allows larger CPUs over time

– Technology constraints change (e.g., power)

– Compiler technology improves (e.g., register allocation)

– Programming styles change (assembly, object-oriented, …)

– Applications change (e.g., multimedia, deep learning,)

• A good instruction set

– Last through many implementations (compatibility)

– Used in many different ways (generality)

– Provides convenient functionality to higher levels

– Permits an efficient implementation at lower levels

25

RISC-V: An open, Free ISA

• A RISC ISA that can be freely used for any purpose

• Support small, fast, and low-power system designs

26

Outlines

• Instruction Set Architecture

• ISA: Programmer’s View

• ISA: Microarchitecture Level Design

– Simple Pipeline Implementation

27

Hardware Elements

• Combinational logic:

– Output is a function of the present input only：Out

Q1

FF
En

FF FF FF

Q2 Qn-1 Qn

D1 D2 Dn-1 Dn

CLK

...

...

...

FF

Register Latch

Q

Flip-flop

D

En

CLK

D CLK Q

0 Rising 0

1 Rising 1

- 0 Last Q

- 1 Last Q

• Synchronous sequential logic

– Edge-triggered: data is sampled at the clock edge

0

1

A

A

A n

: MUX Out

lg(n)

Sel

0

1

O

O

O n-1

lg(n)

:

D
e

m
u

x

Out

Sel

ALU

A

B

Op

Result

28

Register Files

RS1

WS

WD

RD2

RD1
WE

RS2

CLK

5

5

5

• The processor’s general-purpose registers are stored in

a structure called a register file

Register #0

Register #1

Register #31

5

D
e

m
u

x

WE

WS

32

Clk WD

M

U

X

RD1

M

U

X

RD2

5
RS2

5
RS1

29

A Simple Memory Model

• a Read can be done any time (i.e. combinational logic)

• a Write is performed at the rising clock edge

Addr RD

Instruction

Memory

Addr RD

Data

Memory

WD

WE

CLK

RE

30

Harvard Architecture

Instruction

Memory Data

Memory

MIPSPC [7:2]

wdaddr

ReadDataInstr

aluout

CLK

CLK

WE

reset

32

32 32

32

• Harvard Style: Physically separate storage and signal

pathways for instructions and data

• Princeton Style: The same pathways (von Neumann Model)

Harvard Architecture

31

Datapath: R-Type Instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt func

rd ← (rs) func (rt)

CLK

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Register

File

PCPC' Instr
25:21

20:16

5:0

SrcB
15:11

ALUResult

SrcA

PCPlus4

Zero

A
L
U

ALU Ctrol

Q: CLK for RF reading？

32

Datapath: Load/Store Instructions

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt address

rs is the base register

rt is the destination of Load or the source for a Store

CLK

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

CLK

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PCPC' Instr
25: 21

20:16

SrcB
15:11

ALUResult

ReadData

WriteData

SrcA

PCPlus4

RegWrite

R
e

s
u

lt

Zero

CLK

A
L
U

15:0
Sign Extend

5:0 ALU Ctrl

RegDest ALUSrc MemWrite MemtoReg

33

Control and Datapath with Branch/Jump Support

CLK

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

CLK

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1

PC
0

1
PC'

15:0

5:0

SrcB

+

ALUResult

ReadData

WriteData

SrcA

PCPlus4

PCBranch

R
e

s
u

lt

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Ctrl.

Unit

Zero

PCSrc

CLK

ALUControl2:0

A
L
U

<<2

0

1

25:0

31:28

PCJump

Jump

RE

27:0

<<2

0

1

Instr
25: 21

20:16

15:11

MemRead

34

Control Logic

MAIN

Decoder

ALU

Decoder

MemtoReg

MemWrite

Branch

ALUSrc

RegDst

RegWrite

ALUOp1:0

ALUControl2:0

Control

Unit

Jump

Opcode5:0

Funct5:0

The setting of the control lines is completely determined
by the opcode fields of the instruction

Focus on the design of the
state machines to decode
instructions and generate the
sequence of control signals

35

Generic 5-Stage Pipeline

• Pipelining: An implementation technique whereby

multiple instructions are overlapped in execution

• Instruction-level Parallelism: Exploit parallelism among

instructions (statistically & dynamically).

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF ID EX MA WB

36

Pipelined Load

• Instruction Fetch

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF/ID ID/EX EX/MA MA/WB

Add

37

Pipelined Load

• Instruction decode and register file read

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF/ID ID/EX EX/MA MA/WB

38

Pipelined Load

• Execute or address calculation

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF/ID ID/EX EX/MA MA/WB

A
L

U

39

Pipelined Load

• Memory access

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF/ID ID/EX EX/MA MA/WB

40

Pipelined Load

• Write-back

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF/ID ID/EX EX/MA MA/WB

41

Pipelined Load (Fixed)

• The write register number must propagate

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF/ID ID/EX EX/MA MA/WB

42

Pipeline Speedup

• Speedup comes from increased throughput

• The latency of instruction does not decrease

• Pipeline rate limited by the slowest pipeline stage

• Ideally, the speed-up from pipelining is approximately

equal to the number of pipe stages

Time between instruction

Time between instruction

Number of stages
pipelined

Non-pipelined

=

43

An Ideal Pipeline

• Uniform sub-computations => balancing pipeline states

• Identical computations => unifying instruction types

• Independent computations => minimizing pipeline stalls

Addr RD

Instruction

Memory

+

4

RS1

WS

WD

RD2

RD1
WE

RS2

Sign Extend

Register

File

0

1

A RD

Data

Memory

WD

WE
0

1
PC

15:0

CLK

A
L
U

RE

0

1

25: 21

20:16

15:11

IF ID EX MA WB

The slowest stage determines the clock: re-organize stages

Q: why identical computation is the ideal case？

44

Stage Quantization

• Merge multiple sub-computations into one

– Combining sub-computations with short latencies

• Subdivide a sub-computation into multiple

– Fine-grained partition of sub-computations

IF

ID

OF

EX

Instruction Fetch

Instruction Decode

Operand Fetch

Instruction Execute

Operand Store OS

IF/ID

OF

EX

OS

IF1

ID

OF2

EX1

OS1

IF2

OF1

OF3

EX2

OS2

OS3

Generic 5-Stage 4-Stage (Merged) 11-Stage (Subdivided)

Q: the more (stages), the better？

IF

ID

OF

EX

OS

45

Pipeline Slots

• A pipeline slot represents hardware resources

needed to process one uOp.
– Front-end

– Back-end

– Retiring

– Bad Speculation

46

Front-End and Back End

• Front-End denotes the first part of the processor

core responsible for fetching operations that are

executed later on by the Back-End part.

– a branch predictor predicts the next address to fetch

– cache-lines are fetched and parsed into instructions

– decoded into micro-ops (uOps)

• Front-End Bound metric represents a slots

fraction where the processor's Front-End

undersupplies its Back-End.

47

Summary

• Architecture vs. microarchitecture

• Evolution of instruction sets

• CISC (IA32) vs. RISC (MIPS)

• Machine interfaces

• User/System ISA

• MIPS instruction field

• Single-cycle MIPS

• Ideal pipeline

• Stage quantization

• Pipeline slot

48

HW-1

• List the advantages and disadvantages of the

four classic computer architecture types in

relation to each other.

• What is the motivation of RISC-v?

• Give your own summary of the key design

principles of an ideal pipeline.

