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What is Computer Architecture

The science and art of designing, analyzing,
selecting and interconnecting hardware
components to create computers that meet
functional, performance and cost goals
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-
What is Computer Architecture

« How Is computer different?

Type | objects: all things not requiring instructions
Type 11 objects: all things require instructions for their formation

anything permitted by chemistry and physics is attainable through the use
of appropriate instructions—quite a remarkable statement.

Information when properly organized and employed can instruct the
formation of very specific and otherwise highly improbable structures

J. E. Mayfield, The Engine of Complexity
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What is Computer Architecture

Technology Application

Logic gates PCs
Packaging D —— Servers
Biochips Mobile
3D stacking Computer HPC
Architecture
Research

/!

We need to see things in \
terms of parts and
subparts.

Goals

Functional
Performance
Cost
Efficiency
Reliability




Exponential Growth of Computing
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Outlines

« See “Small” in the 20t Century
— A short history of the IC industry
— A Dbrief introduction to VLSI

* Think “Big” in the 215t Century

— The server and data center industry
—Why energy Is a big Issue



The Earliest Electronic General-Purpose Computers

The 1930s and 1940s are considered the beginning of the modern computer era

T ) t u'na"ﬂ‘t A

ENIAC (Electronic Numerical
Integrator and Computer)

Managed by Univ. of Penn

« Completed in 1946

Operated until 1955

« Performed decimal arithmetic
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Power Size Speed Reliability Components
150KW 167 m? 5 KHz fails every 1~2 days 17468 vacuum tubes, etc.




The Invention of Transistor

The First Point Contact Transistor
(Dec 23, 1947, New Jersey, USA)
Two gold contacts lightly touching a
germanium crystal that was on a metal
plate connected to a voltage source.

®
William Bradford John Bardeen Walter Houser
Shockley Prize share: 1/3 Brattain
Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 1956 was awarded jointly to William
Bradford Shockley, John Bardeen and Walter Houser Brattain "for
their researches on semiconductors and their discovery of the
transistor effect”.

* The transistor went on to replace bulky
vacuum tubes and mechanical relays.

* It becomes the basic building block upon
which all modern computer rests.




The “Traitorous Eight”

The “Traitorous Eight” (1960)

1957: Fairchild Semiconductor

- Directly or indirectly involved in the creation of dozens of corporations
1968: Intel Corporation

- Robert Noyce and Gordon Moore



Integrated Circuit

“A body of semiconductor material ... wherein all the components of
the electronic circuit are completely integrated”

« Geoffrey Dummer (UK)
— First conceptualize the idea

» Jack Kilby and Robert Noyce (US)
— First independently invented IC

“Semiconductor device-and-lead structure”
o US Patent 2,981,877
o (Noyce filed in 1959, granted in 1961)

o “Miniaturized Electronic Circuits”
o US Patent 3,138,743
o (Kilby filed in 1959, granted in 1964)




e
Evolution of Processors

( )
Intel 4004 Processor
Introduced 1971

Initial clock speed
108KHz

Number of transistors
2,300

Manufacturing technology
10p

4-bit processors. The same computing power
as ENIAC. The following 8008 design (8-bit)
doubles the computation capability
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e
Evolution of Processors

( )
Intel 8086 Processor
Introduced 1978

Initial clock speed

SMHz

Number of transistors
29,000

Manufacturing technology

3M

. J

The first 16-bit processors. The first x86 CPU.
Up to 10x the performance of 8080




e
Evolution of Processors

( )
Intel 486 Processor
Introduced 1989

Initial clock speed

25MHz

Number of transistors
1,200,000

Manufacturing technology

1p

32-bit; first tightly pipelined x86; have over
1 million transistors; L1 cache integrated
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e
Evolution of Processors

( )
Intel Pentium Processor
Introduced 1993

Initial clock speed

66MHZz

Number of transistors
3,100,000

Manufacturing technology
0.8

[The first superscalar IA-32 processor }
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law deseribes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two vears,

Our World
inData

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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Data source; Wikipedia (https://
The data

en,wikipedia,org/wiki/Transistor_count)

sualization is available at QurWorldinData.org. Thers you find more visualizations and research on this topic.

Licensad under CC-BY-SA by the author Max Roser.



Processor Clock Rate Trend

Maximum Clock Speed (MH2z)
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Outlines

« See “Small” in the 20" Century

— A brief introduction to VLSI

17



Abstraction Layer

Application

SW System

HW System
Module
Gates

Physics
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Silicon Ingot

At

D e
Melting of
polysilicon,
doping
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crystal
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the crystal
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Formed crystal
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of melted silicon
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Doped Semiconductors
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« The advantages of semiconductors emerge when
Impurities are added (called doping)
— N-Type: electrons are majority carrier
— P-Type: hole are majority carrier
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Transistor Structure (NMOS)
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Equivalent Ideal Switches of Transistors

« Transistors can be thought as a switch controlled by its gate signal
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Transistors in Series/Parallel Connection

« NMOS switch closes when switch control input is high
— NMOS Transistors pass a “strong” 0 but a “weak” 1 Q: why?

 PMOS switch closes when switch control input is low
— PMOS Transistors pass a “strong” 1 but a “weak” 0 Q: why?
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From Circuit to Layout

CMOS Inverter

Active areas for thin oxide region

B Polysilicon for the gate
B Metal for interconnection

B Contact (Via) for inter-layer connection
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Transistor Gate Length

* The minimum process dimension is feature size = 2A
— Feature size reflect the typical length of a transistor channel (gate)
* In 1978, A = 1.5 ym (a.k.a. 3 micrometer technology)
* In 2004, A = 0.045 ym (a.k.a. 90 nanometer technology)

vdd

Feature size is often determined and
limited by the fabrication process

G —_ —  GatelLength

26



Integrated Circuit Fabrication
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Moore’s Law

Feature size

10 um

100 nm

Nominal feature size

Technology node

130 nm/

90 nm

Gate length

Nanotechnology

Planar MOSFET limit = - = -

10 nm
1970

1980 1990 2000 2010 2020

Calendar year
Feature size versus calendar year
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Manufacturing Process

Blank
Silicon ingot wafers
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Cost per Die

IC cost = Die cost + Testing cost + Packaging cost
Final test yield
Die cost = Wafer cost
Dies per Wafer * Die yield

Dies per wafer = n* ( Wafer_diam/ 2)2 - n*Wafer diam - Test dies
Die Area \ 2 * Die Area
ANy \\
\ // 7
\-h__ A N ]

Defects_per_unit_area * Die_Area}_ o

Die Yield = Wafer yield *{1 +
oL

e Die Cost x die area*

30



Die Cost: Some Example (1994)

Chip Metal | Line | Wafer | Def./ | Area | Dies/ | Yield | Die
layers | width | cost | cm? | mm? | wafer cost
386DX 2 0.90 | $900 | 1.0 | 43 360 | 71% | %4
486 DX2 3 0.80 | $1200 | 1.0 81 181 | 54% | $12
BPg:ver PC 4 0.80 | $1700 | 1.3 | 121 | 115 | 28% | $53
HP PA 7100 3 0.80 | $1300 | 1.0 | 196 66 27% | $73
DEC Alpha 3 0.70 | $1500 | 1.2 | 234 53 19% | $149
Super Sparc 3 0.70 | $1700 | 1.6 | 256 48 13% | $272
Pentium 3 0.80 | $1500 | 1.5 | 296 40 9% | $417
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Outlines

* Think “Big” in the 215t Century
— The server and data center industry
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Scalability

The capabillity of a system, network, or process to
handle a growing amount of work, or its potential to be
enlarged in order to accommodate that growth

« Scale Out (Horizontal Scaling)
— Add more components to a system
— e.g. double the nodes in a cluster

« Scale Up (Vertical Scaling)
— Add resources to a single component in a system
— e.g. upgrade your memory
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Servers

« Tower/Rack-Mounted/Blade/Mainframe
« Usually accessed only via a network
« Engineering/Scientific/Business application
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-
From Server to Large-Scale Systems

/

1U server

A rack unit (abbreviated U
or RU) is a unit of measure
defined as 1.75 inches
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Supercomputer (HPC Center)

« High-quality components
e Throughput matters

Sunway TaihuLight
15.4MW, 6Gflops/W

TIANHE 2 TITAN Sequoia The K
17.8 MW 8.2 MW 7.9 MW 12.7 MW 3.9 MW

36




Internet Data Centers (IDC)

* |nexpensive, commodity components
« Quality of service (latency) matters
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A Typical Data Center

Energy Storage
Cabinets/UPS
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The Three Pillars of a Data Center

Cooling Facility

Data Center
Infrastructure

ICT Equipment

Power System
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Data Center TCO

Project Management
l 59, Power

Equipment
/ 18%

.  Coo0ling
Equipment
6%

System Monitoring
1%

Space
15%

Racks
2%

Engineering &
Installation
Electricity 18%
20%

Service
15%

« TCO: Total Cost of Ownership
— CapEX (Capital Expenditure) + OpEx (Operational Expenditure)
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Outlines

* Think “Big” in the 215t Century

— Why energy Is a big Issue
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Energy Consumption Issue

8 TWh USA

3 TWh China

2 TWh U.K.

2 TWh Japan
2TWh Brazil
1TWh —41]?\% France

1 TWh—¢—Benelux
1TW —1— Canada
1 TWh—?]?— Germany
1 TWh—<ﬁ]>— Russia

1 TWh—?']?— Australia
1 TWh—“— India

e The global data center electricity
usage in 2012: 300 ~ 400 TWh

— 2% of global electricity usage

The increase in server energy demand (2012-2013);;;

— Expected to triple by 2020 B
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302 TWh

TOTAL ENERGY
was consumed

in CA in 2012

[1] C. Belady, Projecting Annual New Datacenter Construction Market Size, Global Foundation Services, 2011
[2] DCD Industry Census 2012: Energy, http://www.dcd-intelligence.com/
[3] http://energyalmanac.ca.gov/electricity/total_system_power.html
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Energy Consumption Issue: Cost

The 3-Year Energy Expenditure

Historical Electricity Prices in UK
(% of Total IT Equipment Cost)
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e Escalating energy consumption drives data center cost up
— Need to think alternative power provisioning solutions

[1] Conference report: The Future of the Data Centre, http://www.information-age.com
[2] Ken Brill, The Economic Meltdown of Moore’s Law and the Green Data Center
[3] https://www.gov.uk/government/organisations/department-of-energy-climate-change 43




Energy Consumption Issue: Environmental Impact

e The greenhouse effect & climate change

e 1MW data center - 10~15 Kt CO: yearly

.....

e Data centers are carbon-constrained:

Hurricane Sandy, 2012 — They must cap carbon emissions
(Northeastern US)

40% : - —
% Performing Carbon Monitoring
20%
Sae o g A 0% _
S e e 23825 £ 2883335352355
[ c B (] (¢°] o ] — ~ —
Typhoon Halyan,.2013 3 s=5858 R z > g £ s
(Southeast Asia) 220"3d g
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Power Capacity Issue

~50KW per rack Power Budget

~10KW per rack

~100 Watts

~0 Watts '

“Exascale computers ... need a dozen nuclear power '

stations to run it.”
- E&T: the Engineering & Technology Magazine m
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Scalability

Power Capacity Issue

\1/7 Automatic Transfer Switch (ATS)

\l/_ Server Clusters

Power Distribution Units
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How To Scale Power Capacity?

0) . .
66% Preference to different solutions
42%
29% 24% 30%
& N
- & - 1
Consolidate Deploy Upgrade Build New Lease Move to the

Servers Containers Equipment Datacenters Colocation Cloud

Colocatio\ (

.
i-

£ I'.\

131 ' :
K ‘ 'émaz_on".
Y ol
. e i O
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il SR \ 78

Improve Efficiency t Facility Construction Third-Party Solutmnsi

[1] the Uptime Institute 2012 Data Center Industry Survey, 2012
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Summary

« What is computer architecture

« History of IC

e Transistor basics

* Feature length

« HPCvsIDC

« Scale up/out

* Energy/power issues

« The trend of computer architecture research
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