
Multicore Architecture and Parallel Programming

Assignment on CUDA Programming

Due: 2.Nov 23:59

Problem 1

The most effective way to fully understand a programming tool is to develop
programs or real applications. There are many problems, which can be effec-
tively solved with CUDA, are suitable for a novice as exercise. Here is one
example. As you may know, Kernel Method (KM) is used to avoid computa-
tion and complexity in Support Vector Machine (SVM). RBF kernel is one of
the famous kernel functions. Its definition is

K(xi, xj) = e−
∥xi−xj∥

2

2σ2

Where xi and xj are n-dimensional vectors with each representing a piece
of n-dimensional feature. Its clear that calculating RBF kernel function using
single CPU thread may be slow and it can be effectively parallelized using
CUDA.

Problem

Please write CUDA kernel functions to effectively compute the RBF kernel
of two matrices. You may need to write wrapper functions to accomplish the
task.
Hint: if you have any problems, please first refer to matrix multiplication
algorithms

Problem 2

Have you ever experienced the power of GPU computing? To achieve the max-
imum performance, there are many tricks based on the processor and memory
architecture. I want to show you a trick that you may never see in most CUDA
documentations released by NVIDIA.

The memory hierarchy of CUDA architecture brings us global memory
(including constant memory, texture memory and surface memory), shared
memory and registers. You must realize that shared memory should be used if
possible to avoid high latency accessing global memory. But shared memory is
again far slower than registers. How can we achieve the extreme performance?
Please read reference [2] and optimize your program to get more speedup.

1



Reference

1. http://svr-www.eng.cam.ac.uk/~kkc21/thesis_main/node31.html

2. http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

Notice

1. Server IP: 202.120.38.28, port: 2016. Username: your name (e.g. for
Chinese Students, it’s Pinyin of your name). Password: Last four digits
of your student id. You can ssh login to work on the server. You can
use scp to perform file transfer between your PC and server.

2. You have to write a makefile to compile your code. Sample makefile has
already been put at your home directory.

3. Send your final version to TA at oar.yin@sjtu.edu.cn.The Subject of the
email should be ”studentID name hw2” You should archive your source
code and makefile with StudentID Name cuda.tar.gz(or any archive file
types). Do not include binary file.

4. It should be a standalone function to perform the computation, i.e.,
everybody can reuse your function to do the similar job with variable
configurations.

5. Should you have any questions, please feel free to contact TA at oar.yin@sjtu.edu.cn.

2

http://svr-www.eng.cam.ac.uk/~kkc21/thesis_main/node31.html
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
mailto:oar.yin@sjtu.edu.cn
mailto:oar.yin@sjtu.edu.cn

