
Automatic Web Information Extraction in the
roadRunner System

Valter Crescenzi1, Giansalvatore Mecca2, and Paolo Merialdo1

1 D.I.A. – Università di Roma Tre
2 D.I.F.A. – Università della Basilicata

Abstract. This paper presents roadRunner, a research project that
aims at developing solutions for automatically extracting data from large
HTML data sources. The target of our research are data-intensive Web
sites, i.e., HTML-based sites with a fairly complex structure, that publish
large amounts of data. The paper describes the top-level software archi-
tecture of the roadRunner System, and the novel research challenges
posed by the attempt to automate the information extraction process.

1 Introduction

Extracting data from HTML pages and making them available to computer
applications is becoming of utmost importance for developing several emerg-
ing e-services. Many new classes of applications aim at leveraging on the huge
amount of data delivered on the Internet as HTML pages. For example, a ser-
vice which is becoming quite popular on the net is that provided by the so called
shopping agents, that is software modules that navigate the network looking for
better prices of specific items on e-commerce sites. Another important example
is represented by the needs of modern portals, whose goal is offering integrated
access to several Web services (like home banking, on-line trading, billing, credit
card checking etc.) from a single interface.

These applications need to manipulate data delivered into HTML pages by
several Web sites. Nevertheless, since the target consumers of Web data sources
are humans – rather than machines – the data encoded into HTML pages cannot
be directly handled by applications: they need to be extracted from HTML pages
and made comprehensible to machines. Data extraction from HTML Web pages
is usually performed by software modules called wrappers, i.e. programs that are
able to extract data items from HTML pages and return them in a structured
format (e.g. in XML). However, writing wrappers for HTML by hand may in
some cases be a labor-intensive task. Also, manually coded wrappers are usually
quite brittle, since even small changes at the site may prevent the wrapper from
working properly. Therefore, maintaining applications that need to process data
extracted from the Web becomes a costly and complex issue.

roadRunner is a research project that aims at developing solutions for au-
tomatically extracting data from large HTML data sources. This paper presents
an overview of the project and describes the top-level software architecture of

H. Arisawa and Y. Kambayashi (Eds.): ER 2001 Workshops, LNCS 2465, pp. 264–277, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Automatic Web Information Extraction in the roadRunner System 265

the roadRunner System, which has been specifically designed to automate the
data extraction process.

The paper is organized as follows. First, Section 2 gives an overview of the
project goals, trying to convey an intuition of the key ideas and of the original
features with respect to other proposals in the literature. Section 4 describes the
overall architecture of the roadRunner system. The following sections then
concentrate on the description of the various modules.

2 Overview

The target of our research are data-intensive Web sites, i.e., HTML-based sites
that publish large amounts of data in a fairly complex structure. Data are usually
stored in a back-end DBMS, and HTML pages are dynamically generated using
scripts from the content of the database; simply speaking, these scripts run
queries on the database – possibly nesting the original relational tables – and
return the result-set in HTML format. Roughly speaking, we may say that each
script generates a class of pages with homogenous content and layout. These sites
usually contain different classes of pages, corresponding to different contents in
the site, like, for example, pages about MP3 players sold on amazon.com or
pages about stock quotes on yahoo.com. Our goal is that of running database–
like queries on these pages, like “name and brand of the MP3 player with the
lowest price” or “last variation of Microsoft stock certificates”.

To do this, we follow a two–step approach: (i) we provide a wrapper layer
that extracts relevant pieces of information from the original HTML pages in the
sites, and returns them as a collection of XML documents on the same DTD or
XMLSchema; to give an example, the XML documents derived for pages about
MP3 players on amazon.com might contain a list of <player> elements, each with
<name>, <brand>, <price> subelements, plus an optional sublist of comments and
ratings written by customers who purchased that player. (ii) Then, based on
these wrappers, an XML query language (like XQuery [5], or any other of the
other languages that have been recently proposed [3]) can be used to express
and evaluate queries on these derived XML documents.

Given the availability of several XML query languages, it can be seen that
most of the complexity of this process lies in the generation of wrappers that
perform the translation from HTML to XML. In light of this, in this paper we
concentrate primarily on this problem, and assume that an external XML–query
language engine is available to run queries on the resulting XML docs.

2.1 Supervised Grammar Inference

Generating a wrapper for a set of HTML pages corresponds to deriving a gram-
mar for the HTML code in the page – usually a regular grammar – and then use
this grammar to parse the page and extract pieces of data. Grammar inference is
a well known and extensively studied problem (for a survey of the literature see,
for example, [18]). However, regular grammar inference is a hard problem: first,

266 V. Crescenzi, G. Mecca, and P. Merialdo

it is known from Gold’s works [10] that regular grammars cannot be correctly
identified from positive examples alone; also, even in presence of both positive
and negative examples, there exists no efficient learning algorithm for identifying
the minimum state DFA that is consistent with an arbitrary set of examples [11].
As a consequence, the large body of research that originated from Gold’s seminal
works has concentrated primarily on finding efficient algorithms for supervised
grammar learning, i.e., algorithms that work in presence of additional informa-
tion, typically a set of labeled examples or a knowledgeable teacher’s responses
to queries posed by the learner.

The fact that regular expressions cannot be learned from positive examples
alone, and the high complexity of the learning even in presence of additional
information have limited the applicability of the traditional grammar inference
techniques to Web sites, and have recently motivated a number of pragmati-
cal approaches to wrapper generation for HTML pages. These works have at-
tacked the wrapper generation problem under various perspectives, going from
machine–learning [9,20,15,13,16] to data mining [1] and conceptual modeling [8,
19]. Although these proposals differ in the formalisms used for wrapper specifica-
tion, they all inherit the “supervised learning” approach of traditional grammar
inference, and share a number of common features:

– manual selection of sample pages: first, it is assumed that a human supervisor
selects a collection of homogeneous HTML pages from which data should be
extracted; the wrapper generation system usually derives the wrapper by
working on a single page at a time; then, the wrapper is used to parse the
remaining pages, possibly generalizing the grammar when this is needed;

– availability of labeled examples: second, the wrapper generator works by using
additional information on the content of the page under exam, typically a
set of labeled samples provided by the user or by some other external tool;
the wrapper is inferred by looking at these positive examples and trying to
generalize them;

– a priori knowledge about the target schema: third, it is usually assumed that
the wrapper induction system has some a priori knowledge about the page
organization, i.e., about the schema of data in the page; most works assume
that the target pages contain a collection of flat records; in other cases [1]
the system may also handle nested data, but it needs that the user specifies
what are the attributes to extract and how they are nested.

In essence these works deal with a data extraction problem that we may sum-
marize as follows: “given one or more HTML pages, a target schema (usually
a list of flat records) for these pages, and a set of labeled examples, find a set
of extraction rules that allow to parse the HTML code and retrieve data items
according to the target schema”.

2.2 Our Approach

Our research departs quite significantly from these proposals and investigates
the wrapper generation problem under a new perspective. In particular, we aim

Automatic Web Information Extraction in the roadRunner System 267

at automating the wrapper generation process to a larger extent; for this reason,
we investigate unsupervised wrapper generation, as follows:

– first, we do not assume that sample pages are manually selected from a human
designer; on the contrary, we assume that the system is able to automatically
cluster pages in a (portion of a) site into homogeneous classes;

– second, our system does not rely on user-specified labeled examples, and does
not require any interaction with the user during the wrapper generation
process; this means that wrappers are generated and data are extracted in
a completely automatic way;

– finally, we do not assume any a priori knowledge about the target schema,
i.e., our system does not know the schema according to which data are
organized in the HTML pages: this schema will be inferred along with the
wrapper; moreover, our system is not restricted to flat records, but can
handle arbitrarily nested structures;

In essence, we may say that, with respect to other works in the literature, we
deal with a different problem, a schema finding and data extraction problem [12],
which we may summarize as follows: “given a set of HTML pages, find a schema
(arbitrarily nested) for the content of these pages, and a set of extraction rules
that allow to parse the HTML code and retrieve the data according to the
discovered schema”. This change of perspective on the overall problem of infor-
mation extraction from Web pages represents the main source of originality of
this research.

In fact, on the one side, this forced us to reconsider the problem of grammar
inference for HTML pages, and devise new techniques to deal with it; the main
intuition behind our proposal is that pattern discovery can be based on the
study of similarities and dissimilarities between the pages; in particular, we have
proposed [6] a novel approach to wrapper inference for HTML pages, in which,
in order to tell meaningful patterns from meaningless ones, our system works
with two HTML pages at a time, and mismatches are used to identify relevant
structures.

On the other side, we had to face a number of side research problems that had
not been considered before, since the presence of user-provided inputs made them
irrelevant. These problems go from that of selecting collections of homogeneous
pages in a site, i.e., pages with the same structure, to that of labeling attributes
in the target schema once this has been derived (i.e., stating that string “$15.99”
is a price, and “Java for Dummies” is a book title).

In the following sections we describe the various modules that compose the
architecture or our system, and how these concur to the solution of these prob-
lems.

3 The Wrapper Generation Algorithm

In our approach a wrapper is a regular grammar that can be parsed against an
HTML page to retrieve some data items. To be more precise, given an alphabet

268 V. Crescenzi, G. Mecca, and P. Merialdo

of terminal symbols Σ, and a set of non-terminal symbols N , we consider a
subset of the regular grammars, corresponding to regular expressions built over
Σ∪N using the following operators (ε is the empty sequence): (i) concatenation,
of the form a · b , i.e., the sequence of a and b; (ii) iteration, of the form a+, i.e.,
the repetition of a one or more times; (iii) “hooks” of the form (a)?, a shortcut
for a|ε.

For example, the following regular expression may define a wrapper in our
formalism ($ denote non-terminals):

<HTML>...
Player: $Name $Brand - our price: $Price

 ($Rating (<I>$Review</I>)?)+
...</HTML>

Note that, with respect to general regular grammars we allow for a very
limited form of disjunction, basically only the ones hidden inside hooks (zero or
one), and inside iterations (one or more). In essence, our wrapper corresponds
to union-free regular grammars. This, of course, introduces a limitation in the
expressive power of the wrapping language. However, our experience tells that
the language includes many of the typical patterns that occur in fairly structured
HTML sources [6].

Since wrappers essentially parse the HTML code, they are targeted at a spe-
cific page organization and layout. Therefore, in order to extract data from a
site, we need to derive one wrapper for each page class in the site. In road-
Runner, this decoding activity is based on the similarities that are exhibited
by HTML pages belonging to the same class, i.e., we try to infer a grammar for
a class of pages by looking at a number of samples, and then use this grammar
as a wrapper.

We have recently developed an original technique to infer a wrapper for
a class of pages by analyzing similarities and differences among some sample
HTML pages of the class [6]. In essence, given a set of sample HTML pages,
our technique compares the source HTML codes, in order to find matching and
mismatching parts and, based on this knowledge, progressively refines a common
wrapper. The output wrapper is a grammar that can be parsed against the pages
of the class to extract data items. These ideas are clarified in Figure 1, which
refers to a fictional bookstore site. In that example, pages listing all books by one
author are generated by a script; the script first queries a database to produce a
nested dataset (Figure 1.a) by nesting books and their editions inside authors;
then, it serializes the resulting tuples into HTML pages (Figure 1.b). When
applied on these pages, the Aligner technique compares the HTML codes of the
two pages, infers a common structure and a wrapper, and uses that to extract the
source dataset. Figure 1.c shows the actual output of the current implementation
of the Aligner after it is run on the two HTML pages in the example. (For the
sake of readability, the extracted dataset is produced in HTML format. As an
alternative, it could be formatted in XML, or stored in a database.)

Several things are worth noting here. First, since the matching technique is
based on the comparison of pages of the same type, one critical assumption is
that HTML pages coming from the site have been somehow clustered into the

Automatic Web Information Extraction in the roadRunner System 269

a. Source Dataset
Name Books

Title Descr. Editions
Details Year Price

John Smith Database Primer This book... First Edition, Paperback 1998 20$
Second Edition, Hard Cover 2000 30$

Computer Systems An undergraduate... First Edition, Paperback 1995 40$
Paul Jones XML at Work A comprehensive... First Edition, Paperback 1999 30$

HTML and Scripts A useful HTML... null 1993 30$
Second Edition, Hard Cover 1999 45$

JavaScript A must in... null 2000 50$
...

b. HTML Pages
www.csbooks.com/author?John+Smith www.csbooks.com/author?Paul+Jones

c. Data Extraction Output

Fig. 1. Examples of HTML Code Generation

different classes they belong to; then, to support the above algorithms, there
is the need to adopt some clustering techniques for HTML pages that allow to
quickly classify pages based on their type; these techniques should aim at giving

270 V. Crescenzi, G. Mecca, and P. Merialdo

a good approximation of the page classes in the site, in order to carry on the
decoding step.

Second, sites usually also contain singleton pages, i.e., pages such that there is
no other page in the site with the same organization and layout; the Home Page
of a site usually falls in this category. These pages mainly serve the purpose of
offering browsable access paths to data in the site; the Aligner, which is based on
comparing two or more pages and finding similarities, obviously is not applicable
to these singleton pages; therefore there is the need to develop specific techniques
for wrapping these pages also;

Finally, as it can be seen from the example in Figure 1.c, whenever we infer
a nested schema from the pages belonging to one class, the inferred schema
has anonymous fields (labeled by A, B, C, D, etc. in our example). In order
to enhance the semantics of the schema, each field should be associated with a
meaningful name. This step could be done manually after the dataset has been
extracted. Nevertheless, since our ultimate goal is that automatizing the whole
data extraction process, one intriguing alternative is to develop some form of
post-processing of the wrapper to automatically discover attribute names.

The software architecture of the roadRunner system, discussed in the next
section, is aimed at providing solutions to all of these problems; it is centered
around the Aligner, i.e., the module that implements the wrapper generation
algorithm, and complements it with a number of additional modules.

4 The roadRunner System Architecture

Figure 2 shows the top-level architecture of the roadRunner system.
We identify four main modules, each of which addresses a specific problem,

as follows:

– the classifier analyzes pages from the target site and collects them into clus-
ters with a homogeneous structure, i.e. it tries to identify the page classes
offered by the site. this module incorporates a crawler that navigates the
target site, and exploits a number of heuristics for producing a good approx-
imation of the page classes in the site; note that some of these classes may
contain several candidate pages and will be fed to the Aligner for wrapper
generation; other classes will have singleton elements;

– wrapper generation for classes of similar pages is performed by the Aligner,
which implements the matching technique; for each class of pages, the Aligner
compares the HTML sources of some sample pages to infer a grammar to be
used as a wrapper for the whole class;

– classes having singleton pages are fed to a module called Expander, which
tries to infer a wrapper for them; wrappers generated by this Expander are
based on different techniques with respect to those inferred by the Aligner;

– finally, the Labeler associates a semantic meaning to the data fields that
can be extracted by running the wrappers generated by the above modules
against the site pages; i.e. it gives an appropriate name to each non-terminal
symbol of the wrapper grammar.

In the following we briefly illustrate the main features of the various components.

Automatic Web Information Extraction in the roadRunner System 271

Fig. 2. Architecture of the System

4.1 The Aligner

The Aligner implements the ACME technique, which represents the core of our
system. In the following we sketch a description of the ACME technique. For
a deep description we refer the interested reader to [6], which also reports the
results of several experiments.

ACME takes as input HTML page sources as list of tokens (a lexical analyzer
transforms pages into lists of tokens); each token is either an HTML tag or a
string value. Then ACME works on two objects at a time: (i) a list of tokens,
called the sample, and (ii) a wrapper, i.e., one union-free regular expression.
Given two HTML pages, to start we take one of the two, for example the first
page, as an initial version of the wrapper; then, the wrapper is progressively
refined trying to find a common regular expression for the two pages. This is
done by progressively solving mismatches between the wrapper and the sample.
The wrapper can then be further refined by iteratively applying the same tech-
nique over the samples of a collection of HTML pages of the same class. Our
experiments show that a small number of sample pages (3-6) is sufficient to infer
a grammar wrapper for all the pages of a large class.

272 V. Crescenzi, G. Mecca, and P. Merialdo

5 The Classifier

The goal of the Classifier [7] is to efficiently identify the different pages classes
in the target sites. For each class, a number of samples will be given as input
to the Aligner in order to generate the corresponding wrappers. The Classifier
crawls a site in order to cluster its HTML web pages according to the grammar
they obey to. The clustering process is based on known techniques. Roughly
speaking we may say that these techniques see the samples to cluster as points
in a n-dimensional real space, usually called the feature space; cluster are then
generated trying to minimize the average distance between points in a cluster
(see [14] for a survey on the topic).

One key point in this process is choosing the right mapping of a sample to the
feature space. This is done by extracting some relevant (numeric) features from
the sample and using them as coordinates in the feature space. In our context,
determining useful features becomes an intriguing problem, completely different
from the classical ones. In fact, we have a radically new notion of similarity
between our samples, that is, the compliance to a common regular grammar.
To give an intuition of how this new notion of similarity makes our clustering
problem different from the classical string clustering problem, consider the fol-
lowing: (i) usually two strings are considered similar if they contain common
sub-parts. On the contrary, in the Web page case, requiring that two pages con-
tain common sub-parts is not sufficient to guarantee that they can be parsed
using the same grammar – this requires a deeper form of structural similarity;
(ii) also, typically strings that are considered similar by classical methods have
approximately the same length; in our case, pages in the same class may have
largely different sizes due to different cardinalities of patterns under a Kleene’s
star; consider for example two pages about books, each with the list of books
by a certain author; if the first author has published few books (say 3) and the
second one many more (say, 15), the sizes of the two HTML sources may be
completely different; nevertheless, the two pages are very likely to belong to the
same class.

We have identified two families of features that can give information about
the similarity of pages as needed in our context. In the former family, there
are features that aims at giving information about the internal structure of the
pages; clearly these properties are somehow connected to the structure of the
common grammar these pages should obey to. In the current implementation
we have taken into account the following features:

– Tag Probability it is reasonable to assume that pages complying the same
grammar have a similar “distribution” of tags, i.e., tags appear in the pages
with similar probability; we have therefore considered tag probabilities as
possible features for the Web page clustering problem; in practice, we calcu-
late for each sample the percentage of occurrences of each tag with respect
to the total number of tags, and use these numbers as coordinates in the
feature space.

– Tag Periodicity there are cases in which tag probabilities may be mislead-
ing, since they do not give information about the relative positions of tags.
This means that two pages containing approximately the same tags will be

Automatic Web Information Extraction in the roadRunner System 273

considered similar even if the tags are completely rearranged with respect to
each other, and therefore the pages are different in terms of the grammar.
To complement tag probability with some other feature that gives us infor-
mation on tag positions, we apply to HTML pages a variant of the classical
frequency spectrum method [17].

– Distance from the Home Page if navigation paths in the site are well orga-
nized, it is reasonable to assume that pages containing homogeneous infor-
mation are approximately at the same distance from the home page in the
site graph.

– URL Similarity experience tells that, in most sites, URLs of pages in the
same class follow some common patterns, either due to the fact that the
HTML files are stored in a common physical folder of the server, or that the
pages are generated by the same script. To take this into account, we use
the classical notion of string similarity [2] in order to associate a number of
numerical features with each URL string.

Interestingly, our experiments show that the four classes of features together,
usually guarantee a good approximation of the correct classification.

6 The Expander

The Expander is responsible for extracting data from singleton pages, i.e. pages
forming a separate class by themselves, so that each class is composed of a
unique instance. It is worth noting that usually the role of these pages in a site
is to collect access paths, i.e. links, to other pages; usually, the anchor of these
links is a value that is repeated in the destination page. For example, consider
a bookstore site; a possible singleton page in the site is the one that presents a
list of all the book genres sold by the store. This page offers links that lead to
pages presenting books of a given genres. For the sake of usability, the names
of the various genres compare both in the singleton page and in the destination
pages.

On the basis of these observations, we do not need extract data from singleton
pages; they works as indices in a database, and the data items they contain are
redundant with those provided by other (richer) pages. Therefore, they do not
carry any useful information.

However, these pages might be useful to efficiently maintain the extracted
data up-to-date with the Web source. So far we have described the data ex-
traction as a one-shot process made by the following steps: 1) download all the
site pages, 2) build wrappers for them, 3) apply the wrapper to extract rele-
vant data. In order to keep data up-to-date, we should periodically repeat this
process, every time downloading the whole site.

An alternative strategy is to leave data in the site, and to build a virtual
dataset. Whenever one query is issued against the dataset, the system has to
navigate the site and extracts data relevant to the query. Singleton pages pro-
viding access paths can efficiently support this approach. Therefore inferring a
wrapper also for singleton pages may become a relevant issue. It is worth noting
that the problem here has specific objectives: we are not interested in extracting

274 V. Crescenzi, G. Mecca, and P. Merialdo

data provided by these pages; our objective is to build a wrapper for these pages
in order to allow the system to navigate the whole site.

This goal can be achieved by applying wrapper inference techniques devel-
oped in other contexts. The crucial point is that we have at disposal the data
offered in singleton pages: we have seen that they offer redundant data, that is
data which can be extracted elsewhere in the site (applying the matching tech-
nique). In other words, we have positive examples to infer the wrapper grammar.
This is the task addressed by several techniques known in the literature, such
as, for example, Nodose [1], or Stalker [16]. Thus, we have planned to integrate
one of these techniques into the roadRunner architecture in order to support
the Expander.

7 The Labeler

The Aligner is able to infer a wrapper and its associated schema for a class of
pages; however, as we have said above, non-terminal symbols, which corresponds
to attributes over the schema, are assigned anonymous names, as shown in the
example of Figure 1.c.

The goal of the Labeler is to associate a meaningful name to each attribute
of the extracted data set. Clearly this step could be done manually; however, in
order to automatize every facet of the data extraction process we are currently
investigating techniques to discover an appropriate name for each field.

One possible solution to the problem relies on the adoption of knowledge rep-
resentation techniques: analyzing the extracted data, and exploiting the knowl-
edge managed by some domain ontology, it may be possible to deduct some
meaning for the fields. However, it is worth observing that important informa-
tion about data is available on the Web pages themselves. Since Web sites are
intended to be browsed by humans, it is a common practice that the data pub-
lished into HTML pages are accompanied by textual descriptions to help the
user directly and correctly interpret the underlying information. In many cases
these descriptions are indispensable to correctly present data to the user. For
example, consider how prices are presented in e-commerce Web sites: without
the help of strings such as ”our price” and ”saving”, pricing data would be com-
pletely misunderstood. Also, textual descriptions are often associated to data
items organized into tables; usually, the first rows reports labels to describe the
contents of the columns (the usage of table headers is strongly suggested by the
W3C itself for the sake of usability).

Based on these observations we are setting up several methods to analyze
the HTML code of the sample pages processed by the Aligner in order to find
strings that represent good candidates for naming the fields of the data set.
Our methods are based on a generalized notion of closeness between wrapper’s
tokens and non-terminal symbols. In particular, we deal with the twofold nature
of an HTML wrapper: on the one hand the wrapper can be seen as a sequence
of symbols; on the other hand, since the wrapper keeps the nested structure of
an HTML document, it can be seen as a DOM tree as well, introducing special
nodes to denote iterations and hook. Figure 3 illustrates this concept; note that
the marked node represents the iteration.

Automatic Web Information Extraction in the roadRunner System 275

... <TABLE> <TR> <TD> Name </TD>
<TD> Phone </TD> </TR>
(<TR> <TD> $A </TD> <TD> $B </TD> </TR>)+

</TABLE> ...

❄

✍✌
✎�

<TABLE>

✟✟✟✟✙
❍❍❍❍❥

✍✌
✎�

<TR>

❅
❅❘

�
�✠

✍✌
✎�� +

❄

✍✌
✎�

<TD>

❄

✍✌
✎�

Phone

✍✌
✎�

<TD>

❄

✍✌
✎�

Name

✍✌
✎�

<TR>

❅
❅❘

�
�✠

✍✌
✎�

<TD>

❄

✍✌
✎�

<TD>

❄

✍✌
✎�

$A
✍✌
✎�

$B

Fig. 3. Wrappers as DOM Trees

When searching for the name of a given field the Labeler explores the sequen-
tial representation of the wrapper, looking for a text string which is adjacent to
the non-terminal. The ”adjacency” is defined with respect to this specific con-
text, and several characteristics of the HTML format concur at defining this
properties.

When analyzing non-terminal symbols which are included in a repeated pat-
tern, the Labeler also considers the DOM tree representation of the wrapper.
The idea here is to check whether the pattern sub-tree is adjacent with some
isomorphic sub-tree. In this case, the leaves of the discovered tree can be selected
as names for the non-terminals of the pattern tree. Also in this case the notions
of adjacency and isomorphism are defined with respect to our specific context.

Figure 3 gives an intuition of this strategy. The left dashed tree corresponds
to a heading for the iterated pattern represented by the right dashed tree: since
the two are isomorph the leaves of the former – namely, the strings ”name” and
”phone” – are candidate to be used as names for the non-terminals $A and $B
respectively.

These methods assume that for each field a description is present in the page
(and then into the wrapper grammar). However, there are many situations in
which data are published in the Web page leaving their meaning implicit. For
example, in a page presenting the details of a sold book, it might not be necessary
to explicitly associate the book’s title a string to describe that what follows is

276 V. Crescenzi, G. Mecca, and P. Merialdo

the book title; it is assumed that the user is able to interpret the right semantics
to that data item. Clearly, in these cases the above techniques fail.

To face these cases, we are currently studying an approach that relies on the
richness of the Web itself, and which is inspired to Brin’s DIPRE technique [4].
The Web can be considered as a huge knowledge base, where a particular piece of
information may be published by thousands of independent sites. Clearly each
site may adopt different presentation policies. Therefore, with respect to our
specific problem, it is possible that in some page a given data item is associated
with some information describing its meaning. Intuitively, for those non-terminal
symbols whose names have not been derived by the above techniques, the system
could extract some sample data item, and give them as input to a Web search
engine. It is reasonable that in some of the pages retrieved by the search engine,
the input value is explicitly associated with some descriptive text.

References

1. B. Adelberg. NoDoSE – a tool for semi-automatically extracting structured and
semistructured data from text documents. In ACM SIGMOD International Conf.
on Management of Data (SIGMOD’98), Seattle, Washington, 1998.

2. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in se-
quence databases. In International Conference of Foundations of Data Organiza-
tion (FODO’93), pages 69–84, 1993.

3. A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. ACM
SIGMOD Record, 29(1):68–79, 2000.

4. D. Brin. Extracting patterns and relations from the World Wide Web. In Proceed-
ings of the First Workshop on the Web and Databases (WebDB’98) (in conjunction
with EDBT’98), pages 102–108, 1998.

5. D. Chamberlin et al. Xquery 1.0: An xml query language. W3C Working Draft,
June 2001.

6. V. Crescenzi, G. Mecca, and P. Merialdo. roadRunner: Towards automatic data
extraction from large Web sites. In International Conf. on Very Large Data Bases
(VLDB’2001), Rome, Italy, September 11-14, pages 109–119, 2001.

7. V. Crescenzi, G. Mecca, and P. Merialdo. Wrapping–oriented classification of Web
pages. Submitted for publication, 2001.

8. D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, Y. Ng, D. Quass, and
R. D. Smith. A conceptual-modeling approach to extracting data from the web. In
Proceedings of the 17th International Conference on Conceptual Modeling (ER’98),
pages 78–91, 1998.

9. T. Goan, N. Benson, and O. Etzioni. A grammar inference algorithm for the
world wide web. In AAAI Spring Symposium on Machine Learning in Information
Access, 1996.

10. E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

11. E. M. Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302–320, 1978.

12. S. Grumbach and G. Mecca. In search of the lost schema. In Seventh International
Conference on Data Base Theory, (ICDT’99), Jerusalem (Israel), Lecture Notes
in Computer Science, Springer-Verlag, pages 314–331, 1999.

Automatic Web Information Extraction in the roadRunner System 277

13. C. Hsu and M. Dung. Generating finite-state transducers for semistructured data
extraction from the web. Information Systems, 23(8):521–538, 1998.

14. A. K. Jain, N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264–323, 1999.

15. N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper induction for information
extraction. In International Joint Conference on Artificial Intelligence (IJCAI’97),
1997.

16. I. Muslea, S. Minton, and C. A. Knoblock. A hierarchical approach to wrapper
induction. In Proceedings of the Third Annual Conference on Autonomous Agents,
pages 190–197, 1999.

17. A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete–Time Signal Processing.
Prentice Hall, second edition edition, 1999.

18. L. Pitt. Inductive inference, DFAs and computational complexity. In K. P. Jantke,
editor, Analogical and Inductive Inference, Lecture Notes in AI 397, pages 18–44.
Springer-Verlag, Berlin, 1989.

19. B. A. Ribeiro-Neto, A. H. F. Laender, and A. Soares da Silva. Extracting semistruc-
tured data through examples. In Proceedings of the 1999 ACM International Con-
ference on Information and Knowledge Management (CIKM’99), pages 94–101,
1999.

20. S. Soderland. Learning information extraction rules for semistructured and free
text. Machine Learning, 34(1–3):233–272, 1999.

	Introduction
	Overview
	Supervised Grammar Inference
	Our Approach

	The Wrapper Generation Algorithm
	The {{sc roadRunner}} System Architecture
	The Aligner

	The Classifier
	The Expander
	The Labeler

