
Chapter 9 SQL in a server

environment

 SQL in a Programming Environment

 embedded SQL

 persistent stored modules

 Database-Connection Libraries

 Call-level interface (CLI)

 JDBC

 PHP

Database connection

 The third approach to connecting
databases to conventional languages
is to use library calls.

1. C + CLI

2. Java + JDBC

3. PHP + PEAR/DB

Three-Tier Architecture

 Three-Tier Architecture:

1. Web servers --- talk to the user.

2. Application servers --- execute the business
logic.

3. Database servers --- get what the app
servers need from the database.

DBMS environment:

 environment

 cluster
catalog

catalog

catalog

schema

Schemas: collections of
tables, views, assertions,
domains and so on.
Catalog: collections of
schemas, information
about all the schemas in
the catalog.
Clusters: each user has
an associated cluster, so
in a sense, a cluster is
“the database’ as seen

by a particular user.

Environments, Connections, Queries

 The database is, in many DB-access
languages, an environment.

 Database servers maintain some number
of connections, so app servers can ask
queries or perform modifications.

 The app server issues statements :
queries and modifications, usually.

Diagram to Remember

Environment

Connection

Statement

JDBC

 Java Database Connectivity (JDBC) is a
library with Java as the host language.

Making a Connection

import java.sql.*;

Class.forName(com.mysql.jdbc.Driver);

Connection myCon =

 DriverManager.getConnection(…);

The JDBC classes

The driver
for mySql;
others exist

URL of the database
your name, and password
go here.

Loaded by
forName

Statements

 JDBC provides two classes:

1. Statement = an object that can accept a
string that is a SQL statement and can
execute such a string.

2. PreparedStatement = an object that has
an associated SQL statement ready to
execute.

Creating Statements

 The Connection class has methods to create
Statements and PreparedStatements.

Statement stat1 = myCon.createStatement();

PreparedStatement stat2 =

 myCon.createStatement(

 ”SELECT beer, price FROM Sells ” +

 ”WHERE bar = ’Joe’ ’s Bar’ ”

); createStatement with no argument returns
a Statement; with one argument it returns
a PreparedStatement.

Executing SQL Statements

 JDBC distinguishes queries from
modifications, which it calls “updates.”

 Statement and PreparedStatement each
have methods executeQuery and
executeUpdate.

 For Statements: one argument: the query or
modification to be executed.

 For PreparedStatements: no argument.

Example: Update

 stat1 is a Statement.

 Use it to insert a tuple as:

stat1.executeUpdate(

 ”INSERT INTO Sells ” +

 ”VALUES(’Brass Rail’,’Bud’,3.00)”

);

Example: Query

 stat2 is a PreparedStatement holding the
query ”SELECT beer, price FROM Sells
WHERE bar = ’Joe’’s Bar’ ”.

 executeQuery returns an object of class
ResultSet – we’ll examine it later.

 The query:

ResultSet menu = stat2.executeQuery();

Accessing the ResultSet

 An object of type ResultSet is
something like a cursor.

 Method next() advances the “cursor” to
the next tuple.

 The first time next() is applied, it gets the
first tuple.

 If there are no more tuples, next() returns
the value false.

Accessing Components of
Tuples

 When a ResultSet is referring to a tuple,
get the components of that tuple by
applying certain methods to the
ResultSet.

 Method getX (i), where X is some type,
and i is the component number,
returns the value of that component.

 The value must have type X.

Example: Accessing Components

 Menu = ResultSet for query “SELECT beer,
price FROM Sells WHERE bar = ’Joe’ ’s Bar’ ”.

 Access beer and price from each tuple by:

while (menu.next()) {

 theBeer = Menu.getString(1);

 thePrice = Menu.getFloat(2);

 /*something with theBeer and

 thePrice*/

}

PHP (personal home page)

 A scripting language to be used for
actions within HTML text.

 Indicated by <? PHP code ?>.

 DB library exists within PEAR (PHP
Extension and Application Repository).
 Include with include(DB.php).

Variables in PHP

 Must begin with $.

 OK not to declare a type for a variable.

 But you give a variable a value that
belongs to a “class” , in which case,
methods of that class are available to it.

String Values

 PHP solves a very important problem
for languages that commonly construct
strings as values:

 How do I tell whether a substring needs to
be interpreted as a variable and replaced
by its value?

 PHP solution: Double quotes means
replace; single quotes means don’t.

Example: Replace or Not?

$100 = ”one hundred dollars”;

$sue = ’You owe me $100.’;

$joe = ”You owe me $100.”;

 Value of $sue is ’You owe me $100’, while
the value of $joe is ’You owe me one
hundred dollars’.

PHP Arrays

 Two kinds: numeric and associative.

 Numeric arrays are ordinary, indexed
0,1,…

 Example: $a =
array(”Paul”, ”George”, ”John”, ”Ringo”);

 Then $a[0] is ”Paul”, $a[1] is ”George”, and so
on.

Associative Arrays

 Elements of an associative array $a are
pairs x => y, where x is a key string
and y is any value.

 If x => y is an element of $a, then $a[x]
is y.

Example: Associative Arrays

 An environment can be expressed as an
associative array, e.g.:

$myEnv = array(

 ”phptype” => ”oracle”,

 ”hostspec” => ”www.stanford.edu”,

 ”database” => ”cs145db”,

 ”username” => ”ullman”,

 ”password” => ”notMyPW”);

Making a Connection

 With the DB library imported and the
array $myEnv available:

$myCon = DB::connect($myEnv);

Function connect
in the DB library

Class is Connection
because it is returned
by DB::connect().

Executing SQL Statements

 Method query applies to a Connection
object.

 It takes a string argument and returns a
result.

 Could be an error code or the relation
returned by a query.

Example: Executing a Query

 Find all the bars that sell a beer given by
the variable $beer.

$beer = ’Bud’;

$result = $myCon->query(

 ”SELECT bar FROM Sells” .

 ”WHERE beer = $beer ;”);

Concatenation
in PHP

Remember this
variable is replaced
by its value.

Method
application

Cursors in PHP

 The result of a query is the tuples
returned.

 Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none.

Example: Cursors

while ($bar =

 $result->fetchRow()) {

 // do something with $bar

}

Summary

 Embedded SQL (shared variables, EXEC
SQL, Cursor), Dynamic SQL

 SQL/PSM

 Call-level Interface (SQL/CLI)

 JDBC

 PHP more info:

 http://www.w3school.com.cn/php

