
Chapter 9 SQL in a server

environment

 SQL in a Programming Environment

 Embedded SQL

 Persistent stored modules

  functions and procedures, elements of

database scheme.

 Database-Connection Libraries

 Call-level interface (CLI)

 JDBC

 PHP

SQL in Real Programs

 Interactive Interface: --- an
environment where we sit at a
terminal and ask queries of a
database.

 Reality is almost always different:
conventional programs interacting
with SQL.

Options

1. SQL statements are embedded in a
host language (e.g., C).

2. Code in a specialized language is
stored in the database itself (e.g., PSM,
PL/SQL).

3. Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, PHP/DB).

SQL in a Programming

Environment

 Embedded SQL: add to a conventional

programming language (C for example,

we called host language), certain

statements that represent SQL operation.

 Host language + embedded SQL 

code, how ?

System Implementation

 How to identify SQL statements?

 How to move data between SQL and a conventional
programming language?

 Mismatch problem exists?

Host Language + Embedded SQL

Preprocessing

Host Language + Function calls

Host-language compiler SQL library

Object-code program

How to recognize SQL statements ?

 Each embedded SQL statement introduced with

EXEC SQL

 Shared variables : exchange data between SQL

and a host language. When they are referred by a

SQL statement, these shared variables are prefixed

by a colon, but they appear without colon in host-

language statements.

 EXEC SQL BEGIN / END DECLARE SECTION

to declare shared variables.

the Interface between SQL statements

and programming language

 SQL define an array of characters

SQLSTATE that is set every time the

system is called.

 SQLSTATE connects the host-language

program with the SQL execution system.

 00000: no error

 02000: could not be found

Implementations of SQLSTATE

SQLSTATE: set every time the system is called.

 Errors are signaled there

 Different systems use different way

 Oracle provides us with a header file sqlca.h
that declares a communication area and
defines macros to access it, such as NOT
FOUND.

 Sybase provides SQLCA with sqlcode

 0:success, <0: fail, 100: not found

Example: Find the price for a

given beer at a given bar

Sells (bar, beer, price)

EXEC SQL BEGIN DECLARATION SECTION

CHAR theBar[21], theBeer[21];

Float thePrice;

EXEC SQL END DECLARAE SECTION

EXEC SQL SELECT price INTO :thePrice

FROM sells

WHERE beer = :theBeer AND bar =:theBar;

Solve Mismatch Problems

 A cursor declaration: EXEC SQL DECLARE
<cursor> CURSOR FOR <query>

 A statement EXEC SQL OPEN<cursor> : the
cursor is ready to retrieve the first tuple of the
relation over which the cursor ranges.

 EXEC SQL FETCH FROM < cursor > INTO <list
of variables>

 EXEC SQL CLOSE <cursor>: the cursor is no
longer ranges over tuples of the relation.

Cursor Example
Void worthRanges() {

int i,digits, counts[15];

EXEC SQL BEGIN DECLARE SECTION;

 int worth; char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE execCursor CURSOR FOR

 SELECT netWorth FROM MovieExec;

EXEC SQL OPEN execCursor;

 while (1) { EXEC SQL FETCH FROM execCursor
INTO :worth;

 if (NO_MORE_TUPLES) BREAK;

 else …..

 }

 EXEC SQL CLOSE execCursor;

…

}

More about cursor:

 The order in which tuples are fetched from

the relation can be specified.

 The effect of changes to the relation that the

cursor ranges over can be limited.

 The motion of the cursor through the list of

tuples can be varied.

Modification by cursor

 WHERE CURRENT OF followed by the
name of the cursor.

e.g. ….. EXEC SQL OPEN execCursor;

 while (1) { EXEC SQL FETCH FROM execCursor
INTO :execName,:execAddr,:certNo,:worth;

 if (NO_MORE_TUPLES) BREAK;

 IF (WORTH < 1000)

 EXEC SQL DELETE FROM MovieExec

 WHERE CURRENT OF execCursor;

 else …..

 EXEC SQL CLOSE execCursor;

Define
NO_MORE_TUPLES !(strc
mp(SQLSTATE,”02000”))

Protecting against concurrent
updates

 EXEC SQL DECLARE execCursor INSENSITIVE
CURSOR FOR

 SELECT netWorth FROM MovieExec;

 The SQL system will guarantee that changes to

relation MovieExec made between one opening and
closing of execCursor will not affect the set of tuples
fetched.

 Insensitive cursors could be expensive, systems
spend a lot of time to manage data access.

Scrolling Cursors

 EXEC SQL DECLARE execCursor SCROLL
CURSOR FOR MovieExec;

 The cursor may be used in a manner other
than moving forward in the order of tuples.

 Follow FETCH by one of several options that
tell where to find the desired tuple. Those
options are NEXT, PRIOR, FIRST, LAST and
so on.

Need for Dynamic SQL

Sometimes we don’t know
what it needs to do until it
runs?

Dynamic SQL

 Preparing a query:

EXEC SQL PREPARE <query-name>

 FROM <text of the query>;

 Executing a query:

EXEC SQL EXECUTE <query-name>;

 “Prepare” = optimize query.

 Prepare once, execute many times.

Example: A Generic Interface

EXEC SQL BEGIN DECLARE SECTION;

 char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;

while(1) {

 /* issue SQL> prompt */

 /* read user’s query into array query */

 EXEC SQL PREPARE q FROM :query;

 EXEC SQL EXECUTE q;

}

q is an SQL variable
representing the optimized
form of whatever statement
is typed into :query

Execute-Immediate

 Combine the PREPARE and EXECUTE
steps into one.

 Use:

EXEC SQL EXECUTE IMMEDIATE <text>;

Example: Generic Interface Again

EXEC SQL BEGIN DECLARE SECTION;

 char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;

while(1) {

 /* issue SQL> prompt */

 /* read user’s query into array

query */

 EXEC SQL EXECUTE IMMEDIATE :query;

}

Stored Procedures

 PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements.

 PSM = a mixture of conventional
statements (if, while, etc.) and SQL.

 Do things which cannot do in SQL alone.

Procedures Stored in the
Schema

 Aim

 Provide a way for the user to store
with a database schema some
functions or procedures that can be
used in SQL queries or other SQL
statements.

Creating PSM Functions and
Procedures

 Procedure Declarations
CREATE PROCEDURE

 <name>(<arglist>)

 local declarations;

 procedure body;

Function Declarations
CREATE FUNCTION <name> (<parameters>)

RETURNS <type>

 local declarations

 function body;

Example:

CREATE PROCEDURE move (

 IN oldAddr VARCHAR [255],

 IN newAddr VARCHAR [255]

 UPDATE MOVIEsTAR

 SET address = newAddr

 WHERE address = oldAddr;)

– The parameters of a procedure are
triples of mode-name-type

 IN = procedure uses value, does not change
value.

 OUT = procedure changes, does not use.

 INOUT = both.

Function Declaration

–Function parameter may
only be of mode IN, the only
way to obtain information
from a function is through
its return-value.

Example: Stored Procedure

 Used by Joe (boss) to add to his
menu more easily:

 A procedure that takes two
arguments b and p, and adds a
tuple to Sells that has bar = ’Joe’’s
Bar’, beer = b, and price = p.

The Procedure

CREATE PROCEDURE JoeMenu (

 IN b CHAR(20),

 IN p REAL

)

INSERT INTO Sells

VALUES(’Joe’’s Bar’, b, p);

Parameters are both
read-only, not changed

The body ---
a single insertion

Invoking Procedures

 Use SQL/PSM statement CALL, with
the name of the desired procedure
and arguments.

 Example:

CALL JoeMenu(’Moosedrool’, 5.00);

Three ways to call procedure

 CALL <procedure name> (<argument list>);

• From a host-language program, e.g.

 EXEC SQL CALL JoeMenu(’Mool’, 5.00);

• As a statement of another PSM function

or procedure

• As an SQL command issued to the

generic SQL interface, e.g. CALL

JoeMenu(’Mool’, 5.00);

Invoking Functions

 It is not permitted to call a function.

 Use the function name and suitable
arguments as part of an expression.

 Functions used in SQL expressions
where a value of their return type is
appropriate.

Simple statements in PSM

 Return statement in a function: RETURN
<expression>;

 declare local variables : DECLARE <name><type>;

 Assignments: SET <variable>=<expression>;
 SET b = ’Bud’;

 Groups of statements: BEGIN…END
Separate by semicolons.

 Branching statements: If then else,

 Loops: for-loops, loops,

Example: IF

 Let’s rate bars by how many customers
they have, based on
Frequents(drinker, bar).

 <100 customers: ‘unpopular’.

 100-199 customers: ‘average’.

 >= 200 customers: ‘popular’.

 Function Rate(b) rates bar b.

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))

 RETURNS CHAR(10)

 DECLARE cust INTEGER;

 BEGIN

 SET cust = (SELECT COUNT(*) FROM Frequents

 WHERE bar = b);

 IF cust < 100 THEN RETURN ’unpopular’

 ELSEIF cust < 200 THEN RETURN ’average’

 ELSE RETURN ’popular’

 END IF;

 END;

Number of
customers of
bar b

Nested
IF statement

Loops

 Basic form:

 <loop name>: LOOP <statements>
 END LOOP;

 Exit from a loop by:

 LEAVE <loop name>

Example: Exiting a Loop

loop1: LOOP

 . . .

 LEAVE loop1;

 . . .

END LOOP;

If this statement is executed . . .

Control winds up here

Other Loop Forms

 WHILE <condition>
 DO <statements>
END WHILE;

 REPEAT <statements>
 UNTIL <condition>
END REPEAT;

Queries

 General SELECT-FROM-WHERE
queries are not permitted in PSM.

 There are three ways to get the effect
of a query:

1. Queries producing one value can be the
expression in an assignment.

2. Single-row SELECT . . . INTO.

3. Cursors.

Example: Assignment/Query

 Using local variable p and Sells(bar, beer,
price), we can get the price Joe charges for
Bud by:

 SET p = (SELECT price FROM Sells

 WHERE bar = ’Joe’’s Bar’ AND

 beer = ’Bud’);

SELECT . . . INTO

 Placing INTO <variable> after the SELECT
clause.

 Example:

 SELECT price INTO p FROM Sells

 WHERE bar = ’Joe’’s Bar’ AND

 beer = ’Bud’;

Cursors

 A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query.

 Declare a cursor c by:

DECLARE c CURSOR FOR <query>;

Opening and Closing Cursors

 use cursor c, issue the command:

 OPEN c;

 The query of c is evaluated, and c is set
to point to the first tuple of the result.

 finished with c, issue command:

 CLOSE c;

Fetching Tuples From a Cursor

 To get the next tuple from cursor c,
issue command:

 FETCH FROM c INTO x1, x2,…,xn ;

 The x ’s are a list of variables, one for
each component of the tuples referred
to by c.

 c is moved automatically to the next
tuple.

Breaking Cursor Loops – (1)

 Create a loop with a FETCH statement,
and do something with each tuple
fetched.

 Get out of the loop when the cursor has
no more tuples to deliver. How ?

Breaking Cursor Loops – (2)

 Each SQL operation returns a status,
which is a 5-digit character string.

 For example, 00000 = “Everything OK,”
and 02000 = “Failed to find a tuple.”

 In PSM, get the value of the status in a
variable called SQLSTATE.

Breaking Cursor Loops – (3)

 Declare a condition, which is a boolean
variable that is true if and only if
SQLSTATE has a particular value.

 Example: We can declare condition
NotFound to represent 02000 by:

DECLARE NotFound CONDITION FOR

 SQLSTATE ’02000’;

Breaking Cursor Loops – (4)

 The structure of a cursor loop is thus:

cursorLoop: LOOP

 …

 FETCH c INTO … ;

 IF NotFound THEN LEAVE cursorLoop;

 END IF;

 …

END LOOP;

Exceptions in PSM
CREATE FUNCTION GetYear(t VARCHAR[255])

RETURNS INTEGER

DECLARE Not_Found CONDITION FOR SQLSTATE
‘02000’;

DECLARE Too_Mamy CONDITION FOR SQLSTATE
‘21000’;

BEGIN

 DECLARE EXIT HANDLER FOR
Not_Found,Too_Many

 RETURN NULL;// handler declaration

 RETURN (SELECT year FROM Movie WHERE
title=t);

END;

Where to go:
1) continue:execute the

statement after the one that
raised the exception.

2) Exit:leave the BEGIN…END

block.the statement after the
block is executed next.

3) Undo: not executed the
statement within the block
and exit like 2)

Components of Exception
handler in PSM

 A list of exception conditions that
invoke the handler when raised.

 Code to be executed when one of the
associated exceptions is raised.

 An indication of where to go after the
handler has finished its work.

DELARE <where to go> HANDLER FOR
<condition list> <statement>

Example: Cursor in PSM

 Let’s write a procedure that examines
Sells(bar, beer, price), and raises by $1
the price of all beers at Joe’s Bar that
are under $3.

 a simple UPDATE is possible.

 As an example for a procedure.

The Needed Declarations

CREATE PROCEDURE JoeGouge()

 DECLARE theBeer CHAR(20);

 DECLARE thePrice REAL;

 DECLARE NotFound CONDITION FOR

 SQLSTATE ’02000’;

 DECLARE c CURSOR FOR

 (SELECT beer, price FROM Sells

 WHERE bar = ’Joe’’s Bar’);

Used to hold
beer-price pairs
when fetching
through cursor c

Returns Joe’s menu

The Procedure Body
BEGIN

 OPEN c;

 menuLoop: LOOP

 FETCH c INTO theBeer, thePrice;

 IF NotFound THEN LEAVE menuLoop END IF;

 IF thePrice < 3.00 THEN

 UPDATE Sells SET price = thePrice+1.00

 WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

 END IF;

 END LOOP;

 CLOSE c;

END;

Check if the recent
FETCH failed to
get a tuple

If Joe charges less than $3 for
the beer, raise it’s price at
Joe’s Bar by $1.

Summarization

Embedded SQL

 PSM (persistent stored
module)

