
Chapter 9 SQL in a server

environment

 SQL in a Programming Environment

 Embedded SQL

 Persistent stored modules

 functions and procedures, elements of

database scheme.

 Database-Connection Libraries

 Call-level interface (CLI)

 JDBC

 PHP

SQL in Real Programs

 Interactive Interface: --- an
environment where we sit at a
terminal and ask queries of a
database.

 Reality is almost always different:
conventional programs interacting
with SQL.

Options

1. SQL statements are embedded in a
host language (e.g., C).

2. Code in a specialized language is
stored in the database itself (e.g., PSM,
PL/SQL).

3. Connection tools are used to allow a
conventional language to access a
database (e.g., CLI, JDBC, PHP/DB).

SQL in a Programming

Environment

 Embedded SQL: add to a conventional

programming language (C for example,

we called host language), certain

statements that represent SQL operation.

 Host language + embedded SQL

code, how ?

System Implementation

 How to identify SQL statements?

 How to move data between SQL and a conventional
programming language?

 Mismatch problem exists?

Host Language + Embedded SQL

Preprocessing

Host Language + Function calls

Host-language compiler SQL library

Object-code program

How to recognize SQL statements ?

 Each embedded SQL statement introduced with

EXEC SQL

 Shared variables : exchange data between SQL

and a host language. When they are referred by a

SQL statement, these shared variables are prefixed

by a colon, but they appear without colon in host-

language statements.

 EXEC SQL BEGIN / END DECLARE SECTION

to declare shared variables.

the Interface between SQL statements

and programming language

 SQL define an array of characters

SQLSTATE that is set every time the

system is called.

 SQLSTATE connects the host-language

program with the SQL execution system.

 00000: no error

 02000: could not be found

Implementations of SQLSTATE

SQLSTATE: set every time the system is called.

 Errors are signaled there

 Different systems use different way

 Oracle provides us with a header file sqlca.h
that declares a communication area and
defines macros to access it, such as NOT
FOUND.

 Sybase provides SQLCA with sqlcode

 0:success, <0: fail, 100: not found

Example: Find the price for a

given beer at a given bar

Sells (bar, beer, price)

EXEC SQL BEGIN DECLARATION SECTION

CHAR theBar[21], theBeer[21];

Float thePrice;

EXEC SQL END DECLARAE SECTION

EXEC SQL SELECT price INTO :thePrice

FROM sells

WHERE beer = :theBeer AND bar =:theBar;

Solve Mismatch Problems

 A cursor declaration: EXEC SQL DECLARE
<cursor> CURSOR FOR <query>

 A statement EXEC SQL OPEN<cursor> : the
cursor is ready to retrieve the first tuple of the
relation over which the cursor ranges.

 EXEC SQL FETCH FROM < cursor > INTO <list
of variables>

 EXEC SQL CLOSE <cursor>: the cursor is no
longer ranges over tuples of the relation.

Cursor Example
Void worthRanges() {

int i,digits, counts[15];

EXEC SQL BEGIN DECLARE SECTION;

 int worth; char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE execCursor CURSOR FOR

 SELECT netWorth FROM MovieExec;

EXEC SQL OPEN execCursor;

 while (1) { EXEC SQL FETCH FROM execCursor
INTO :worth;

 if (NO_MORE_TUPLES) BREAK;

 else …..

 }

 EXEC SQL CLOSE execCursor;

…

}

More about cursor:

 The order in which tuples are fetched from

the relation can be specified.

 The effect of changes to the relation that the

cursor ranges over can be limited.

 The motion of the cursor through the list of

tuples can be varied.

Modification by cursor

 WHERE CURRENT OF followed by the
name of the cursor.

e.g. ….. EXEC SQL OPEN execCursor;

 while (1) { EXEC SQL FETCH FROM execCursor
INTO :execName,:execAddr,:certNo,:worth;

 if (NO_MORE_TUPLES) BREAK;

 IF (WORTH < 1000)

 EXEC SQL DELETE FROM MovieExec

 WHERE CURRENT OF execCursor;

 else …..

 EXEC SQL CLOSE execCursor;

Define
NO_MORE_TUPLES !(strc
mp(SQLSTATE,”02000”))

Protecting against concurrent
updates

 EXEC SQL DECLARE execCursor INSENSITIVE
CURSOR FOR

 SELECT netWorth FROM MovieExec;

 The SQL system will guarantee that changes to

relation MovieExec made between one opening and
closing of execCursor will not affect the set of tuples
fetched.

 Insensitive cursors could be expensive, systems
spend a lot of time to manage data access.

Scrolling Cursors

 EXEC SQL DECLARE execCursor SCROLL
CURSOR FOR MovieExec;

 The cursor may be used in a manner other
than moving forward in the order of tuples.

 Follow FETCH by one of several options that
tell where to find the desired tuple. Those
options are NEXT, PRIOR, FIRST, LAST and
so on.

Need for Dynamic SQL

Sometimes we don’t know
what it needs to do until it
runs?

Dynamic SQL

 Preparing a query:

EXEC SQL PREPARE <query-name>

 FROM <text of the query>;

 Executing a query:

EXEC SQL EXECUTE <query-name>;

 “Prepare” = optimize query.

 Prepare once, execute many times.

Example: A Generic Interface

EXEC SQL BEGIN DECLARE SECTION;

 char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;

while(1) {

 /* issue SQL> prompt */

 /* read user’s query into array query */

 EXEC SQL PREPARE q FROM :query;

 EXEC SQL EXECUTE q;

}

q is an SQL variable
representing the optimized
form of whatever statement
is typed into :query

Execute-Immediate

 Combine the PREPARE and EXECUTE
steps into one.

 Use:

EXEC SQL EXECUTE IMMEDIATE <text>;

Example: Generic Interface Again

EXEC SQL BEGIN DECLARE SECTION;

 char query[MAX_LENGTH];

EXEC SQL END DECLARE SECTION;

while(1) {

 /* issue SQL> prompt */

 /* read user’s query into array

query */

 EXEC SQL EXECUTE IMMEDIATE :query;

}

Stored Procedures

 PSM, or “persistent stored modules,”
allows us to store procedures as
database schema elements.

 PSM = a mixture of conventional
statements (if, while, etc.) and SQL.

 Do things which cannot do in SQL alone.

Procedures Stored in the
Schema

 Aim

 Provide a way for the user to store
with a database schema some
functions or procedures that can be
used in SQL queries or other SQL
statements.

Creating PSM Functions and
Procedures

 Procedure Declarations
CREATE PROCEDURE

 <name>(<arglist>)

 local declarations;

 procedure body;

Function Declarations
CREATE FUNCTION <name> (<parameters>)

RETURNS <type>

 local declarations

 function body;

Example:

CREATE PROCEDURE move (

 IN oldAddr VARCHAR [255],

 IN newAddr VARCHAR [255]

 UPDATE MOVIEsTAR

 SET address = newAddr

 WHERE address = oldAddr;)

– The parameters of a procedure are
triples of mode-name-type

 IN = procedure uses value, does not change
value.

 OUT = procedure changes, does not use.

 INOUT = both.

Function Declaration

–Function parameter may
only be of mode IN, the only
way to obtain information
from a function is through
its return-value.

Example: Stored Procedure

 Used by Joe (boss) to add to his
menu more easily:

 A procedure that takes two
arguments b and p, and adds a
tuple to Sells that has bar = ’Joe’’s
Bar’, beer = b, and price = p.

The Procedure

CREATE PROCEDURE JoeMenu (

 IN b CHAR(20),

 IN p REAL

)

INSERT INTO Sells

VALUES(’Joe’’s Bar’, b, p);

Parameters are both
read-only, not changed

The body ---
a single insertion

Invoking Procedures

 Use SQL/PSM statement CALL, with
the name of the desired procedure
and arguments.

 Example:

CALL JoeMenu(’Moosedrool’, 5.00);

Three ways to call procedure

 CALL <procedure name> (<argument list>);

• From a host-language program, e.g.

 EXEC SQL CALL JoeMenu(’Mool’, 5.00);

• As a statement of another PSM function

or procedure

• As an SQL command issued to the

generic SQL interface, e.g. CALL

JoeMenu(’Mool’, 5.00);

Invoking Functions

 It is not permitted to call a function.

 Use the function name and suitable
arguments as part of an expression.

 Functions used in SQL expressions
where a value of their return type is
appropriate.

Simple statements in PSM

 Return statement in a function: RETURN
<expression>;

 declare local variables : DECLARE <name><type>;

 Assignments: SET <variable>=<expression>;
 SET b = ’Bud’;

 Groups of statements: BEGIN…END
Separate by semicolons.

 Branching statements: If then else,

 Loops: for-loops, loops,

Example: IF

 Let’s rate bars by how many customers
they have, based on
Frequents(drinker, bar).

 <100 customers: ‘unpopular’.

 100-199 customers: ‘average’.

 >= 200 customers: ‘popular’.

 Function Rate(b) rates bar b.

Example: IF (continued)

CREATE FUNCTION Rate (IN b CHAR(20))

 RETURNS CHAR(10)

 DECLARE cust INTEGER;

 BEGIN

 SET cust = (SELECT COUNT(*) FROM Frequents

 WHERE bar = b);

 IF cust < 100 THEN RETURN ’unpopular’

 ELSEIF cust < 200 THEN RETURN ’average’

 ELSE RETURN ’popular’

 END IF;

 END;

Number of
customers of
bar b

Nested
IF statement

Loops

 Basic form:

 <loop name>: LOOP <statements>
 END LOOP;

 Exit from a loop by:

 LEAVE <loop name>

Example: Exiting a Loop

loop1: LOOP

 . . .

 LEAVE loop1;

 . . .

END LOOP;

If this statement is executed . . .

Control winds up here

Other Loop Forms

 WHILE <condition>
 DO <statements>
END WHILE;

 REPEAT <statements>
 UNTIL <condition>
END REPEAT;

Queries

 General SELECT-FROM-WHERE
queries are not permitted in PSM.

 There are three ways to get the effect
of a query:

1. Queries producing one value can be the
expression in an assignment.

2. Single-row SELECT . . . INTO.

3. Cursors.

Example: Assignment/Query

 Using local variable p and Sells(bar, beer,
price), we can get the price Joe charges for
Bud by:

 SET p = (SELECT price FROM Sells

 WHERE bar = ’Joe’’s Bar’ AND

 beer = ’Bud’);

SELECT . . . INTO

 Placing INTO <variable> after the SELECT
clause.

 Example:

 SELECT price INTO p FROM Sells

 WHERE bar = ’Joe’’s Bar’ AND

 beer = ’Bud’;

Cursors

 A cursor is essentially a tuple-variable
that ranges over all tuples in the result
of some query.

 Declare a cursor c by:

DECLARE c CURSOR FOR <query>;

Opening and Closing Cursors

 use cursor c, issue the command:

 OPEN c;

 The query of c is evaluated, and c is set
to point to the first tuple of the result.

 finished with c, issue command:

 CLOSE c;

Fetching Tuples From a Cursor

 To get the next tuple from cursor c,
issue command:

 FETCH FROM c INTO x1, x2,…,xn ;

 The x ’s are a list of variables, one for
each component of the tuples referred
to by c.

 c is moved automatically to the next
tuple.

Breaking Cursor Loops – (1)

 Create a loop with a FETCH statement,
and do something with each tuple
fetched.

 Get out of the loop when the cursor has
no more tuples to deliver. How ?

Breaking Cursor Loops – (2)

 Each SQL operation returns a status,
which is a 5-digit character string.

 For example, 00000 = “Everything OK,”
and 02000 = “Failed to find a tuple.”

 In PSM, get the value of the status in a
variable called SQLSTATE.

Breaking Cursor Loops – (3)

 Declare a condition, which is a boolean
variable that is true if and only if
SQLSTATE has a particular value.

 Example: We can declare condition
NotFound to represent 02000 by:

DECLARE NotFound CONDITION FOR

 SQLSTATE ’02000’;

Breaking Cursor Loops – (4)

 The structure of a cursor loop is thus:

cursorLoop: LOOP

 …

 FETCH c INTO … ;

 IF NotFound THEN LEAVE cursorLoop;

 END IF;

 …

END LOOP;

Exceptions in PSM
CREATE FUNCTION GetYear(t VARCHAR[255])

RETURNS INTEGER

DECLARE Not_Found CONDITION FOR SQLSTATE
‘02000’;

DECLARE Too_Mamy CONDITION FOR SQLSTATE
‘21000’;

BEGIN

 DECLARE EXIT HANDLER FOR
Not_Found,Too_Many

 RETURN NULL;// handler declaration

 RETURN (SELECT year FROM Movie WHERE
title=t);

END;

Where to go:
1) continue:execute the

statement after the one that
raised the exception.

2) Exit:leave the BEGIN…END

block.the statement after the
block is executed next.

3) Undo: not executed the
statement within the block
and exit like 2)

Components of Exception
handler in PSM

 A list of exception conditions that
invoke the handler when raised.

 Code to be executed when one of the
associated exceptions is raised.

 An indication of where to go after the
handler has finished its work.

DELARE <where to go> HANDLER FOR
<condition list> <statement>

Example: Cursor in PSM

 Let’s write a procedure that examines
Sells(bar, beer, price), and raises by $1
the price of all beers at Joe’s Bar that
are under $3.

 a simple UPDATE is possible.

 As an example for a procedure.

The Needed Declarations

CREATE PROCEDURE JoeGouge()

 DECLARE theBeer CHAR(20);

 DECLARE thePrice REAL;

 DECLARE NotFound CONDITION FOR

 SQLSTATE ’02000’;

 DECLARE c CURSOR FOR

 (SELECT beer, price FROM Sells

 WHERE bar = ’Joe’’s Bar’);

Used to hold
beer-price pairs
when fetching
through cursor c

Returns Joe’s menu

The Procedure Body
BEGIN

 OPEN c;

 menuLoop: LOOP

 FETCH c INTO theBeer, thePrice;

 IF NotFound THEN LEAVE menuLoop END IF;

 IF thePrice < 3.00 THEN

 UPDATE Sells SET price = thePrice+1.00

 WHERE bar = ’Joe’’s Bar’ AND beer = theBeer;

 END IF;

 END LOOP;

 CLOSE c;

END;

Check if the recent
FETCH failed to
get a tuple

If Joe charges less than $3 for
the beer, raise it’s price at
Joe’s Bar by $1.

Summarization

Embedded SQL

 PSM (persistent stored
module)

