Chapter 8 Views, Indexes

Virtual and Materialized Views
Speeding Accesses to Data

Views

A view is a relation defined in
terms of stored tables (called base
tables) and other views.

[Two kinds:

1. Virtual = not stored in the database;
just a query for constructing the
relation.

2. Materialized = actually constructed
and stored.

Declaring Views

Declare by:

CREATE [MATERIALIZED] VIEW
<hame> AS <query>;

Default is virtual.

* View Definition

n

CanDrink(drinker, beer) is a view “containing
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the
beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

. Accessing a View

Query a view as if it were a base
table.

B Also: a limited ability to modify views if
It makes sense as a modification of one
underlying base table.

SELECT beer FROM CanDrink
WHERE drinker = ’"Sally’;

What Happens When a View Is
Used?

® The DBMS starts by interpreting the
guery as If the view were a base table.

— Typical DBMS turns the query into
something like relational algebra.
® The queries defining any views used by
the query are also replaced by their
algebraic equivalents, and “spliced into”
the expression tree for the query.

Example: View Expansion

SELECT beer Theer
FROM CanDrink PROJbeer
WHERE drinker

= ,Sa"y,; SELECTdI’iI’]k@I’:‘Sa”y’ O-dT’i?’LkeTI’Sally’
CREATE VIEW :>

CanDrink AS Wk Tdrinker,beer
SELECT drinker, PROJ yrinker beer I

beer |

FROM Frequents,

Sells JOIN

WHERE N / \

Frequents.bar = Frequents Sells

Sells.bar; Frequents Sells

DMBS Optimization

® The typical DBMS will then “optimize”
the query by transforming the

algebraic expression to one that can
be executed faster.

® Key optimizations:
1. Push selections down the tree.
2. Eliminate unnecessary projections.

Example: Optimization

I:)ROJbeer
|
Notice how
most tuples JOIN
are eliminated e
from Frequents
before thqe \ SEI-EC_I—drinker=‘Sa||y' Sells

expensive join. |
Frequents

Modifying Views

[1View Removal
Drop view canDrink;

Updates on more complex views are
difficult or impossible to translate, and
hence are disallowed.

Most SQL implementations allow updates
only on simple views (without aggregates)
defined on a single relation.

10

Classroom Exercises

[est View and Table

11

Triggers on Views

Generally, it is impossible to modify
a virtual view, because it doesn't
exist.

INSTEAD OF trigger lets us interpret
view modifications in a way that
makes sense.

. View Synergy has (drinker,
beer, bar) triples such that the bar
serves the beer, the drinker
frequents the bar and likes the beer.

12

Example: The View

Pick one copy of

CREATE VIEW Synergy AS / each attribute

SELECT

Likes.drinker, Likes.beer, Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker =
Frequents.drinker

AND Likes.beer = Sells.beer
AND Sells.bar = Frequents.bar;

7

Natural join of Likes,

13

Sells, and Frequents

Interpreting a View Insertion

We cannot insert into Synergy --- it is
a virtual view.

But we can use an INSTEAD OF
trigger to turn a (drinker, beer, bar)
triple into three insertions of
projected pairs, one for each of Likes,
Sells, and Frequents.

B Sells.price will have to be NULL.

14

The Trigger

CREATE TRIGGER ViewTrig
INSTEAD OF INSERT ON Synergy
REFERENCING NEW ROW AS n
FOR EACH ROW
BEGIN
INSERT INTO LIKES VALUES(n.drinker, n.beer):
INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer):

INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);
END;

15

Materialized Views

Stored like a base table.

Disadvantage: each time a base table
changes, the materialized view may
change.
B Cannot afford to recompute the view

with each change.
Advantage: speed up those queries
which involve a join of many relations.

16

Example

CREATE MATERIALIZED VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

CanDrink 1s then stored as a base
table.

17

How to update the CanDrink?

Insert into Sells values(‘Joe’s
bar’,’Budlit’, 2.3)

9

Insert into Candrink select
drink,'Budlit’ from frequents where
bar='Joes’’s bar’;

Incrementally update
Instead of recomputing the view

18

How to update the materialized
view? (cont.)

Materialized views are for Data
analysis, their data might be out of
date.

Periodic reconstruction of the
materialized view is possible.

19

Materialized view
---speed up the query

SELECT SUM (price)

FROM Sales NATURAL JOIN Frequents
NATURAL JOIN Beers

WHERE drink = ’'David Wu’ AND
manf = ’'Anheuser-Busch’

GROUP BY bar, beer;

- Select sum(price) from canDrink
natural join Beers where drink=‘'David
Wu’ and manf= ’"Anheuser-Busch’

20

Indexes

Index = data structure used to speed
access to tuples of a relation, given
values of one or more attributes.

In a DBMS it is always a balanced
search tree with giant nodes (a full
disk page) called a B-tree.

21

Declaring Indexes

No standard!
['ypical syntax:

CREATE INDEX BeerInd ON
Beers (mant) ;

CREATE INDEX SelllInd ON Sells (bar,

beer) ;

22

Using Indexes

Given a value v, the index takes us to
only those tuples that have v in the
attribute(s) of the index.

. use BeerInd and SellInd to
find the prices of beers manufactured
by Pete’s and sold by Joe. (next slide)

23

Using Indexes --- (cont.)

SELECT price FROM Beers, Sells
WHERE manf = ’"Pete’’s’ AND
Beers.name = Sells.beer AND

bar = "Joe’’s Bar’;

1. Use BeerInd to get all the beers
made by Pete’s.

2. Use Selllnd to get prices of those
beers, with bar = Joe”s Bar’

24

Database Tuning

A major problem in making a
database run fast is deciding which
indexes to create.

Pro: An index speeds up queries that
can use It.

Con: An index slows down all
modifications on its relation because
the index must be modified too.

25

. Tuning

Suppose the only things we did with
our beers database was:
1. Insert new facts into a relation (10%).

2. Find the price of a given beer at a given
bar (90%).

'hen SellInd on Sells(bar, beer)
would be wonderful, but BeerInd on
Beers(manf) would be harmful.

26

Tuning Advisors

A major research thrust.
B Because hand tuning is so hard.

An advisor gets a query load, e.qg.:

1. Choose random queries from the history
of queries run on the database, or

2. Designer provides a sample workload.

27

Tuning Advisors --- (2)

[he advisor generates candidate
indexes and evaluates each on the
workload.

B Feed each sample query to the query
optimizer, which assumes only this one
index is available.

B Measure the improvement/degradation
in the average running time of the
queries.

28

Some useful suggestions

Index on its key.
Index on the following two cases:
1. If the attribute is almost a key

2. If the tuples are clustered on that
attribute.

:>To decrease the cost of accessing data

O If we are doing mostly insertion, very
few queries, then we do not want an

index 29

Summary of chapter 8

Views (virtual and materialized)
Updatable views
Indexes (creation, use)

30

Classroom Demo

Create a view who shows all CS
students, called Csstudents.

How to insert or delete this view
(CSstudents) ?

Use INSTEAD OF trigger.

Create a view of top cs students.

31

a view to show all CS students,
called Csstudents.

Create view CSstudents as
select sc.sid,name,cid,chame,grade
from students,sc

where dept='cs' and
students.sid=sc.sid;

select * from csstudents;
insert into csstudents(sid,name)

values(11,'mary’);

32

A view of top cs students based
on the view of CSstudents

create view CStopstudents as

select sid, name, avg(grade) as GPA
from CSstudents

group by sid,name
having avg(grade) > 70;

Drop view Cstopstudents;

33

Instead of Trigger

create trigger CSstudentlnsert
instead of insert on CSstudents
for each row

begin

insert into students values
(new.sid,new.name,'cs’,null);

insert into sc values
(new.sid,new.cid,1,new.cname,new.grade

\
J1
end:

34

Instead of Trigger

create trigger CSstudentdelete
instead of delete on CSstudents
for each row

begin

delete from students where
sid=old.sid;

delete from sc where sid=old.sid;
end;

35

Test

insert into csstudents(sid,name)
values(11,'mary’);

select * from CSstudents;

Select * from students;

delete from CSstudents where sid=1;
select * from CSstudents;

Select * from students;

36

