Chapter 8 Views, Indexes

Virtual and Materialized Views
Speeding Accesses to Data



Views

A view is a relation defined in
terms of stored tables (called base
tables ) and other views.

[Two kinds:

1. Virtual = not stored in the database;
just a query for constructing the
relation.

2. Materialized = actually constructed
and stored.




Declaring Views

Declare by:

CREATE [MATERIALIZED] VIEW
<hame> AS <query>;

Default is virtual.




* View Definition

n

CanDrink(drinker, beer) is a view “containing
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the
beer:

CREATE VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;




. Accessing a View

Query a view as if it were a base
table.

B Also: a limited ability to modify views if
It makes sense as a modification of one
underlying base table.

SELECT beer FROM CanDrink
WHERE drinker = ’"Sally’;




What Happens When a View Is
Used?

® The DBMS starts by interpreting the
guery as If the view were a base table.

— Typical DBMS turns the query into
something like relational algebra.
® The queries defining any views used by
the query are also replaced by their
algebraic equivalents, and “spliced into”
the expression tree for the query.




Example: View Expansion

SELECT beer Theer
FROM CanDrink PROJbeer
WHERE drinker

= ,Sa"y,; SELECTdI’iI’]k@I’:‘Sa”y’ O-dT’i?’LkeTI’Sally’
CREATE VIEW :>

CanDrink AS Wk Tdrinker,beer
SELECT drinker, PROJ yrinker beer I

beer |

FROM Frequents,

Sells JOIN

WHERE N / \

Frequents.bar =  Frequents  Sells

Sells.bar; Frequents Sells




DMBS Optimization

® The typical DBMS will then “optimize”
the query by transforming the

algebraic expression to one that can
be executed faster.

® Key optimizations:
1. Push selections down the tree.
2. Eliminate unnecessary projections.




Example: Optimization

I:)ROJbeer
|
Notice how
most tuples JOIN
are eliminated e
from Frequents
before thqe \ SEI-EC_I—drinker=‘Sa||y' Sells

expensive join. |
Frequents




Modifying Views

[1View Removal
Drop view canDrink;

Updates on more complex views are
difficult or impossible to translate, and
hence are disallowed.

Most SQL implementations allow updates
only on simple views (without aggregates)
defined on a single relation.
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Classroom Exercises

[est View and Table
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Triggers on Views

Generally, it is impossible to modify
a virtual view, because it doesn't
exist.

INSTEAD OF trigger lets us interpret
view modifications in a way that
makes sense.

. View Synergy has (drinker,
beer, bar) triples such that the bar
serves the beer, the drinker
frequents the bar and likes the beer.
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Example: The View

Pick one copy of

CREATE VIEW Synergy AS / each attribute

SELECT

Likes.drinker, Likes.beer, Sells.bar

FROM Likes, Sells, Frequents

WHERE Likes.drinker =
Frequents.drinker

AND Likes.beer = Sells.beer
AND Sells.bar = Frequents.bar;
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Natural join of Likes,
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Sells, and Frequents



Interpreting a View Insertion

We cannot insert into Synergy --- it is
a virtual view.

But we can use an INSTEAD OF
trigger to turn a (drinker, beer, bar)
triple into three insertions of
projected pairs, one for each of Likes,
Sells, and Frequents.

B Sells.price will have to be NULL.
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The Trigger

CREATE TRIGGER ViewTrig
INSTEAD OF INSERT ON Synergy
REFERENCING NEW ROW AS n
FOR EACH ROW
BEGIN
INSERT INTO LIKES VALUES(n.drinker, n.beer):
INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer):

INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);
END;
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Materialized Views

Stored like a base table.

Disadvantage: each time a base table
changes, the materialized view may
change.
B Cannot afford to recompute the view

with each change.
Advantage: speed up those queries
which involve a join of many relations.
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Example

CREATE MATERIALIZED VIEW CanDrink AS
SELECT drinker, beer
FROM Frequents, Sells
WHERE Frequents.bar = Sells.bar;

CanDrink 1s then stored as a base
table.
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How to update the CanDrink?

Insert into Sells values(‘Joe’s
bar’,’Budlit’, 2.3)

9

Insert into Candrink select
drink,'Budlit’ from frequents where
bar='Joes’’s bar’;

Incrementally update
Instead of recomputing the view
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How to update the materialized
view? (cont.)

Materialized views are for Data
analysis, their data might be out of
date.

Periodic reconstruction of the
materialized view is possible.
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Materialized view
---speed up the query

SELECT SUM (price)

FROM Sales NATURAL JOIN Frequents
NATURAL JOIN Beers

WHERE drink = ’'David Wu’ AND
manf = ’'Anheuser-Busch’

GROUP BY bar, beer;

- Select sum(price) from canDrink
natural join Beers where drink=‘'David
Wu’ and manf= ’"Anheuser-Busch’
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Indexes

Index = data structure used to speed
access to tuples of a relation, given
values of one or more attributes.

In a DBMS it is always a balanced
search tree with giant nodes (a full
disk page) called a B-tree.
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Declaring Indexes

No standard!
['ypical syntax:

CREATE INDEX BeerInd ON
Beers (mant) ;

CREATE INDEX SelllInd ON Sells (bar,

beer) ;
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Using Indexes

Given a value v, the index takes us to
only those tuples that have v in the
attribute(s) of the index.

. use BeerInd and SellInd to
find the prices of beers manufactured
by Pete’s and sold by Joe. (next slide)
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Using Indexes --- (cont.)

SELECT price FROM Beers, Sells
WHERE manf = ’"Pete’’s’ AND
Beers.name = Sells.beer AND

bar = "Joe’’s Bar’;

1. Use BeerInd to get all the beers
made by Pete’s.

2. Use Selllnd to get prices of those
beers, with bar = Joe”s Bar’
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Database Tuning

A major problem in making a
database run fast is deciding which
indexes to create.

Pro: An index speeds up queries that
can use It.

Con: An index slows down all
modifications on its relation because
the index must be modified too.
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. Tuning

Suppose the only things we did with
our beers database was:
1. Insert new facts into a relation (10%).

2. Find the price of a given beer at a given
bar (90%).

'hen SellInd on Sells(bar, beer)
would be wonderful, but BeerInd on
Beers(manf) would be harmful.
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Tuning Advisors

A major research thrust.
B Because hand tuning is so hard.

An advisor gets a query load, e.qg.:

1. Choose random queries from the history
of queries run on the database, or

2. Designer provides a sample workload.
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Tuning Advisors --- (2)

[he advisor generates candidate
indexes and evaluates each on the
workload.

B Feed each sample query to the query
optimizer, which assumes only this one
index is available.

B Measure the improvement/degradation
in the average running time of the
queries.
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Some useful suggestions

Index on its key.
Index on the following two cases:
1. If the attribute is almost a key

2. If the tuples are clustered on that
attribute.

:>To decrease the cost of accessing data

O If we are doing mostly insertion, very
few queries, then we do not want an

index 29



Summary of chapter 8

Views (virtual and materialized)
Updatable views
Indexes (creation, use)
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Classroom Demo

Create a view who shows all CS
students, called Csstudents.

How to insert or delete this view
(CSstudents) ?

Use INSTEAD OF trigger.

Create a view of top cs students.
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a view to show all CS students,
called Csstudents.

Create view CSstudents as
select sc.sid,name,cid,chame,grade
from students,sc

where dept='cs' and
students.sid=sc.sid;

select * from csstudents;
insert into csstudents(sid,name)

values(11,'mary’);
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A view of top cs students based
on the view of CSstudents

create view CStopstudents as

select sid, name, avg(grade) as GPA
from CSstudents

group by sid,name
having avg(grade) > 70;

Drop view Cstopstudents;
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Instead of Trigger

create trigger CSstudentlnsert
instead of insert on CSstudents
for each row

begin

insert into students values
(new.sid,new.name,'cs’,null);

insert into sc values
(new.sid,new.cid,1,new.cname,new.grade

\
J1
end:
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Instead of Trigger

create trigger CSstudentdelete
instead of delete on CSstudents
for each row

begin

delete from students where
sid=old.sid;

delete from sc where sid=old.sid;
end;
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Test

insert into csstudents(sid,name)
values(11,'mary’);

select * from CSstudents;

Select * from students;

delete from CSstudents where sid=1;
select * from CSstudents;

Select * from students;
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