
1 

Chapter 8 Views, Indexes 

Virtual and Materialized Views 

Speeding Accesses to Data 



2 

Views 

 A view  is a relation defined in 
terms of stored tables (called base 
tables ) and other views. 

 Two kinds: 

1. Virtual  = not stored in the database; 
just a query for constructing the 
relation. 

2. Materialized  = actually constructed 
and stored. 



3 

Declaring Views 

 Declare by: 

 CREATE [MATERIALIZED] VIEW 
 <name> AS <query>; 

 Default is virtual. 



4 

Example: View Definition 

 CanDrink(drinker, beer) is a view “containing” 
the drinker-beer pairs such that the drinker 
frequents at least one bar that serves the 
beer: 

 

 CREATE VIEW CanDrink AS 

  SELECT drinker, beer 

  FROM Frequents, Sells 

  WHERE Frequents.bar = Sells.bar; 



5 

Example: Accessing a View 

 Query a view as if it were a base 
table. 

 Also: a limited ability to modify views if 
it makes sense as a modification of one 
underlying base table. 

 Example query: 

  SELECT beer FROM CanDrink 

  WHERE drinker = ’Sally’; 



6 

What Happens When a View Is 

Used? 

The DBMS starts by interpreting the 

query as if the view were a base table. 

– Typical DBMS turns the query into 

something like relational algebra. 

The queries defining any views used by 

the query are also replaced by their 

algebraic equivalents, and “spliced into” 
the expression tree for the query. 



7 

Example: View Expansion 

      PROJbeer 

 
SELECTdrinker=‘Sally’ 
 
     CanDrink 

    PROJdrinker, beer 

 
          JOIN 
 
Frequents Sells 

SELECT beer  
FROM CanDrink 
WHERE drinker 
= ’Sally’; 

CREATE VIEW 
CanDrink AS 
SELECT drinker, 
beer 
FROM Frequents, 
Sells 
WHERE 
Frequents.bar = 
Sells.bar; 

 



8 

DMBS Optimization 

 The typical DBMS will then “optimize” 
the query by transforming the 

algebraic expression to one that can 

be executed faster. 

 Key optimizations: 

1. Push selections down the tree. 

2. Eliminate unnecessary projections. 



9 

Example: Optimization 

       PROJbeer 

 
  JOIN 
 
SELECTdrinker=‘Sally’  Sells 
 
   Frequents 

Notice how 
most tuples 
are eliminated 
from Frequents 
before the 
expensive join. 



10 

Modifying Views 

View Removal 
    Drop view canDrink; 

 

 Updates on more complex views are 
difficult or impossible to translate, and 
hence are disallowed.  

 Most SQL implementations allow updates 
only on simple views (without aggregates) 
defined on a single relation. 



Classroom Exercises 

 Test View and Table 

11 



12 

Triggers on Views 

 Generally, it is impossible to modify 
a virtual view, because it doesn’t 
exist. 

 INSTEAD OF trigger lets us interpret 
view modifications in a way that 
makes sense. 

 Example: View Synergy has (drinker, 
beer, bar) triples such that the bar 
serves the beer, the drinker 
frequents the bar and likes the beer. 



13 

Example: The View 

CREATE VIEW Synergy AS 

SELECT Likes.drinker, Likes.beer, Sells.bar 

 FROM Likes, Sells, Frequents 

 WHERE Likes.drinker = 
Frequents.drinker 

  AND Likes.beer = Sells.beer 

  AND Sells.bar = Frequents.bar; 

Natural join of Likes, 
Sells, and Frequents 

Pick one copy of 
each attribute 



14 

Interpreting a View Insertion 

 We cannot insert into Synergy --- it is 
a virtual view. 

 But we can use an INSTEAD OF 
trigger to turn a (drinker, beer, bar) 
triple into three insertions of 
projected pairs, one for each of Likes, 
Sells, and Frequents. 

 Sells.price will have to be NULL. 



15 

The Trigger 

CREATE TRIGGER ViewTrig 

 INSTEAD OF INSERT ON Synergy 

 REFERENCING NEW ROW AS n 

 FOR EACH ROW 

 BEGIN 

  INSERT INTO LIKES VALUES(n.drinker, n.beer); 

  INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer); 

  INSERT INTO FREQUENTS VALUES(n.drinker, n.bar); 

 END; 



16 

Materialized Views 

Stored like a base table. 

 Disadvantage: each time a base table 
changes, the materialized view may 
change. 

 Cannot afford to recompute the view 
with each change. 

 Advantage: speed up those queries 
which involve a join of many relations. 



17 

Example  

CREATE MATERIALIZED VIEW CanDrink AS 

  SELECT drinker, beer 

  FROM Frequents, Sells 

  WHERE Frequents.bar = Sells.bar; 

 

 CanDrink is then stored as a base 

table. 

 



How to update the CanDrink? 

 Insert into Sells values(‘Joe’s 
bar’,’Budlit’, 2.3) 

  

 Insert into Candrink select 
drink,’Budlit’ from frequents where 
bar=‘Joes’’s bar’; 

 Incrementally update 

 Instead of recomputing the view 

18 



How to update the materialized 
view? (cont.) 

 Materialized views are for Data 
analysis, their data might be out of 
date.   

 Periodic reconstruction of the 
materialized view is possible. 

19 



Materialized view 
---speed up the query 
 

SELECT SUM(price) 

FROM Sales NATURAL JOIN Frequents 

 NATURAL JOIN Beers 

WHERE drink = ’David Wu’ AND 

 manf = ’Anheuser-Busch’ 

GROUP BY bar, beer; 

 Select sum(price) from canDrink 

natural join Beers where drink=‘David 

Wu’ and manf= ’Anheuser-Busch’ 

20 



21 

Indexes 

 Index  = data structure used to speed 
access to tuples of a relation, given 
values of one or more attributes. 

 In a DBMS it is always a balanced 
search tree with giant nodes (a full 
disk page) called a B-tree. 



22 

Declaring Indexes 

 No standard! 

 Typical syntax: 

 

CREATE INDEX BeerInd ON 

Beers(manf); 

CREATE INDEX SellInd ON Sells(bar, 

beer); 



23 

Using Indexes 

 Given a value v, the index takes us to 
only those tuples that have v  in the 
attribute(s) of the index. 

 Example: use BeerInd and SellInd to 
find the prices of beers manufactured 
by Pete’s and sold by Joe.  (next slide) 



24 

Using Indexes --- (cont.) 

SELECT price FROM Beers, Sells 

WHERE manf = ’Pete’’s’ AND 

 Beers.name = Sells.beer AND 

 bar = ’Joe’’s Bar’; 

1. Use BeerInd to get all the beers 
made by Pete’s. 

2. Use SellInd to get prices of those 
beers, with bar = ’Joe’’s Bar’ 



25 

Database Tuning 

 A major problem in making a 
database run fast is deciding which 
indexes to create. 

 Pro: An index speeds up queries that 
can use it. 

 Con: An index slows down all 
modifications on its relation because 
the index must be modified too. 



26 

Example: Tuning 

 Suppose the only things we did with 
our beers database was: 

1. Insert new facts into a relation (10%). 

2. Find the price of a given beer at a given 
bar (90%). 

 Then SellInd on Sells(bar, beer) 
would be wonderful, but BeerInd on 
Beers(manf) would be harmful. 



27 

Tuning Advisors 

 A major research thrust. 

 Because hand tuning is so hard. 

 An advisor gets a query load, e.g.: 

1. Choose random queries from the history 
of queries run on the database, or 

2. Designer provides a sample workload. 



28 

Tuning Advisors --- (2) 

 The advisor generates candidate 
indexes and evaluates each on the 
workload. 

 Feed each sample query to the query 
optimizer, which assumes only this one 
index is available. 

 Measure the improvement/degradation 
in the average running time of the 
queries. 



29 

Some useful suggestions 

 Index on its key. 

 Index on the following two cases: 

1. If the attribute is almost a key 

2. If the tuples are clustered on that 
attribute. 

    To decrease the cost of accessing data   

 If we are doing mostly insertion, very 
few queries, then we do not want an 
index 



30 

Summary of chapter 8 

 Views (virtual and materialized) 

 Updatable views 

 Indexes (creation, use) 

 

 



Classroom Demo 

 Create a view who shows all CS 
students, called Csstudents. 

 Create a view of top cs students. 

 

 How to insert or delete this view 
(CSstudents) ?   

 Use INSTEAD OF trigger. 

31 



a view to show all CS students, 
called Csstudents. 

Create view CSstudents as 

select sc.sid,name,cid,cname,grade 

from students,sc 

where dept='cs' and 
students.sid=sc.sid; 
select * from csstudents; 

insert into csstudents(sid,name) 
values(11,'mary'); 

 
32 



A view of top cs students based 
on the view of CSstudents 

create view CStopstudents as 

select sid, name, avg(grade) as GPA 

from CSstudents 

group by sid,name 

having avg(grade) > 70; 

 

Drop view Cstopstudents; 

 
 

33 



Instead of Trigger  

create trigger CSstudentInsert 

instead of insert on CSstudents 

for each row  

begin 

insert into students values 
(new.sid,new.name,'cs',null); 

insert into sc values 
(new.sid,new.cid,1,new.cname,new.grade
); 

end;   

 

34 



Instead of Trigger 

create trigger CSstudentdelete 

instead of delete on CSstudents 

for each row 

begin 

 delete from students where 
sid=old.sid; 

 delete from sc where sid=old.sid; 

end; 

 35 



Test 

 insert into csstudents(sid,name) 
values(11,'mary'); 

 select * from CSstudents; 

 Select * from students; 

 delete from CSstudents where sid=1; 

 select * from CSstudents; 

 Select * from students; 

36 


