
1

Chapter 8 Views, Indexes

Virtual and Materialized Views

Speeding Accesses to Data

2

Views

 A view is a relation defined in
terms of stored tables (called base
tables) and other views.

 Two kinds:

1. Virtual = not stored in the database;
just a query for constructing the
relation.

2. Materialized = actually constructed
and stored.

3

Declaring Views

 Declare by:

 CREATE [MATERIALIZED] VIEW
 <name> AS <query>;

 Default is virtual.

4

Example: View Definition

 CanDrink(drinker, beer) is a view “containing”
the drinker-beer pairs such that the drinker
frequents at least one bar that serves the
beer:

 CREATE VIEW CanDrink AS

 SELECT drinker, beer

 FROM Frequents, Sells

 WHERE Frequents.bar = Sells.bar;

5

Example: Accessing a View

 Query a view as if it were a base
table.

 Also: a limited ability to modify views if
it makes sense as a modification of one
underlying base table.

 Example query:

 SELECT beer FROM CanDrink

 WHERE drinker = ’Sally’;

6

What Happens When a View Is

Used?

The DBMS starts by interpreting the

query as if the view were a base table.

– Typical DBMS turns the query into

something like relational algebra.

The queries defining any views used by

the query are also replaced by their

algebraic equivalents, and “spliced into”
the expression tree for the query.

7

Example: View Expansion

 PROJbeer

SELECTdrinker=‘Sally’

 CanDrink

 PROJdrinker, beer

 JOIN

Frequents Sells

SELECT beer
FROM CanDrink
WHERE drinker
= ’Sally’;

CREATE VIEW
CanDrink AS
SELECT drinker,
beer
FROM Frequents,
Sells
WHERE
Frequents.bar =
Sells.bar;

8

DMBS Optimization

 The typical DBMS will then “optimize”
the query by transforming the

algebraic expression to one that can

be executed faster.

 Key optimizations:

1. Push selections down the tree.

2. Eliminate unnecessary projections.

9

Example: Optimization

 PROJbeer

 JOIN

SELECTdrinker=‘Sally’ Sells

 Frequents

Notice how
most tuples
are eliminated
from Frequents
before the
expensive join.

10

Modifying Views

View Removal
 Drop view canDrink;

 Updates on more complex views are
difficult or impossible to translate, and
hence are disallowed.

 Most SQL implementations allow updates
only on simple views (without aggregates)
defined on a single relation.

Classroom Exercises

 Test View and Table

11

12

Triggers on Views

 Generally, it is impossible to modify
a virtual view, because it doesn’t
exist.

 INSTEAD OF trigger lets us interpret
view modifications in a way that
makes sense.

 Example: View Synergy has (drinker,
beer, bar) triples such that the bar
serves the beer, the drinker
frequents the bar and likes the beer.

13

Example: The View

CREATE VIEW Synergy AS

SELECT Likes.drinker, Likes.beer, Sells.bar

 FROM Likes, Sells, Frequents

 WHERE Likes.drinker =
Frequents.drinker

 AND Likes.beer = Sells.beer

 AND Sells.bar = Frequents.bar;

Natural join of Likes,
Sells, and Frequents

Pick one copy of
each attribute

14

Interpreting a View Insertion

 We cannot insert into Synergy --- it is
a virtual view.

 But we can use an INSTEAD OF
trigger to turn a (drinker, beer, bar)
triple into three insertions of
projected pairs, one for each of Likes,
Sells, and Frequents.

 Sells.price will have to be NULL.

15

The Trigger

CREATE TRIGGER ViewTrig

 INSTEAD OF INSERT ON Synergy

 REFERENCING NEW ROW AS n

 FOR EACH ROW

 BEGIN

 INSERT INTO LIKES VALUES(n.drinker, n.beer);

 INSERT INTO SELLS(bar, beer) VALUES(n.bar, n.beer);

 INSERT INTO FREQUENTS VALUES(n.drinker, n.bar);

 END;

16

Materialized Views

Stored like a base table.

 Disadvantage: each time a base table
changes, the materialized view may
change.

 Cannot afford to recompute the view
with each change.

 Advantage: speed up those queries
which involve a join of many relations.

17

Example

CREATE MATERIALIZED VIEW CanDrink AS

 SELECT drinker, beer

 FROM Frequents, Sells

 WHERE Frequents.bar = Sells.bar;

 CanDrink is then stored as a base

table.

How to update the CanDrink?

 Insert into Sells values(‘Joe’s
bar’,’Budlit’, 2.3)

 Insert into Candrink select
drink,’Budlit’ from frequents where
bar=‘Joes’’s bar’;

 Incrementally update

 Instead of recomputing the view

18

How to update the materialized
view? (cont.)

 Materialized views are for Data
analysis, their data might be out of
date.

 Periodic reconstruction of the
materialized view is possible.

19

Materialized view
---speed up the query

SELECT SUM(price)

FROM Sales NATURAL JOIN Frequents

 NATURAL JOIN Beers

WHERE drink = ’David Wu’ AND

 manf = ’Anheuser-Busch’

GROUP BY bar, beer;

 Select sum(price) from canDrink

natural join Beers where drink=‘David

Wu’ and manf= ’Anheuser-Busch’

20

21

Indexes

 Index = data structure used to speed
access to tuples of a relation, given
values of one or more attributes.

 In a DBMS it is always a balanced
search tree with giant nodes (a full
disk page) called a B-tree.

22

Declaring Indexes

 No standard!

 Typical syntax:

CREATE INDEX BeerInd ON

Beers(manf);

CREATE INDEX SellInd ON Sells(bar,

beer);

23

Using Indexes

 Given a value v, the index takes us to
only those tuples that have v in the
attribute(s) of the index.

 Example: use BeerInd and SellInd to
find the prices of beers manufactured
by Pete’s and sold by Joe. (next slide)

24

Using Indexes --- (cont.)

SELECT price FROM Beers, Sells

WHERE manf = ’Pete’’s’ AND

 Beers.name = Sells.beer AND

 bar = ’Joe’’s Bar’;

1. Use BeerInd to get all the beers
made by Pete’s.

2. Use SellInd to get prices of those
beers, with bar = ’Joe’’s Bar’

25

Database Tuning

 A major problem in making a
database run fast is deciding which
indexes to create.

 Pro: An index speeds up queries that
can use it.

 Con: An index slows down all
modifications on its relation because
the index must be modified too.

26

Example: Tuning

 Suppose the only things we did with
our beers database was:

1. Insert new facts into a relation (10%).

2. Find the price of a given beer at a given
bar (90%).

 Then SellInd on Sells(bar, beer)
would be wonderful, but BeerInd on
Beers(manf) would be harmful.

27

Tuning Advisors

 A major research thrust.

 Because hand tuning is so hard.

 An advisor gets a query load, e.g.:

1. Choose random queries from the history
of queries run on the database, or

2. Designer provides a sample workload.

28

Tuning Advisors --- (2)

 The advisor generates candidate
indexes and evaluates each on the
workload.

 Feed each sample query to the query
optimizer, which assumes only this one
index is available.

 Measure the improvement/degradation
in the average running time of the
queries.

29

Some useful suggestions

 Index on its key.

 Index on the following two cases:

1. If the attribute is almost a key

2. If the tuples are clustered on that
attribute.

 To decrease the cost of accessing data

 If we are doing mostly insertion, very
few queries, then we do not want an
index

30

Summary of chapter 8

 Views (virtual and materialized)

 Updatable views

 Indexes (creation, use)

Classroom Demo

 Create a view who shows all CS
students, called Csstudents.

 Create a view of top cs students.

 How to insert or delete this view
(CSstudents) ?

 Use INSTEAD OF trigger.

31

a view to show all CS students,
called Csstudents.

Create view CSstudents as

select sc.sid,name,cid,cname,grade

from students,sc

where dept='cs' and
students.sid=sc.sid;
select * from csstudents;

insert into csstudents(sid,name)
values(11,'mary');

32

A view of top cs students based
on the view of CSstudents

create view CStopstudents as

select sid, name, avg(grade) as GPA

from CSstudents

group by sid,name

having avg(grade) > 70;

Drop view Cstopstudents;

33

Instead of Trigger

create trigger CSstudentInsert

instead of insert on CSstudents

for each row

begin

insert into students values
(new.sid,new.name,'cs',null);

insert into sc values
(new.sid,new.cid,1,new.cname,new.grade
);

end;

34

Instead of Trigger

create trigger CSstudentdelete

instead of delete on CSstudents

for each row

begin

 delete from students where
sid=old.sid;

 delete from sc where sid=old.sid;

end;

 35

Test

 insert into csstudents(sid,name)
values(11,'mary');

 select * from CSstudents;

 Select * from students;

 delete from CSstudents where sid=1;

 select * from CSstudents;

 Select * from students;

36

