Chapter 4 High-level Database
Models

B Object Definition Language (ODL)
B Unified Modeling Language (UML)

B Hot to Transfer them to a relational
model

Object-Oriented DBMS's

Standards group: ODMG = Object
Data Management Group.

ODL = Object Description Language,
like CREATE TABLE part of SQL.

OQL = Object Query Language, tries
to imitate SQL in an OO framework.

Framework

ODL is used to define persistent
classes, whose objects are stored
permanently in the database.

B ODL classes look like Entity sets with
binary relationships, plus methods.

B ODL class definitions are part of the
extended, OO host language.

ODL Overview

A class declaration includes:
1. A name for the class.
2. Optional key declaration(s).

3. Element declarations. An element is

either an attribute, a relationship, or a
method.

Class Definitions

class <name> {

<list of element declarations,
separated

by semicolons>

Attribute and Relationship
Declarations

Attributes are (usually) elements with
a type that does not involve classes.

attribute <type> <name>;

Relationships connect an object to
one or more other objects of one
class.

relationship <type> <name>
inverse <relationship>;

Inverse Relationships

Suppose class C has a relationship
R to class D.

[hen class D must have some
relationship S to class C.
R and S must be true inverses.

B If object d is related to object ¢ by R,
then ¢ must be related to d by S.

. Attributes and
Relationships

class Bar { | The type of relationship serves
attribute string name; is a set of Beer objects.

attribute string addr;
relationship|Set<Beer> serves inverse |Beer::servedAt;

y /
class Beer { The :: operator connects

attribute string name: a hame on the right to the
i s context containing that

attribute string manf; name, on the left.
relationship Set<Bar> servedAt inverse Bar::serves;

Types of Relationships

he type of a relationship is either

1. A class, like Bar. If so, an object with
this relationship can be connected to
only one Bar object.

2. Set<Bar>: the object is connected to a
set of Bar objects.

3. Bag<Bar>, List<Bar>, Array<Bar>:
the object is connected to a bag, list,
or array of Bar objects.

Multiplicity of Relationships

All ODL relationships are binary.

Many-many relationships have Set<...> for
the type of the relationship and its inverse.

Many-one relationships have Set<...> in the
relationship of the "one” and just the class
for the relationship of the "many.”

One-one relationships have classes as the
type in both directions.

10

class Drinker {

: Multiplicity

Set<Beer>|likes inverse Beer::fans;

Beer|favBeer inverse Beer::superfans;

Set<brinker>

Set< D\rinker>

Drinker::favBeer; \]‘

relationship
relationship
b
class Beer { ...
relationship
relationship
5

Many-many uses Set<...>
in both directions.

fans inverse Drinker::likes;
superfans inverse

Many-one uses Set<...>
only with the “one.”

11

Another Multiplicity

husband and wife are

_ one-one and inverses
class Drinker { of each other.

attribute ... ; /
relationship Drinker |husband inverse wife;
relationship Drinker |wife inverse husband;
relationship Set<Drinker> buddies
inverse buddies;
+ ~_

buddies is many-many and its

own inverse. Note no :: needed
£ the i i in 35S

12

Coping With Multiway Relationships

ODL does not support 3-way or
higher relationships.

Simulate multiway relationships by a
“connecting” class.

13

Connecting Classes

X, Y, and Z by a relationship R.

Devise a class C, whose objects

represent a triple of objects (x, y, 2)
from classes X, Y, and Z, respectively.

[hree many-one relationships from (x,
y, Z) to each of x, y, and Zz.

14

: Connecting Class

bars —_ beers

Price attribute is neither in class bars,
nor in class beers. ODL does not support
attribute in relationship.

One solution: create a connecting class
BBP with an attribute price to represent

/4 7/ - 15

— Cont.

Here is the definition of BBP:

class BBP {

attribute price:real;

relationship Bar theBar inverse Bar: :toBBP;

relationship Beer theBeer inverse
Beer: :toBBP;

Bar and Beer must be modified to include
relationships, both called toBBP, and both of
type Set<BBP>.

16

Structs and Enums

Attributes can have a structure (as in
C) or be an enumeration.

Declare with

attribute [Struct or Enum] <name of
struct or enum> { <details> }
<name of attribute>;

Details are types and field names for
a Struct, a list of constants for an
Enum.

17

: Struct and Enum

class Bar {
attribute string name;
attribute Struct|Addr

{string street, string city, int zip}

attribute Enum| Lic
{ FULL, BEER, NONE }
relationship ...

Names for the
structure and
enumeration

addresst

license:

~

names of the
attributes

18

Method Declarations

A class definition may include
declarations of methods for the class.

Information consists of:
1. Return type, if any.
2. Method name.

3. Argument modes and types (no names).
+ Modes are in, out, and inout.

4. Any exceptions the method may raise.

19

: Methods

real gpa(in string)raises (noGrades);

1. The method gpa returns a real

2.

number (presumably a student’'s GPA).

gpa takes one argument, a string
(presumably the name of the student)
and does not modify its argument.

. gpa may raise the exception

noGrades.

20

The ODL Type System

Basic types: int, real/float, string,
enumerated types, and classes.

| ype constructors:
B Struct for structures.

B Collection types : Set, Bag, List, Array,
and Dictionary (= mapping from a
domain type to a range type).

Relationship types: a class or a single
collection type.

21

ODL Subclasses

Usual object-oriented subclasses.

Indicate superclass with a colon and
Iits name.

Subclass lists only the properties
unique to it.
B Also inherits its superclass’ properties.

22

Example: Subclasses

Ales are a subclass of beers:
class Ale:Beer {

attribute string color;

23

ODL Keys

Declare any number of keys for a
class.

After the class name, add:
(key <list of keys>)

A key consisting of more than one
attribute needs additional

parentheses around those attributes.

24

. Keys

class Beer (key name) {

name is the key for beers.
class Course (key
(dept, number), (room, hours)) {

dept and number form one key; so do
room and hours.

25

Translating ODL to Relations

Classes without relationships: like

entity set, but several new problems

arise. (show in next slid

e)

Classes with relationshi

DS.

a) Treat the relationship separately, as

in E/R.

b) Attach a many-one relationship to
the relation for the “many’.

26

ODL Class Without Relationships

[0 Problem: ODL allows attribute types built from
structures and collection types.

[0 Solutions:
. Structure: Make one attribute for each field.

. Set: make one tuple for each member of the set.
More than one set attribute ? Make tuples for all
combinations.

[0 Problem: ODL class may have no key, but we
should have one in the relation to represent
11 OID”.

27

Example

Class Drinkers (key name)
{ attribute string name;

attribute Struct Addr { string street,
string city, int zip} address;

attribute Set <string> phone; }

Name street city zip phone

n 1 Sl Cl Zl pl Key: name,phone
Ny Sq C, 41 P2

28

Example (cont.)

Surprise: the key for class (nhame) is not
the key for the relation (name, phone)

Name in the class determines a unique
object, including a set of phones.

Name in the relation does not determine
a unique tuple.

Since tuples are not identical to objects,
there is no inconsistency!

BCNF violation: separate out name-

phone.

29

ODL Relationships

Create for each relationship a new relation
that connects the keys of the two related
classes, one relation for each pair.

If the relationship is many-one from A to B,

put key of B attributes in the relation for
class A.

30

Eac
relationship
become a
relation

Example

Class Drinkers (key name) {

attribute string name; @ schema
attribute string addr; O any to

: 1o ' e one (1 to 1)
relationship Set<Beers> likes inverse Beer/” relationship:

put key of
B into a
relai\on of A

relationship Beers favorite inverse Beers::
Relationship Drinkers husband inverse wife
Relationship Drinkers wife inverse husband;
Relationship Set<Drinkers> buddies inverE) uddies;
bs o

Drinkers (name, addr, favBeer, marriedwith)

Likes (drinkerName, Beersname)

Buddy (drinkerl,drinker2)

31

UML introduction

UML is an acronym for Unified Modeling
Language.

The UML is a language for
B Visualizing

B Specifying

B Constructing

B Documenting

the artifacts of a software-intensive
system.

Object-Oriented & Visual Modeling

32

UML (data model subset)

UML is desighed to model software,
but has been adapted as a database
modeling language.

Midway between E/R and ODL.

B No multiway relationships as in E/R.

B But allows attributes on binary
relationships, which ODL doesn't.

B Has a graphical notation, unlike ODL.

33

Classes

Sets of objects, with attributes (state)
and methods (behavior).

Attributes have types.

PK indicates an attribute in the
primary key (optional) of the object.

Methods have declarations:
arguments (if any) and return type.

34

: Bar Class

Class Name— | Bar

PK Name: string -
Addr: string «——

~_ Attributes

» setName(n)
— | cetAddr(a)

Methods
X: getName() : string
getAddr() : string
~sellsBud() : boolean

35

Associations

Binary relationships between classes.

Represented by named lines (no
diamonds as in E/R).

Multiplicity at each end.

B m..n means between m and n of
these associate with one on the other
end.

B * = "infinity”; e.g. 1..* means “at least
one.”

36

Example: Association

Bar

1..50 Sells

0..*

Beer

37

Comparison With E/R Multiplicities

E/R

UML
0.% 0.*

%>_.

0. 0..1

0.* 1.1

38

Association Classes

Attributes on associations are
permitted.

B Called an association class.

B Analogous to attributes on relationships
in E/R.

39

+ Association Class

Bar Beer

1..50 0..*

Sells
price: float

Self-Association

An association can have both ends at
the same class.

Drinker
1..1 husband

Name pk
Age
job

1..1 wife

41

Subclasses

Like E/R, but subclass points to
superclass with a line ending in a
triangle.

[he subclasses of a class can be:

B Complete (every object is in at least one
subclass) or partial.

B Disjoint (object in at most one subclass)
or overlapping.

42

: Subclasses in UML

Beer
name: string
manf; string

AN

Ale
color: string

43

Subclasses (cont.)

In a typical object-oriented system,
subclasses are disjoint.

E/R model allows overlapping
subclasses.

E/R model and object-oriented
system allow either complete or
partial subclasses. There is no
requirement that a member of the
superclass be in any of subclass.

44

Aggregations

Relationships with implication that the
objects on one side are “owned by"” or
are part of objects on the other side.

Represented by a diamond at the end of
the connecting line, at the “owner” side.

For example:

Beer 0..1 Won 0..*% Award
name: stringc> title: string
manf: string year: int

45

Compositions

Like aggregations, but with the implication

that every object is definitely owned by
one object on the other side.

Represented by solid diamond at owner.

Often used for subobjects or structured
attributes.

Bar 1..1 Won 0..1 Addr
name: string @ street:string
phone: int city: string

Zip: int

46

Examples of Aggregation and

composition (cont.)

[0 Both represent Part-whole relationship

[0 Composition has a strong part-whole relationship, the
part and the whole have the same life cycle.

¢ Company

e

whole

part

1

*

™

eDepartment

i W

aggregation

9 Window

A

whole

part

1

*

™

e Frame

e ™

composition

47

Comparison between UML and E/R
model

UML E/R Model

Class Entity set

Association Binary relationship

Association class Attributes on a
relationship

Subclass Isa hierarchy

Aggregation Many-one relationship

Composition Many-one relationship with

referential integrity

Conversion to Relations

UML Classes to Relations.
UML Associations to Relations.

v Aggregations and compositions are
types of many-one associations.
Construct no relations for them.

49

Conversion to Relations (cont.)

We can use any of the three
strategies outlined for E/R to convert
UML subclasses to relations.

1. E/R-style: each subclass’ relation stores
only its own attributes, plus key.

2. OO-style: relations store attributes of
subclass and all superclasses.

3. Nulls: One relation, with NULL's as
needed.

50

From UML subclass = relations

If a hierarchy is disjoint at every level,
then an object-oriented
representation is suggested.

If the hierarchy is both complete and
disjoint at every level, then the task
is even simpler.

If the hierarchy is large and
overlapping at some or all levels,
then the E/R approach is indicated.

51

Relationship Comparison
between models

E/

R model: many-to-many

re
re

ationships, multiway relationship,

ationship can have an attribute

UML: many-to-many relationships,

relationship can have an attribute

ODL: many-to-many relationships,

relationship has not attributes, with
inverse relationship.

Summary

[he E/R model (subclass, weak entity
sets)

UML model
ODL (keys, relationships, type system)

[ransfer E/R to relational model (Isa
hierarchies)

[ransfer UML to relations
[ransfer ODL to relations

53

Classroom Exercises of chapter 4

Exercise 4.2.1 (design)
Exercise 4.4.1
Exercise 4.4.2

54

