
1

Chapter 4 High-level Database
Models

 Entity/Relationship Models (E/R
diagram)

 Object Definition Language (ODL)

 Unified Modeling Language (UML)

 Hot to Transfer them to a relational
model

2

Object-Oriented DBMS’s

 Standards group: ODMG = Object
Data Management Group.

 ODL = Object Description Language,
like CREATE TABLE part of SQL.

 OQL = Object Query Language, tries
to imitate SQL in an OO framework.

3

Framework

 ODL is used to define persistent
classes, whose objects are stored
permanently in the database.

 ODL classes look like Entity sets with
binary relationships, plus methods.

 ODL class definitions are part of the
extended, OO host language.

4

ODL Overview

 A class declaration includes:

1. A name for the class.

2. Optional key declaration(s).

3. Element declarations. An element is
either an attribute, a relationship, or a
method.

5

Class Definitions

class <name> {

 <list of element declarations,
separated

 by semicolons>

}

6

Attribute and Relationship
Declarations

 Attributes are (usually) elements with
a type that does not involve classes.

 attribute <type> <name>;

 Relationships connect an object to
one or more other objects of one
class.

 relationship <type> <name>

 inverse <relationship>;

7

Inverse Relationships

 Suppose class C has a relationship
R to class D.

 Then class D must have some
relationship S to class C.

 R and S must be true inverses.

 If object d is related to object c by R,
then c must be related to d by S.

8

Example: Attributes and
Relationships

class Bar {

 attribute string name;

 attribute string addr;

 relationship Set<Beer> serves inverse Beer::servedAt;

}

class Beer {

 attribute string name;

 attribute string manf;

 relationship Set<Bar> servedAt inverse Bar::serves;

}

The type of relationship serves
is a set of Beer objects.

The :: operator connects
a name on the right to the
context containing that
name, on the left.

9

Types of Relationships

 The type of a relationship is either

1. A class, like Bar. If so, an object with
this relationship can be connected to
only one Bar object.

2. Set<Bar>: the object is connected to a
set of Bar objects.

3. Bag<Bar>, List<Bar>, Array<Bar>:
the object is connected to a bag, list,
or array of Bar objects.

10

Multiplicity of Relationships

 All ODL relationships are binary.

 Many-many relationships have Set<…> for
the type of the relationship and its inverse.

 Many-one relationships have Set<…> in the
relationship of the “one” and just the class
for the relationship of the “many.”

 One-one relationships have classes as the
type in both directions.

11

Example: Multiplicity

class Drinker { …

 relationship Set<Beer> likes inverse Beer::fans;

 relationship Beer favBeer inverse Beer::superfans;

}

class Beer { …

 relationship Set<Drinker> fans inverse Drinker::likes;

 relationship Set<Drinker> superfans inverse
Drinker::favBeer;

}

Many-many uses Set<…>
in both directions.

Many-one uses Set<…>
only with the “one.”

12

Another Multiplicity Example

class Drinker {

 attribute … ;

 relationship Drinker husband inverse wife;

 relationship Drinker wife inverse husband;

 relationship Set<Drinker> buddies

 inverse buddies;

}

husband and wife are
one-one and inverses
of each other.

buddies is many-many and its
own inverse. Note no :: needed
if the inverse is in the same class.

13

Coping With Multiway Relationships

 ODL does not support 3-way or
higher relationships.

 Simulate multiway relationships by a
“connecting” class.

14

Connecting Classes

 X, Y, and Z by a relationship R.

 Devise a class C, whose objects
represent a triple of objects (x, y, z)
from classes X, Y, and Z, respectively.

 Three many-one relationships from (x,
y, z) to each of x, y, and z.

15

Example: Connecting Class

 Price attribute is neither in class bars,
nor in class beers. ODL does not support
attribute in relationship.

 One solution: create a connecting class
BBP with an attribute price to represent
a related bar, beer, and price.

bars beers Sells

price

16

Example – Cont.

 Here is the definition of BBP:

class BBP {

 attribute price:real;

 relationship Bar theBar inverse Bar::toBBP;

 relationship Beer theBeer inverse
Beer::toBBP;

}

 Bar and Beer must be modified to include
relationships, both called toBBP, and both of
type Set<BBP>.

17

Structs and Enums

 Attributes can have a structure (as in
C) or be an enumeration.

 Declare with

attribute [Struct or Enum] <name of

 struct or enum> { <details> }

 <name of attribute>;

 Details are types and field names for
a Struct, a list of constants for an
Enum.

18

Example: Struct and Enum

class Bar {

 attribute string name;

 attribute Struct Addr

 {string street, string city, int zip} address;

 attribute Enum Lic

 { FULL, BEER, NONE } license;

 relationship …

}

Names for the
structure and
enumeration

names of the
attributes

19

Method Declarations

 A class definition may include
declarations of methods for the class.

 Information consists of:
1. Return type, if any.

2. Method name.

3. Argument modes and types (no names).
 Modes are in, out, and inout.

4. Any exceptions the method may raise.

20

Example: Methods

real gpa(in string)raises(noGrades);

1. The method gpa returns a real
number (presumably a student’s GPA).

2. gpa takes one argument, a string
(presumably the name of the student)
and does not modify its argument.

3. gpa may raise the exception
noGrades.

21

The ODL Type System

 Basic types: int, real/float, string,
enumerated types, and classes.

 Type constructors:
 Struct for structures.

 Collection types : Set, Bag, List, Array,
and Dictionary (= mapping from a
domain type to a range type).

 Relationship types: a class or a single
collection type.

22

ODL Subclasses

 Usual object-oriented subclasses.

 Indicate superclass with a colon and
its name.

 Subclass lists only the properties
unique to it.

 Also inherits its superclass’ properties.

23

Example: Subclasses

 Ales are a subclass of beers:

class Ale:Beer {

 attribute string color;

}

24

ODL Keys

 Declare any number of keys for a
class.

 After the class name, add:

 (key <list of keys>)

 A key consisting of more than one
attribute needs additional
parentheses around those attributes.

25

Example: Keys

class Beer (key name) { …

 name is the key for beers.

class Course (key

(dept,number),(room, hours)){

 dept and number form one key; so do
room and hours.

26

Translating ODL to Relations

 Classes without relationships: like
entity set, but several new problems
arise. (show in next slide)

 Classes with relationships:

a) Treat the relationship separately, as
in E/R.

b) Attach a many-one relationship to
the relation for the “many”.

27

ODL Class Without Relationships

 Problem: ODL allows attribute types built from
structures and collection types.

 Solutions:

1. Structure: Make one attribute for each field.

2. Set: make one tuple for each member of the set.
More than one set attribute ? Make tuples for all
combinations.

 Problem: ODL class may have no key, but we
should have one in the relation to represent
“ OID”.

28

Example

Class Drinkers (key name)

 { attribute string name;

 attribute Struct Addr { string street,
string city, int zip} address;

 attribute Set <string> phone; }

Name street city zip phone

n1 s1 c1 z1 p1

n1 s1 c1 z1 p2
Key: name,phone

29

Example (cont.)

 Surprise: the key for class (name) is not
the key for the relation (name, phone)

 Name in the class determines a unique
object, including a set of phones.

 Name in the relation does not determine
a unique tuple.

 Since tuples are not identical to objects,
there is no inconsistency!

 BCNF violation: separate out name-
phone.

30

ODL Relationships

 Create for each relationship a new relation
that connects the keys of the two related
classes, one relation for each pair.

 If the relationship is many-one from A to B,
put key of B attributes in the relation for
class A.

31

Example

Class Drinkers (key name) {

 attribute string name;

 attribute string addr;

 relationship Set<Beers> likes inverse Beers:: fans;

 relationship Beers favorite inverse Beers:: realFans;

 Relationship Drinkers husband inverse wife;

 Relationship Drinkers wife inverse husband;

 Relationship Set<Drinkers> buddies inverse buddies;

 }

Drinkers (name, addr, favBeer, marriedwith)

Likes (drinkerName, Beersname)

Buddy (drinker1,drinker2)

Many to
one (1 to 1)
relationship:
put key of
B into a

relaion of A

Each
relationship
become a
relation
schema

32

UML introduction

 UML is an acronym for Unified Modeling
Language.

 The UML is a language for
 Visualizing
 Specifying
 Constructing
 Documenting

 the artifacts of a software-intensive
system.

 Object-Oriented & Visual Modeling

33

UML (data model subset)

 UML is designed to model software,
but has been adapted as a database
modeling language.

 Midway between E/R and ODL.

 No multiway relationships as in E/R.

 But allows attributes on binary
relationships, which ODL doesn’t.

 Has a graphical notation, unlike ODL.

34

Classes

 Sets of objects, with attributes (state)
and methods (behavior).

 Attributes have types.

 PK indicates an attribute in the
primary key (optional) of the object.

 Methods have declarations:
arguments (if any) and return type.

35

Example: Bar Class

Bar

PK Name: string
 Addr: string

setName(n)
setAddr(a)
getName() : string
getAddr() : string
sellsBud() : boolean

Class Name

Attributes

Methods

36

Associations

 Binary relationships between classes.

 Represented by named lines (no
diamonds as in E/R).

 Multiplicity at each end.

 m ..n means between m and n of
these associate with one on the other
end.

 * = “infinity”; e.g. 1..* means “at least
one.”

37

Example: Association

Bar Beer
1..50 Sells 0..*

38

Comparison With E/R Multiplicities

E/R UML

0..* 0..*

0..* 0..1

0..* 1..1

39

Association Classes

 Attributes on associations are
permitted.

 Called an association class.

 Analogous to attributes on relationships
in E/R.

40

Example: Association Class

Bar Beer
1..50 0..*

 Sells
price: float

Self-Association

 An association can have both ends at
the same class.

41

Drinker

Name pk

Age
job

 1..1 wife

1..1 husband

42

Subclasses

 Like E/R, but subclass points to
superclass with a line ending in a
triangle.

 The subclasses of a class can be:

 Complete (every object is in at least one
subclass) or partial.

 Disjoint (object in at most one subclass)
or overlapping.

43

Example: Subclasses in UML

 Beer
name: string
manf: string

 Ale
color: string

44

Subclasses (cont.)

 In a typical object-oriented system,
subclasses are disjoint.

 E/R model allows overlapping
subclasses.

 E/R model and object-oriented
system allow either complete or
partial subclasses. There is no
requirement that a member of the
superclass be in any of subclass.

45

Aggregations

 Relationships with implication that the
objects on one side are “owned by” or
are part of objects on the other side.

 Represented by a diamond at the end of
the connecting line, at the “owner” side.

 For example:

 Beer
name: string
manf: string

0..1 Won 0..* Award
title: string
year: int

46

Compositions

 Like aggregations, but with the implication
that every object is definitely owned by
one object on the other side.

 Represented by solid diamond at owner.
Often used for subobjects or structured
attributes.

 Bar
name: string
phone: int

 Addr
street:string
city: string
zip: int

1..1 Won 0..1

47

Examples of Aggregation and
composition (cont.)

 Both represent Part-whole relationship
 Composition has a strong part-whole relationship, the

part and the whole have the same life cycle.

48

Comparison between UML and E/R
model

UML E/R Model

Class Entity set

Association Binary relationship

Association class Attributes on a
relationship

Subclass Isa hierarchy

Aggregation Many-one relationship

Composition Many-one relationship with
referential integrity

49

Conversion to Relations

 UML Classes to Relations.

 UML Associations to Relations.

 Aggregations and compositions are
types of many-one associations.
Construct no relations for them.

50

Conversion to Relations (cont.)

 We can use any of the three
strategies outlined for E/R to convert
UML subclasses to relations.

1. E/R-style: each subclass’ relation stores
only its own attributes, plus key.

2. OO-style: relations store attributes of
subclass and all superclasses.

3. Nulls: One relation, with NULL’s as
needed.

51

From UML subclass relations

 If a hierarchy is disjoint at every level,
then an object-oriented
representation is suggested.

 If the hierarchy is both complete and
disjoint at every level, then the task
is even simpler.

 If the hierarchy is large and
overlapping at some or all levels,
then the E/R approach is indicated.

52

Relationship Comparison
between models

 E/R model: many-to-many
relationships, multiway relationship,
relationship can have an attribute

 UML: many-to-many relationships,
relationship can have an attribute

 ODL: many-to-many relationships,
relationship has not attributes, with
inverse relationship.

53

Summary

 The E/R model (subclass, weak entity
sets)

 UML model

 ODL (keys, relationships, type system)

 Transfer E/R to relational model (Isa
hierarchies)

 Transfer UML to relations

 Transfer ODL to relations

54

Classroom Exercises of chapter 4

 Exercise 4.2.1 (design)

 Exercise 4.4.1

 Exercise 4.4.2

