
1

Chapter 3 Design Theory for
Relational Databases

2

Contents

 Functional Dependencies

 Decompositions

 Normal Forms (BCNF, 3NF)

 Multivalued Dependencies (and 4NF)

 Reasoning About FD’s + MVD’s

3

Our example of chapter 2

Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

Some questions:

1. Why do we design

relations like the

example?

2. What makes a good

relational database

schema?

3. what we can do if it has

flaws?

4

Functional Dependencies

 X ->Y is an assertion about a relation R that

whenever two tuples of R agree on all the attributes

of X, then they must also agree on all attributes in

set Y.

−Say “X ->Y holds in R.”
−Convention: …, X, Y, Z represent sets of attributes; A,

B, C,… represent single attributes.

−Convention: no set formers in sets of attributes, just

ABC, rather than {A,B,C }.

5

Functional Dependency (cont.)

 Exist in a relational schema as a constraint.

 Agree for all instances of the schema. (t and

u are any two tuples)

 X Y

t

u
If t and

u agree

here

Then they

must agree

here

Why we call “functional”

dependency?

6

Functional Dependency (cont.)

 Some examples

Beers(name, manf)

namemanf manfname ?

Sells(bar, beer, price)

Bar,beer  price

7

Splitting Right Sides of FD’s

 X->A1A2…An holds for R exactly when each

of X->A1, X->A2,…, X->An hold for R.

 Example: A->BC is equivalent to A->B and

A->C.

 There is no splitting rule for left sides.

Trivial Functional Dependencies

Sells(bar, beer, price)

bar, beer  bar (trivial functional dependencies)

bar, beer  price (nontrivial function dependencies)

 A’s
B’s

C’s

A’s  B’s

A’s  C’s

9

Example: FD’s

Drinkers(name, addr, beersLiked, manf, favBeer)

 Reasonable FD’s to assert:

1. name -> addr favBeer (combining rule)

 Note this FD is the same as name -> addr

and name -> favBeer. (splitting rule)

2. beersLiked -> manf

10

Example: Possible Data

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

Because name -> addr Because name -> favBeer

Because beersLiked -> manf

For example,
given data  FD’s

11

 FD:

AB  C ?

A  B ?

A B C D

1 2 3 4

4 3 2 1

5 1 2 3

5 1 2 9

4 3 1 2

×
√

12

Keys of Relations

 K is a superkey for relation R if K

functionally determines all of R.

 K is a key for R if K is a superkey, but no

proper subset of K is a superkey.

(minimality)

13

Example: Superkey

Drinkers(name, addr, beersLiked, manf, favBeer)

 {name, beersLiked} is a superkey because

together these attributes determine all the

other attributes.

– name -> addr favBeer

– beersLiked -> manf

 Other superkey such as {name, beersLiked, addr},

{name,beersLiked, manf}, …any superset of {name,

beersLiked}.

14

Example: Key

 {name, beersLiked} is a key because neither

{name} nor {beersLiked} is a superkey.

– name doesn’t -> manf;

– beersLiked doesn’t -> addr.

 Keys are also superkeys.

15

Where Do Keys Come From?

1. Just assert a key K.
– The only FD’s are K -> A for all attributes A.

2. Assert FD’s and deduce the keys by
systematic exploration.

3. More FD’s From “Physics”

 - Example: “no two courses can meet in the
same room at the same time” tells us:

 hour room -> course.

16

Inferring FD’s

 Given a relation R and its FD’s X1 -> A1, X2 -

> A2,…, Xn -> An ,

  whether an FD Y -> B must hold in any

relation (instance) in this R.

– Example: If Y -> A and A -> B hold, we want to

infer whether Y -> B holds.

Three ways to infer yB:

1. A simple test for it

2. Use FD to deduce

3. Calculate closure of y

17

1: a simple test

 To test if Y -> B, start by assuming two tuples

agree in all attributes of Y.

 Y B

0000000. . . 0

00000?? . . ?

18

2: Use given FDs to deduce

 R(Y,A,B) with FD’s:

YA, AB

 To prove YB?

Y A B

Y a1 b1

Y a2 b2

Inference steps:

1) Assume two tuples

that agree on Y

2) Because YA,

a1=a2

3) Because AB

 b1=b2

19

Many Inference rules

 Reflexivity:

If {B1B2…Bm}  {A1,A2,…An} then

A1,A2,…An  B1B2…Bm called trivial FD’s

 Augmentation:

If A1,A2,…An  B1B2…Bm then,

A1,A2,…An C1,C2..Ck  B1B2…Bm C1,C2..Ck

 Transitivity:

If A1,A2,…An  B1B2…Bm,and B1B2…Bm  C1,C2..Ck
 then, A1,A2,…An  C1,C2..Ck

20

3: Closure Test

 An easier way to test is to compute the
closure of Y, denoted Y +.

 Basis: Y + = Y.

 Induction: Look for an FD’s left side X that is
a subset of the current Y +. If the FD is X ->
A, add A to Y +.

 End: when Y+ can not be changed.
Y+

new Y+

X A

21

3: Closure Test: example

 R(Y,A,B) with FD’s: YA, AB

 To prove YB?

 Calculating steps for Y+ :

1. Y+ = Y

2. Y+ = Y, A

3. Y+ = Y, A, B YB

Closure and Keys:

if the closure of X

is all attributes of a

relation, then X is

a key /superkey.

22

Pushing out

Pushing out

Initial set of

attributes

Computing the closure of a

set of attributes

Closure
• The closure algorithm

3.7 (pp.76) can discovers

all true FD’s.

• We need a FD’s

(minimal basis) to

represent the full set of

FD’s for a relation.

23

Basis for Functional Dependencies

 Example: R(A,B,C) with all FD’s:

 AB, AC, BA, BC, CA, CB,
ABC, ACB, BCA,…

 We are free to choose any basis for the FD’s
of R, a set of FD’s that can infer all the FD’s
that hold for R :

FD1: AB, BA, BC, CB

FD2: AB, BC, CA

24

Given Versus Implied FD’s

 Given: FD’s that are known to hold for a

relation R

 Implied FD’s : other FD’s may follow

logically from the given FD’s

Example:

 R(A,B,C) with FD’s: AB, BC, CA

 A C is implied FD

25

Finding All Implied FD’s

 Motivation: “normalization” the process where

we break a relation schema into two or more

schemas.

 Example: ABCD with FD’s AB ->C, C ->D,

and D ->A.

– Decompose into ABC, AD. What FD’s hold in ABC ?

Not only AB ->C, but also C ->A !

26

Why?
CA

a1b1c ABC

ABCD

a2b2c

Thus, tuples in the projection
with equal C’s have equal A’s;
C -> A.

a1b1cd1 a2b2cd2

comes
from

d1=d2 because
C -> D

a1=a2 because
D -> A

ABCD with FD’s AB ->C, C ->D,

and D ->A.

27

Basic Idea for projecting functional
dependencies

1. Start with given FD’s and find all nontrivial

FD’s that follow from the given FD’s.

– Nontrivial = right side not contained in the left.

2. Restrict to those FD’s that involve only

attributes of the projected schema.

28

An algorithm of projecting FD’s

1. For each set of attributes X, compute X +.

2. Add X ->A for all A in X + - X.

3. However, drop XY ->A whenever we discover X

->A.

 Because XY ->A follows from X ->A in any

projection.

4. Finally, use only FD’s involving projected

attributes.

29

Example: Projecting FD’s

 ABC with FD’s A ->B and B ->C. Project

onto AC.

– A +=ABC ; yields A ->B, A ->C.

 We do not need to compute AB + or AC +.

– B +=BC ; yields B ->C.

– C +=C ; yields nothing.

– BC +=BC ; yields nothing.

 Resulting FD’s: A ->B, A ->C, and B ->C.

 Projection onto AC : A ->C.

– Only FD that involves a subset of {A,C }.

If we find X + =

all attributes,

so is the

closure of any

superset of X.

Classroom Exercises

 Consider a relation R(A,B,C,D,E) with the

following functional dependencies:

 AB, CDE, EA, BD

 Specify all keys for R

30

 Keys: AC, BC, CD, CE

31

Relational Schema Design

 Goal of relational schema design is to avoid

anomalies and redundancy.

– Update anomaly : one occurrence of a fact is

changed, but not all occurrences.

– Deletion anomaly : valid fact is lost when a tuple

is deleted.

32

Example of Bad Design

Drinkers(name, addr, beersLiked, manf, favBeer)

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway ??? WickedAle Pete’s ???
Spock Enterprise Bud ??? Bud

Data is redundant, because each of the ???’s can be figured
out by using the FD’s name -> addr favBeer and
beersLiked -> manf.

33

This Bad Design
Exhibits Anomalies

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

• Update anomaly: if Janeway is transferred to Intrepid,
 will we remember to change each of her tuples?
• Deletion anomaly: If nobody likes Bud, we lose track
 of the fact that Anheuser-Busch manufactures Bud.

Solve the Problem

 Problems caused by FD’s

 Drinkers(name, addr, beersLiked, manf, favBeer) 

decompose into smaller relations :

Drinker= projection (name,addr, favBeer) (Drinkers)
Likes= projection (name, beersLiked) (Drinkers)
Beer = projection (beersliked, manf) (Drinkers)

Drinkers = Drinker natural join Likes natural join beer
not more, not less

Solve the problem (cont.)

Janeway voyager WickedAle

Spock Enterprise Bud

Janeway Bud

Janeway WickedAle

Spock Bud

35

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

Bud A.B.

WickedAle Peter’s

Any anomalies?

decomposition

Remember our questions:

 Why do we design relations like the example? 
good design

 What makes a good relational database schema? 
no redundancy, no Update/delete anomalies,

 what we can do if it has flaws?  decomposition

New Question:

 any standards for a good design?

  Normal forms: a condition on a relation schema
that will eliminate problems

 any standards or methods for a decomposition?

  yes.

