#### Chapter 3 Design Theory for Relational Databases

#### Contents

- Functional Dependencies
- Decompositions
- Normal Forms (BCNF, 3NF)
- Multivalued Dependencies (and 4NF)
- Reasoning About FD's + MVD's

#### **Our example of chapter 2**

Beers(<u>name</u>, manf) S Bars(<u>name</u>, addr, license) 1 Drinkers(<u>name</u>, addr, phone) Likes(<u>drinker</u>, <u>beer</u>) 2 Sells(<u>bar</u>, <u>beer</u>, price) Frequents(<u>drinker</u>, <u>bar</u>)

Some questions:

- Why do we design
   relations like the example?
- 2. What makes a good relational database schema?
- 3. what we can do if it has flaws?

#### **Functional Dependencies**

 X->Y is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on all attributes in set Y.

-Say "X->Y holds in *R*."
-Convention: ..., X, Y, Z represent sets of attributes; A, B, C,... represent single attributes.
-Convention: no set formers in sets of attributes, just ABC, rather than {A,B,C}.

#### **Functional Dependency (cont.)**

- Exist in a relational schema as a constraint.
- Agree for all instances of the schema. (t and u are any two tuples)



Why we call "functional" dependency?

#### **Functional Dependency (cont.)**

Some examples
 Beers(name, manf)
 name→manf manf→name ?

Sells(<u>bar</u>, <u>beer</u>, price) Bar,beer → price

### **Splitting Right Sides of FD's**

•  $X \rightarrow A_1 A_2 \dots A_n$  holds for R exactly when each of  $X \rightarrow A_1$ ,  $X \rightarrow A_2$ ,...,  $X \rightarrow A_n$  hold for R.

Example:  $A \rightarrow BC$  is equivalent to  $A \rightarrow B$  and  $A \rightarrow C$ .

• There is no splitting rule for left sides.

#### **Trivial Functional Dependencies**

Sells(<u>bar</u>, <u>beer</u>, price) bar, beer  $\rightarrow$  bar (trivial functional dependencies) bar, beer  $\rightarrow$  price (nontrivial function dependencies)

A's → B's A's → C's



#### **Example: FD's**

Drinkers(name, addr, beersLiked, manf, favBeer)

- Reasonable FD's to assert:
  - 1. name -> addr favBeer (combining rule)
    - Note this FD is the same as name -> addr and name -> favBeer. (splitting rule)
  - 2. beersLiked -> manf

#### **Example:** Possible Data



#### For example, given data $\rightarrow$ FD's

- Α 1 4 5 5 4
- B 1 1 3
- С 2 3 4 3 2 2 2 1
  - D 1 3 9 2
- FD:  $AB \rightarrow C$ ?  $\times$  $A \rightarrow B$ ?

### **Keys of Relations**

- *K* is a *superkey* for relation *R* if *K* functionally determines all of *R*.
- K is a key for R if K is a superkey, but no proper subset of K is a superkey.
   (minimality)

### **Example: Superkey**

Drinkers(name, addr, beersLiked, manf, favBeer)

- {name, beersLiked} is a superkey because together these attributes determine all the other attributes.
  - name -> addr favBeer
  - beersLiked -> manf
  - Other superkey such as {name, beersLiked, addr}, {name,beersLiked, manf}, ...any superset of {name, beersLiked}.

#### **Example: Key**

- {name, beersLiked} is a key because neither {name} nor {beersLiked} is a superkey.
  - name doesn't -> manf;
  - beersLiked doesn't -> addr.
- Keys are also superkeys.

#### Where Do Keys Come From?

- 1. Just assert a key *K*.
  - The only FD's are  $K \rightarrow A$  for all attributes A.
- 2. Assert FD's and deduce the keys by systematic exploration.
- 3. More FD's From "Physics"
  - Example: "no two courses can meet in the same room at the same time" tells us: hour room -> course.

## **Inferring FD's**

#### Three ways to infer $y \rightarrow B$ :

- 1. A simple test for it
- 2. Use FD to deduce
- 3. Calculate closure of y

• Given a relation R and its FD's  $X_1 \to A_1, X_2 \to A_2, ..., X_n \to A_n$ ,

 $\rightarrow$  whether an FD Y -> B must hold in any relation (instance) in this R.

 Example: If Y -> A and A -> B hold, we want to infer whether Y -> B holds.

#### 1: a simple test

- To test if Y -> B, start by assuming two tuples agree in all attributes of Y.
- \_Y\_\_B 0000000...0 00000??..?

#### 2: Use given FDs to deduce

- R(Y,A,B) with FD's: Y $\rightarrow$ A, A $\rightarrow$ B
- To prove  $Y \rightarrow B$ ?

| Y | А  | В  |
|---|----|----|
| Y | a1 | b1 |
| Y | a2 | b2 |

Inference steps:

- 1) Assume two tuples that agree on Y
- 2) Because  $Y \rightarrow A$ , a1=a2
- 3) Because  $A \rightarrow B$

b1=b2

#### **Many Inference rules**

• Reflexivity:

If  $\{B_1B_2...B_m\} \subseteq \{A_1,A_2,...A_n\}$  then

 $A_1, A_2, \dots A_n \rightarrow B_1 B_2 \dots B_m$  called trivial FD's

• Augmentation:

If  $A_1, A_2, \dots, A_n \rightarrow B_1 B_2 \dots B_m$  then,

 $A_1, A_2, \dots A_n C_1, C_2 \dots C_k \rightarrow B_1 B_2 \dots B_m C_1, C_2 \dots C_k$ 

• Transitivity:

If  $A_1, A_2, \dots, A_n \rightarrow B_1B_2 \dots B_m$ , and  $B_1B_2 \dots B_m \rightarrow C_1, C_2 \dots C_k$ then,  $A_1, A_2, \dots, A_n \rightarrow C_1, C_2 \dots C_k$ 

#### **3: Closure Test**

- An easier way to test is to compute the closure of Y, denoted Y<sup>+</sup>.
- Basis:  $Y^+ = Y$ .
- Induction: Look for an FD's left side X that is a subset of the current Y<sup>+</sup>. If the FD is X -> A, add A to Y<sup>+</sup>.

► A

new

• End: when Y<sup>+</sup> can not be changed.( X

#### **3: Closure Test: example**

- R(Y,A,B) with FD's:  $Y \rightarrow A, A \rightarrow B$
- To prove  $Y \rightarrow B$ ?
- Calculating steps for Y+:
- 1.  $Y^+ = Y$
- 2.  $Y^+ = Y, A$
- 3.  $Y^+ = Y, A, B \longrightarrow Y \rightarrow B$

Closure and Keys: if the closure of X is all attributes of a relation, then X is a key /superkey.

# Computing the closure of a set of attributes



• The closure algorithm 3.7 (pp.76) can discovers all true FD's.

• We need a FD's (minimal basis) to represent the full set of FD's for a relation.

#### **Basis for Functional Dependencies**

- Example: R(A,B,C) with all FD's:
   A→B, A→C, B→A, B→C, C→A, C→B,
   AB→C, AC→B, BC→A,...
- We are free to choose any basis for the FD's of R, <u>a set of FD's that can infer all the FD's</u> that hold for R :
- FD1:  $A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow B$
- FD2:  $A \rightarrow B, B \rightarrow C, C \rightarrow A$

#### **Given Versus Implied FD's**

- Given: FD's that are known to hold for a relation R
- Implied FD's : other FD's may follow logically from the given FD's

#### Example:

- R(A,B,C) with FD's:  $A \rightarrow B$ ,  $B \rightarrow C$ ,  $C \rightarrow A$
- $A \rightarrow C$  is implied FD

#### Finding All Implied FD's

- Motivation: "normalization" the process where we break a relation schema into two or more schemas.
- Example: ABCD with FD's AB ->C, C ->D, and D ->A.
  - Decompose into ABC, AD. What FD's hold in ABC?

Not only  $AB \rightarrow C$ , but also  $C \rightarrow A$ !

#### Why? $C \rightarrow A$ ABCD with FD's AB->C, C->D, and D->A.



Thus, tuples in the projection with equal C's have equal A's;  $C \rightarrow A$ .

## **Basic Idea for projecting functional dependencies**

- Start with given FD's and find all *nontrivial* FD's that follow from the given FD's.
  - Nontrivial = right side not contained in the left.
- 2. Restrict to those FD's that involve only attributes of the projected schema.

### An algorithm of projecting FD's

- 1. For each set of attributes X, compute  $X^+$ .
- 2. Add  $X \rightarrow A$  for all A in  $X^+ \rightarrow X$ .
- 3. However, drop  $XY \rightarrow A$  whenever we discover  $X \rightarrow A$ .

## Because XY->A follows from X->A in any projection.

4. Finally, use only FD's involving projected attributes.

## **Example: Projecting FD's**

If we find  $X^+ =$ all attributes, so is the closure of any superset of X.

- ABC with FD's A ->B and B ->C. Product onto AC.
  - $A^+=ABC$ ; yields  $A^->B$ ,  $A^->C$ .
    - We do not need to compute  $AB^+$  or  $AC^+$ .
  - $B^+=BC$ ; yields  $B^->C$ .
  - $C^+=C$ ; yields nothing.
  - BC<sup>+</sup>=BC; yields nothing.
- Resulting FD's:  $A \rightarrow B$ ,  $A \rightarrow C$ , and  $B \rightarrow C$ .
- Projection onto  $AC: A \rightarrow C$ .

29

– Only FD that involves a subset of  $\{A, C\}$ .

#### **Classroom Exercises**

- Consider a relation R(A,B,C,D,E) with the following functional dependencies:
   A→B, CD→E, E→A, B→D
- Specify all keys for R



Keys: AC, BC, CD, CE

#### **Relational Schema Design**

- Goal of relational schema design is to avoid anomalies and redundancy.
  - Update anomaly : one occurrence of a fact is changed, but not all occurrences.
  - Deletion anomaly : valid fact is lost when a tuple is deleted.

#### **Example of Bad Design**

Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)

| name    | addr       | beersLiked | manf   | favBeer   |
|---------|------------|------------|--------|-----------|
| Janeway | Voyager    | Bud        | A.B.   | WickedAle |
| Janeway | ???        | WickedAle  | Pete's | ???       |
| Spock   | Enterprise | Bud        | ???    | Bud       |

Data is redundant, because each of the ???'s can be figured out by using the FD's name -> addr favBeer and beersLiked -> manf.

#### This Bad Design Exhibits Anomalies

| name    | addr       | beersLiked | manf   | favBeer   |
|---------|------------|------------|--------|-----------|
| Janeway | Voyager    | Bud        | A.B.   | WickedAle |
| Janeway | Voyager    | WickedAle  | Pete's | WickedAle |
| Spock   | Enterprise | Bud        | A.B.   | Bud       |

- Update anomaly: if Janeway is transferred to *Intrepid*, will we remember to change each of her tuples?
- Deletion anomaly: If nobody likes Bud, we lose track of the fact that Anheuser-Busch manufactures Bud.

#### **Solve the Problem**

Problems caused by FD's

Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer) → decompose into smaller relations :

Drinker= projection (name,addr, favBeer) (Drinkers) Likes= projection (name, beersLiked) (Drinkers) Beer = projection (beersliked, manf) (Drinkers)

Drinkers = Drinker natural join Likes natural join beer not more, not less

#### Solve the problem (cont.)

| name                        | addr                             |     | beersLiked              |             | manf                   | favBeer                       |
|-----------------------------|----------------------------------|-----|-------------------------|-------------|------------------------|-------------------------------|
| Janeway<br>Janeway<br>Spock | Voyager<br>Voyager<br>Enterprise |     | Bud<br>WickedAle<br>Bud |             | A.B.<br>Pete's<br>A.B. | WickedAle<br>WickedAle<br>Bud |
| decomposition               |                                  |     |                         |             |                        |                               |
| Janeway                     | ay voyager WickedA               |     | le                      | Janeway Bud |                        | Bud                           |
| Spock                       | Enterorise                       | Bud | _                       | Janeway     |                        | WickedAle                     |
| Ороск                       |                                  |     |                         | Spock       |                        | Bud                           |

| Bud       | A.B.    |
|-----------|---------|
| WickedAle | Peter's |

35

Any anomalies?

#### **Remember our questions:**

- Why do we design relations like the example? → good design
- What makes a good relational database schema? → no redundancy, no Update/delete anomalies,
- what we can do if it has flaws?  $\rightarrow$  decomposition

#### **New Question:**

- any standards for a good design?
  - → Normal forms: a condition on a relation schema that will eliminate problems
- any standards or methods for a decomposition?
   → yes.