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Chapter 3 Design Theory for 
Relational Databases 
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Contents 

 Functional Dependencies 

 Decompositions 

 Normal Forms (BCNF, 3NF) 

 Multivalued Dependencies (and 4NF) 

 Reasoning About FD’s + MVD’s 
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Our example of chapter 2 

Beers(name, manf) 

Bars(name, addr, license) 

Drinkers(name, addr, phone) 

Likes(drinker, beer) 

Sells(bar, beer, price) 

Frequents(drinker, bar) 

Some questions: 

1. Why do we design 

relations like the 

example? 

2. What makes a good 

relational database 

schema? 

3. what we can do if it has 

flaws? 



4 

Functional Dependencies 

 X ->Y  is an assertion about a relation R  that 

whenever two tuples of R  agree on all the attributes 

of X, then they must also agree on all attributes in 

set Y. 

−Say “X ->Y  holds in R.” 
−Convention: …, X, Y, Z  represent sets of attributes; A, 

B, C,… represent single attributes. 

−Convention: no set formers in sets of attributes, just 

ABC, rather than {A,B,C }. 
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Functional Dependency (cont.) 

 Exist in a relational schema as a constraint. 

 Agree for all instances of the schema. (t and 

u are any two tuples) 

 X Y 

t 

u 
If t and 

u agree 

here 

Then they 

must agree 

here 

Why we call “functional” 

dependency? 
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Functional Dependency (cont.) 

 Some examples 

Beers(name, manf) 

namemanf          manfname ? 

 

Sells(bar, beer, price) 

Bar,beer  price 
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Splitting Right Sides of FD’s 

 X->A1A2…An  holds for R  exactly when each 

of X->A1, X->A2,…, X->An  hold for R. 

 

   Example: A->BC  is equivalent to A->B  and 

A->C. 

  There is no splitting rule for left sides. 



Trivial Functional Dependencies 

Sells(bar, beer, price) 

bar, beer  bar    (trivial functional dependencies) 

bar, beer  price  (nontrivial function dependencies) 

 

 A’s                
B’s 

C’s 

A’s  B’s 

A’s  C’s 
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Example: FD’s 

Drinkers(name, addr, beersLiked, manf, favBeer) 

 Reasonable FD’s to assert: 

1. name -> addr favBeer    (combining rule) 

 Note this FD is the same as name -> addr 

and name -> favBeer.  (splitting rule) 

 

2. beersLiked -> manf 
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Example: Possible Data 
 

name  addr    beersLiked   manf         favBeer 
Janeway Voyager  Bud   A.B.  WickedAle 
Janeway Voyager  WickedAle  Pete’s  WickedAle 
Spock  Enterprise  Bud   A.B.  Bud 

Because name -> addr Because name -> favBeer 

Because beersLiked -> manf 



For example,  
given data   FD’s 
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 FD:  

AB  C ?   

A  B ? 

A  B  C  D  

1  2  3  4  

4  3  2  1  

5  1  2  3  

5  1  2  9  

4  3  1  2  

× 
√ 
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Keys of Relations 

 K  is a superkey  for relation R  if  K  

functionally determines all of R. 

 K  is a key  for R  if K  is a superkey, but no 

proper subset of K  is a superkey. 

(minimality) 
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Example: Superkey 

Drinkers(name, addr, beersLiked, manf, favBeer) 

  {name, beersLiked} is a superkey because 

together these attributes determine all the 

other attributes. 

– name -> addr favBeer 

– beersLiked -> manf 

 Other superkey such as {name, beersLiked, addr}, 

{name,beersLiked, manf}, …any superset of {name, 

beersLiked}. 
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Example: Key 

 {name, beersLiked} is a key because neither 

{name} nor {beersLiked} is a superkey. 

– name doesn’t -> manf;  

– beersLiked doesn’t -> addr. 

 

 Keys are also superkeys. 



15 

Where Do Keys Come From? 

1. Just assert a key K. 
– The only FD’s are K -> A  for all attributes A. 

2. Assert FD’s and deduce the keys by 
systematic exploration. 

3. More FD’s From “Physics” 

      -   Example: “no two courses can meet in the 
same room at the same time” tells us:  

        hour room -> course. 
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Inferring FD’s 

 Given a relation R and its FD’s X1 -> A1, X2 -

> A2,…, Xn -> An ,  

    whether an FD Y -> B  must hold in any 

relation (instance) in this R. 

 

– Example: If Y -> A  and A -> B  hold, we want to 

infer whether  Y -> B  holds. 

Three ways to infer yB: 

1. A simple test for it 

2. Use FD to deduce 

3. Calculate closure of y  
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1:  a simple test 

 To test if Y -> B, start by assuming two tuples 

agree in all attributes of Y. 

 

 Y              B 

0000000. . . 0 

00000?? . .  ? 
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2: Use given FDs to deduce 

 R(Y,A,B) with FD’s: 

YA, AB   

 To prove YB?    

Y A B 

Y a1 b1 

Y a2 b2 

Inference steps: 

1) Assume two tuples 

that agree on Y 

2) Because YA, 

a1=a2 

3) Because AB 

     b1=b2 
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Many Inference rules 

 Reflexivity: 

If {B1B2…Bm}  {A1,A2,…An} then  

A1,A2,…An  B1B2…Bm  called trivial FD’s 

 Augmentation: 

If A1,A2,…An  B1B2…Bm then, 

A1,A2,…An C1,C2..Ck  B1B2…Bm C1,C2..Ck 

 Transitivity: 

If A1,A2,…An  B1B2…Bm,and B1B2…Bm  C1,C2..Ck 
 then, A1,A2,…An  C1,C2..Ck 
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3: Closure Test 

 An easier way to test is to compute the 
closure  of Y, denoted Y +. 

 Basis: Y + = Y. 

 Induction: Look for an FD’s left side X that is 
a subset of the current Y +.  If the FD is X -> 
A, add A to Y +. 

 

 End:  when Y+ can not be changed. 
Y+ 

new Y+ 

X A 
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3: Closure Test: example 

 R(Y,A,B) with FD’s: YA, AB   

 To prove YB? 

 

 Calculating steps for Y+ : 

1. Y+  = Y 

2. Y+  = Y, A 

3. Y+  = Y, A, B                   YB 

Closure and Keys: 

if the closure of X 

is all attributes of a 

relation, then X is 

a key /superkey. 
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Pushing out 

Pushing out 

Initial set of  

attributes 

Computing the closure of a 

set of attributes 

Closure 
• The closure algorithm 

3.7 (pp.76) can discovers 

all true FD’s. 

• We need a FD’s 

( minimal basis) to 

represent the full set of 

FD’s for a relation.  
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Basis for Functional Dependencies 

 Example:    R(A,B,C) with all FD’s:  

    AB, AC, BA, BC, CA, CB, 
ABC, ACB, BCA,… 

 We are free to choose any basis for the FD’s 
of R, a set of FD’s that can infer all the FD’s 
that hold for R : 

FD1:   AB, BA, BC, CB 

FD2:   AB, BC, CA 
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Given Versus Implied FD’s 

 Given:  FD’s that are known to hold for a 

relation R 

 Implied FD’s : other FD’s may follow 

logically from the given FD’s 

 

Example:  

 R(A,B,C)  with FD’s: AB, BC, CA 

  A C is implied FD 
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Finding All Implied FD’s 

 Motivation: “normalization” the process where 

we break a relation schema into two or more 

schemas. 

 Example: ABCD  with FD’s AB ->C,  C ->D, 

and D ->A. 

– Decompose into ABC, AD.  What FD’s hold in ABC ? 

Not only AB ->C, but also C ->A ! 
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Why? 
CA 

a1b1c ABC 

ABCD 

a2b2c 

Thus, tuples in the projection 
with equal C’s have equal A’s; 
C -> A. 

a1b1cd1 a2b2cd2 

comes 
from 

d1=d2 because 
C -> D 

a1=a2 because 
D -> A 

ABCD  with FD’s AB ->C,  C ->D, 

and D ->A. 
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Basic Idea for projecting functional 
dependencies 

1. Start with given FD’s and find all nontrivial  

FD’s that follow from the given FD’s. 

– Nontrivial = right side not contained in the left. 

2. Restrict to those FD’s that involve only 

attributes of the projected schema. 
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An algorithm of projecting FD’s 

1. For each set of attributes X, compute X +. 

2. Add X ->A  for all A in X + - X. 

3. However, drop XY ->A  whenever we discover X 

->A. 

 Because XY ->A  follows from X ->A  in any 

projection. 

4. Finally, use only FD’s involving projected 

attributes. 
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Example: Projecting FD’s 

 ABC  with FD’s A ->B  and B ->C.  Project 

onto AC. 

– A +=ABC ; yields A ->B, A ->C. 

 We do not need to compute AB + or AC +. 

– B +=BC ; yields B ->C. 

– C +=C ; yields nothing. 

– BC +=BC ; yields nothing. 

 Resulting FD’s: A ->B, A ->C, and B ->C. 

 Projection onto AC : A ->C. 

– Only FD that involves a subset of {A,C }. 

 

If we find X + = 

all attributes, 

so is the 

closure of any 

superset of X. 



Classroom Exercises 

 Consider a relation R(A,B,C,D,E) with the 

following functional dependencies: 

   AB, CDE, EA, BD  

 

  Specify all keys for R 
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   Keys: AC, BC, CD, CE 
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Relational Schema Design 

 Goal of relational schema design is to avoid 

anomalies and redundancy. 

– Update anomaly : one occurrence of a fact is 

changed, but not all occurrences. 

– Deletion anomaly : valid fact is lost when a tuple 

is deleted. 
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Example of Bad Design 

Drinkers(name, addr, beersLiked, manf, favBeer) 
 
name  addr  beersLiked manf favBeer 
Janeway Voyager Bud  A.B. WickedAle 
Janeway ???  WickedAle Pete’s ??? 
Spock  Enterprise Bud  ??? Bud 

Data is redundant, because each of the ???’s can be figured 
out by using the FD’s name -> addr favBeer and 
beersLiked -> manf.  



33 

This Bad Design 
Exhibits Anomalies 

 
 
name  addr  beersLiked manf favBeer 
Janeway Voyager Bud  A.B. WickedAle 
Janeway Voyager WickedAle Pete’s WickedAle 
Spock  Enterprise Bud  A.B. Bud 

• Update anomaly: if Janeway is transferred to Intrepid, 
  will we remember to change each of her tuples? 
• Deletion anomaly: If nobody likes Bud, we lose track 
  of the fact that Anheuser-Busch manufactures Bud. 



Solve the Problem 

 Problems caused by FD’s 
 
 Drinkers(name, addr, beersLiked, manf, favBeer)   

decompose into smaller relations : 
 
Drinker= projection (name,addr, favBeer) (Drinkers) 
Likes= projection (name, beersLiked) (Drinkers) 
Beer = projection (beersliked, manf) (Drinkers) 
 
Drinkers = Drinker natural join Likes natural join beer       
not more, not less 



Solve the problem (cont.) 

Janeway voyager WickedAle 

Spock Enterprise Bud 

Janeway Bud 

Janeway WickedAle 

Spock Bud 
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name  addr  beersLiked manf favBeer 
Janeway Voyager Bud  A.B. WickedAle 
Janeway Voyager WickedAle Pete’s WickedAle 
Spock  Enterprise Bud  A.B. Bud 

Bud A.B. 

WickedAle Peter’s 

Any anomalies?  

decomposition 



Remember our questions: 

 Why do we design relations like the example?   
good design 

 What makes a good relational database schema?  
no redundancy, no Update/delete anomalies,  

 what we can do if it has flaws?    decomposition 

 

New Question:  

 any standards for a good design?  

       Normal forms: a condition on a relation schema 
that will eliminate problems 

 any standards or methods for a decomposition? 

      yes. 


