
Chapter 12

Query Languages for XML

XPath, XQuery, XSLT

XPath(2.0), XQuery(1.0), XSLT(2.0) share the

same function library.

1

Overview

 Querying on XML data

1. Xpath: a simple language for
describing sets of similar paths in
a graph of semi-structured data.

2. Xquery: an extension of Xpath that
adopts something of the style of
SQL.

3. XSLT: for translation from XML to
XML and XML to HTML

2

The XPath/XQuery Data Model

 Corresponding to the fundamental
“relation” of the relational model
is: sequence of items.

 An item is either:
1. A primitive value, e.g., integer or

string.

2. A node (defined next).

3

Principal Kinds of Nodes

1. Document nodes represent entire
documents.

2. Elements are pieces of a document
consisting of some opening tag, its
matching closing tag (if any), and
everything in between.

3. Attributes names that are given
values inside opening tags.

4

Document Nodes

 Formed by doc(URL) or document(URL).

 Example:
doc(/usr/class/cs145/bars.xml)

 All XPath (and XQuery) queries refer
to a doc node, either explicitly or
implicitly.

 Example: key definitions in XML Schema
have Xpath expressions that refer to the
document described by the schema.

5

DTD for Running Example

<!DOCTYPE BARS [

 <!ELEMENT BARS (BAR*, BEER*)>

 <!ELEMENT BAR (PRICE+)>

 <!ATTLIST BAR name ID #REQUIRED>

 <!ELEMENT PRICE (#PCDATA)>

 <!ATTLIST PRICE theBeer IDREF #REQUIRED>

 <!ELEMENT BEER EMPTY>

 <!ATTLIST BEER name ID #REQUIRED>

 <!ATTLIST BEER soldBy IDREFS #IMPLIED>

]>

6

Example: Document

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer = ”Bud”>2.50</PRICE>

 <PRICE theBeer
= ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar … ”/> …

</BARS>

7

An element node

An attribute node

Document node is all of this, plus
the header (<? xml version…).

Nodes as Semistructured Data

8

BARS

PRICE PRICE

BEER BAR
name =

”JoesBar”

theBeer =
”Miller”

theBeer
= ”Bud”

SoldBy
= ”…”

name =
”Bud”

3.00 2.50

Rose =document
Green = element
Gold = attribute
Purple = primitive
 value

bars.xml

Paths in XML Documents

 XPath is a language for describing
paths in XML documents.

 The result of the described path is a
sequence of items.

9

Path Expressions

 Simple path expressions are
sequences of slashes (/) and tags,
starting with /.

 Example: /BARS/BAR/PRICE

 Construct the result by starting
with just the doc node and
processing each tag from the left.

10

Evaluating a Path Expression

 Assume the first tag is the root.

 Scan the whole tree.

 Suppose we have a sequence of items,
and the next tag is X.
 For each item that is an element node,
replace the element by the subelements
with tag X.

11

Example: /BARS

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer = ”Bud”>2.50</PRICE>

 <PRICE theBeer
= ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar … ”/> …

</BARS>

 12

One item, the
BARS element

Example: /BARS/BAR

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer =”Bud”>2.50</PRICE>

 <PRICE theBeer
= ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar …”/> …

</BARS>

 13

This BAR element followed by
all the other BAR elements

Example: /BARS/BAR/PRICE

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer =”Bud”>2.50</PRICE>

 <PRICE theBeer
= ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar …”/> …

</BARS>

14

These PRICE elements followed
by the PRICE elements
of all the other bars.

Attributes in Paths

 Instead of going to subelements with
a given tag, you can go to an
attribute of the elements you already
have.

 An attribute is indicated by putting
@ in front of its name.

15

Example:

/BARS/BAR/PRICE/data(@theBeer)

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer = ”Bud”>2.50</PRICE>

 <PRICE theBeer = ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar …”/> …

</BARS>

16

These attributes contribute
”Bud” ”Miller” to the result,
followed by other theBeer
values.

Sequences ends in an attribute

 When a path expression ends in an
attribute, the result is typically
a sequence of values of primitive
type, for example.

/BARS/BAR/PRICE/data (@theBeer)

 “Bud Miller” as the output
17

Paths that Begin Anywhere

 If the path starts from the document
node and begins with //X, then the
first step can begin at the root or
any subelement of the root, as long
as the tag is X.

18

Example: //PRICE

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer =”Bud”>2.50</PRICE>

 <PRICE theBeer = ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar …”/> …

</BARS>

19

These PRICE elements and
any other PRICE elements
in the entire document

Wild-Card *

 A star (*) in place of a tag
represents any one tag.

 Example: /*/*/PRICE represents all
price objects at the third level of
nesting.

20

Example: /BARS/*

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer = ”Bud”>2.50</PRICE>

 <PRICE theBeer
= ”Miller”>3.00</PRICE>

 </BAR> …

 <BEER name = ”Bud” soldBy = ”JoesBar

 SuesBar … ”/> …

</BARS>

21

This BAR element, all other BAR
elements, the BEER element, all
other BEER elements

Selection Conditions

 A condition inside […] may follow a
tag.

 If so, then only paths that have that
tag and also satisfy the condition
are included in the result of a path
expression.

22

Example: Selection Condition

 /BARS/BAR/PRICE[. < 2.75]

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer = ”Bud”>2.50</PRICE>

 <PRICE theBeer = ”Miller”>3.00</PRICE>

 </BAR> …

23

The condition that the PRICE be
< $2.75 makes this price but not
the Miller price part of the result.

The current
element.

Example: Attribute in Selection

 /BARS/BAR/PRICE[@theBeer = ”Miller”]

<BARS>

 <BAR name = ”JoesBar”>

 <PRICE theBeer = ”Bud”>2.50</PRICE>

 <PRICE theBeer = ”Miller”>3.00</PRICE>

 </BAR> …

24

Now, this PRICE element
is selected, along with
any other prices for Miller.

Axes

 In general, path expressions allow
us to start at the root and execute
steps to find a sequence of nodes at
each step.

 At each step, we may follow any one
of several axes.

 The default axis is child:: --- go
to all the children of the current
set of nodes. 25

Example: Axes

 /BARS/BEER is really shorthand for
/BARS/child::BEER .

 @ is really shorthand for the
attribute:: axis.

 Thus, /BARS/BEER[@name = ”Bud”] is
shorthand for

 /BARS/BEER[attribute::name = ”Bud”]

26

More Axes

 Some other useful axes are:

1. parent:: = parent(s) of the current
node(s).

2. descendant-or-self:: = the current
node(s) and all descendants.

 Note: // is really shorthand for this axis.

3. ancestor::, ancestor-or-self, etc.

4. self (the dot).

27

Classroom Exercises
<Bookstore>

 -<Book Price="85" ISBN="ISBN-0-13-713526-2">

 <Title>A First Course in Database Systems</Title>

<Authors><Author><First_Name>Jeffrey</First_Name><Last_Name>Ullman
</Last_Name></Author><Author><First_Name>Jennifer</First_Name><Las
t_Name>Widom</Last_Name></Author></Authors>

</Book>-

<Book Price="100" ISBN="ISBN-0-13-815504-6">

<Title>Database Systems: The Complete Book</Title>

<Authors><Author><First_Name>Hector</First_Name><Last_Name>Garcia-
Molina</Last_Name></Author>
<Author><First_Name>Jeffrey</First_Name><Last_Name>Ullman</Last_Na
me></Author><Author><First_Name>Jennifer</First_Name><Last_Name>Wi
dom</Last_Name></Author></Authors>

<Remark> Buy this book bundled with "A First Course" - a great
deal! </Remark>

</Book></Bookstore> 28

Classroom Exercises (bookstore)

 All books costing less than $90

 Titles of books costing less than $90

 Titles of books costing less than $90
where "Ullman" is an author.

29

Answer 1
 All books costing less than $90

doc("Bookstore.xml")/Bookstore/Book[@Pric
e < 90]

Result:
<Book Price="85" ISBN="ISBN-0-13-713526-2">

<Title>A First Course in Database Systems</Title>

<Authors><Author><First_Name>Jeffrey</First_Name><Last_
Name>Ullman</Last_Name></Author><Author><First_Name>Jen
nifer</First_Name><Last_Name>Widom</Last_Name></Author>
</Authors>

</Book>
30

Answer 2

 Titles of all books costing less than
$90

doc("Bookstore.xml")/Bookstore/Book[@Price
< 90]/Title

Result:

 <Title>A First Course in Database
Systems</Title>

31

Answer 3

 Titles of books costing less than
$90 where "Ullman" is an author.

doc("Bookstore.xml")/Bookstore/Book[@P
rice < 90 and
Authors/Author/Last_Name =
"Ullman"]/Title

Result:

 <Title>A First Course in Database
Systems</Title>

32

XQuery

 XQuery extends XPath to a query
language that has power similar to
SQL.

 Uses the same sequence-of-items data
model.

 XQuery is an expression language.

 Like relational algebra --- any XQuery
expression can be an argument of any
other XQuery expression.

33

More About Item Sequences

 XQuery will sometimes form sequences
of sequences.

 All sequences are flattened.

 Example: (1 2 () (3 4)) = (1 2 3 4).

34

Empty
sequence

FLWR Expressions

1. One or more for and/or let clauses.

2. Then an optional where clause.

3. A return clause.

let allows temporary variables, and
has no equivalent in SQL

for  SQL from

where  SQL where

return  SQL select

35

Semantics of FLWR Expressions

 Each for creates a loop.

 let produces only a local definition.

 At each iteration of the nested loops,
if any, evaluate the where clause.

 If the where clause returns TRUE,
invoke the return clause, and append
its value to the output.

36

FOR Clauses

for <variable> in <expression>, . . .

 Variables begin with $.

 A for-variable takes on each item in
the sequence denoted by the
expression, in turn.

 Whatever follows this for is executed
once for each value of the variable.

37

Example: FOR

for $beer in
document(“bars.xml”)/BARS/BEER/@name

return

 <BEERNAME> {$beer} </BEERNAME>

 $beer ranges over the name attributes of
all beers in our example document.

 Result is a sequence of BEERNAME
elements: <BEERNAME>Bud</BEERNAME>
<BEERNAME>Miller</BEERNAME> . . .

38

“Expand the en-
closed string by
replacing variables
and path exps. by
their values.”

Our example
BARS document

barsDTD.txt

Use of Braces {}

 When a variable name like $x, or an
expression, could be text, we need
to surround it by braces to avoid
having it interpreted literally.

 Example: <A>$x is an A-element
with value ”$x”, just like
<A>foo is an A-element with ”foo”
as value.

 <A> {$x} return the value of $x
39

Use of Braces --- (cont.)

 return $x is unambiguous:

 return the element of $x represents

40

LET Clauses

let <variable> := <expression>, . . .

 Value of the variable becomes the
sequence of items defined by the
expression.

 Note let does not cause iteration;
for does.

41

Example: LET

let $d := document(”bars.xml”)

let $beers := $d/BARS/BEER/@name

return

 <BEERNAMES> {$beers} </BEERNAMES>

 Returns one element with all the names
of the beers, like:

<BEERNAMES>Bud Miller …</BEERNAMES>

42

Order-By Clauses

 FLWR is really FLWOR: an order-by
clause can precede the return.

 Form: order by <expression>

 With optional ascending or descending.

 The expression is evaluated for each
assignment to variables.

 Determines placement in output sequence.

43

Example: Order-By

 List all prices for Bud, lowest first.

let $d := document(”bars.xml”)

for $p in
$d/BARS/BAR/PRICE[@theBeer=”Bud”]

order by $p

return $p

44

Generates bindings
for $p to PRICE
elements.

Order those bindings
by the values inside
the elements (auto-
matic coersion). Each binding is evaluated

for the output. The
result is a sequence of
PRICE elements.

Remember: SQL ORDER BY

 SQL works the same way; it’s the
result of the FROM and WHERE that get
ordered, not the output.

 Example: Using R(a,b),

SELECT b FROM R

WHERE b > 10

ORDER BY a;

45

R tuples with b>10
are ordered by their
a-values.

Then, the b-values
are extracted from these
tuples and printed in the
same order.

Predicates

 Normally, conditions imply
existential quantification.

 Example: /BARS/BAR[@name] means “all
the bars that have a name.”

 Example: /BARS/BEER[@soldAt
= ”JoesBar”] gives the set of beers
that are sold at Joe’s Bar.

46

Example: Comparisons

 How to produce the PRICE elements
(from all bars) for all the beers
that are sold by Joe’s Bar?

 Output: BBP elements with the names
of the bar and beer as attributes and
the price element as a subelement.

<BBP bar=“joe’s bar” beer = “Bud”>
3.4 </BBP>

47

Strategy

1. Create a triple for-loop, with
variables ranging over all BEER
elements, all BAR elements, and all
PRICE elements within those BAR
elements.

2. Check that the beer is sold at
Joe’s Bar and that the name of the
beer and theBeer in the PRICE
element match.

3. Construct the output element.
48

The Query

let $bars := doc(”bars.xml”)/BARS

for $beer in $bars/BEER

for $bar in $bars/BAR

for $price in $bar/PRICE

where $beer/@soldBy = ”JoesBar” and

$price/@theBeer = $beer/@name

return <BBP bar = {$bar/@name} beer

= {$beer/@name}>{$price}</BBP>

49

True if ”JoesBar”
appears anywhere
in the sequence

barsDTD.txt

Strict Comparisons

 To require that the things being
compared are sequences of only one
element, use the Fortran comparison
operators:

 eq, ne, lt, le, gt, ge.

 Example: $beer/@soldAt eq ”JoesBar”
is true only if Joe’s is the only
bar selling the beer.

50

Comparison of Elements and Values

 When an element is compared to a
primitive value, the element is
treated as its value, if that value
is atomic.

 Example: /BARS/BAR[@name=”JoesBar”]/
 PRICE[@theBeer=”Bud”] eq ”2.50”

 is true if Joe charges $2.50 for Bud.

51

Comparison of Two Elements

 It is insufficient that two elements look
alike.

 Example:

 /BARS/BAR[@name=”JoesBar”]/

 PRICE[@theBeer=”Bud”] eq

/BARS/BAR[@name=”SuesBar”]/

 PRICE[@theBeer=”Bud”]

 is false, even if Joe and Sue charge the
same for Bud.

52

Comparison of Elements – (cont.)

 For elements to be equal, they must
be the same, physically, in the
implied document.

 Important: elements are really
pointers to sections of particular
documents, not the text strings
appearing in the section.

53

Getting Data From Elements

 To compare the values of elements,
rather than their location in
documents.

 To extract just the value (e.g., the
price itself) from an element E, use
data(E).

54

Example: data()

 Modify the return for “find the
prices of beers at bars that sell a
beer Joe sells” to produce an empty
BBP element with price as one of its
attributes.

 return <BBP bar = {$bar/@name} beer

= {$beer/@name} price =

{data($price)} />

Instead of

 return <BBP bar = {$bar/@name} beer

= {$beer/@name}>{$price}</BBP>

55

Eliminating Duplicates

 Use function distinct-values

applied to a sequence.

 this function strips tags away from
elements and compares the string
values.

 But it doesn’t restore the tags in the
result.

56

Example: All the Distinct Prices
return distinct-values(

 let $bars = doc(”bars.xml”)

 return $bars/BARS/BAR/PRICE

)

57

Remember: XQuery is
an expression language.
A query can appear any
place a value can.

Quantifier Expressions

some $x in E1 satisfies E2
1. Evaluate the sequence E1.
2. Let $x (any variable) be each item

in the sequence, and evaluate E2.

3. Return TRUE if E2 has TRUE for at
least one $x.

 Analogously:

every $x in E1 satisfies E2

58

Example: Some

 The bars that sell at least one beer
for less than $2.

for $bar in

 doc(”bars.xml”)/BARS/BAR

where some $p in $bar/PRICE

 satisfies $p < 2.00

return $bar/@name

59

Notice: where $bar/PRICE < 2.00
would work as well.

Example: Every

 The bars that sell no beer for more
than $5.

for $bar in

 doc(”bars.xml”)/BARS/BAR

where every $p in $bar/PRICE

 satisfies $p <= 5.00

return $bar/@name

60

61

Branching Expressions

if (E1) then E2 else E3 is evaluated
by:

 Compute E1.

 If true, the result is E2; else the result
is E3.

Example: the PRICE subelements of
$bar, provided that bar is Joe’s.

if($bar/@name eq ”JoesBar”)

then $bar/PRICE else ()

Empty sequence. Note there
is no if-then expression.

Document Order

 Comparison by document order: << and
>>.

 Example: $d/BARS/BEER[@name=”Bud”]
<< $d/BARS/BEER[@name=”Miller”] is
true iff the Bud element appears
before the Miller element in the
document $d.

62

Set Operators

 union, intersect, except operate on
sequences of nodes.

 Meanings analogous to SQL.

 Result eliminates duplicates.

 Result appears in document order.

63

Classroom Exercises (1)

 Titles of books costing less than $90
where ‘ullman is an author

 Find the book whose price is below
the average.

 See the bookstore scheme.

64

Bookstore.xsd

Titles of books costing less than $90 where

‘ullman is an author

for $b in
doc("Bookstore.xml")/Bookstore/Book

where $b/@Price < 90 and
$b/Authors/Author/Last_Name = "Ullman"

return $b/Title

65

Find the book whose price is below the

average

let $a :=
avg(doc("Bookstore.xml")/Bookstore/Boo
k/@Price)

for $b in
doc("Bookstore.xml")/Bookstore/Book

where $b/@Price < $a

return <Book> { $b/Title } <Price>
{$b/data(@Price) } </Price> </Book>

66

XSLT

 XSLT (extensible stylesheet language
– transforms) is another language
to process XML documents.

 Transform XML into an HTML page that
could be displayed.

 It can also transform XML -> XML,
thus serving as a query language.

67

XSLT Programs

 Like XML Schema, an XSLT program is
itself an XML document.

 XSLT has a special namespace of tags,
usually indicated by xsl:.

<?xml version="1.0" encoding="ISO-8859-
1"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/T
ransform">

68

69

Templates

 The xsl:template element describes a
set of elements (of the document
being processed) and what should be
done with them.

 The form: <xsl:template match = path
> … </xsl:template>

Attribute match gives an
XPath expression describing
how to find the nodes to which
the template applies.

70

Example: BARS Document -> Table

To convert the bars.xml document
into an HTML document that looks
like the Sells(bar, beer, price)
relation.

The first template will match the
root of the document and produce
the table without any rows.

71
71

The Template for the Root

<xsl:template match = ”/”>

 <TABLE><TR>

 <TH>bar</th><TH>beer</th>

 <TH>price</th></tr>

 </table>

</xsl:template>

Template
matches
only the
root.

Output of the template is
a table with the attributes
in the header row, no
other rows.

72

Outline of Strategy

1. Inside the HTML for the table is
xsl:apply-templates to extract data
from the document.

2. From each BAR, use an xsl:variable b
to remember the bar name.

3. xsl:for-each PRICE subelement,
generate a row, using b, and
xsl:value-of to extract the beer name
and price.

73

Recursive Use of Templates

An XSLT document usually contains
many templates.

Start by finding the first one that
applies to the root.

Any template can have within it
<xsl:apply-templates/>, which causes
the template-matching to apply
recursively from the current node.

74

Apply-Templates

Attribute select gives an XPath
expression describing the
subelements to which we apply
templates.

Example: <xsl:apply-templates
select = ”BARS/BAR” /> says to
follow all paths tagged BARS, BAR
from the current node and apply all
templates there.

75

Example: Apply-Templates

<xsl:template match = ”/”>

 <TABLE><TR>

 <TH>bar</TH><TH>beer</TH>

 <TH>price</TH></TR>

 <xsl:apply-templates select =

 ”BARS” />

 </TABLE>

</xsl:template>

76

Extracting Values

<xsl:value-of select = XPath
expression /> produces a value to be
placed in the output.

Example: suppose we are applying a
template at a BAR element and want to
put the bar name into a table.

<xsl:value-of select = ”@name” />

77

Variables

We can declare x to be a variable with
<xsl:variable name = ”x” />.

Example:

<xsl:variable name = ”bar”>

 <xsl:value-of select = ”@name” />

</xsl:variable>

within a template that applies to BAR

elements will set variable bar to the name
of that bar.

78

Using Variables

Put a $ in front of the variable
name.

Example: <TD>$bar</TD>

79

Completing the Table

1. We’ll apply a template at each
BAR element.

2. This template will assign a
variable b the value of the bar,
and iterate over each PRICE child.

3. For each PRICE child, we print a
row, using b, the theBeer
attribute, and the PRICE itself.

80

Iteration

<xsl:for-each select = Xpath
expression> …

 </xsl:for-each>

 executes the body of the for-each at
each child of the current node that is
reached by the path.

81

The Template for BARS

<xsl:template match = ”BAR”>

 <xsl:variable name = ”b”>

 <xsl:value-of select = ”@name” />

 </xsl:variable>

 <xsl:for-each select = ”PRICE”>

 <TR><TD>$b</td><TD>

 <xsl:value-of select = ”@theBeer” />

 </td><TD>

 <xsl:value-of select = ”data(.)” />

 </td></tr>

 </xsl:for-each>

</xsl:template>

Constructs a bar-
beer-price row.

Iterates over all
PRICE subelements
of the bar.

This
element

A variable
for each
bar

Summarization

 XPath: describe paths from the root
of the document by sequences of tags.

 XQuery: query language for XML based
on Xpath.

 XSLT: for transformations of XML
documents.

