Chapter 12
Query Languages for XML

XPath, XQuery,

XPath(2.0), XQuery(1l.0), XSLT(2.0) share the
same function library.

 J

Overview

Querying on XML data

Xpath: a simple language for
describing sets of similar paths in
a graph of semi—structured data.

Xquery: an extension of Xpath that
adopts something of the style of

N{A)
XS]

L /o

LT ferstranslationSEkrom XML to

XM

. and XML to HTML

The XPath/XQuery Data Model

+ Corresponding to the fundamental
“relation” of the relational model
1S: Sequence of 1tems.

« An Item 1s either:

. A primitive value, e.g., integer or
string.

.. A node (defined next).

Principal Kinds of Nodes

Document nodes represent entire
documents.

Elements are pieces of a document
consisting of some opening tag, 1ts
matching closing tag (if any), and
everything in between.

Attributes names that are given
values inside opening tags.

Document Nodes

« Formed by doc (URL) or document (URL).

 J

doc (/usr/class/csl145/bars. xml)

« All XPath (and XQuery) queries refer
to a doc node, either explicitly or
implicitly.

* . key definitions in XML Schema

have Xpath expressions that refer to the
document described by the schema.

5

DTD for Running Example

{IDOCTYPE BARS [
{IELEMENT BARS (BAR*, BEER*)>
{!ELEMENT BAR (PRICE+)>
CIYATTLIST BAR name ID #REQUIRED>
{1ELEMENT PRICE (#PCDATA) >
{VATTLIST PRICE theBeer IDREF #REQUIRED>
<!ELEMENT BEER EMPTY>
<VATTLIST BEER name ID #REQUIRED)>
{VATTLIST BEER soldBy IDREFS #IMPLIED>
1>

Document

<BARS> An element node

YB—A_WM
<PRICE theBeer = ” Bud” >2. 50</PRICE>

(PRICE theBeer
="% Ml Ter”’ >3.00</PRICE>

SABAR G

<BEER: sEiiCR=SENE <oldBy = ” JoesBar

SuesBar <=+ 7 /> - & -
</BARS> An attribute node

Document node is all of this, plus
the header (<? ¥ml version...).

Nodes as Semistructured Data

- o =
= "Bud” "Miller” =document

Green = element

@ @ Gold = attribute

Purple = primitive
value

Paths in XML Documents

+ XPath i1s a language for describing
paths in XML documents.

* The result of the described path is a
sequence of 1tems.

Path Expressions

+ Simple path expressions are
sequences of slashes (/) and tags,
start¥ngewigh /.

* . /BARS/BAR/PRICE

+ Construct the result by starting
with just the doc node and
processing each tag from the left.

10

Evaluating a Path Expression

+ Assume the first tag is the root.
* Scan the whole tree.

* Suppose we have a sequence of items,
and the next tag is X

+ For each item that is an element node,
replace the element by the subelements
with tag X

11

Example: /BARS

<BARS>
{BAR name = ” JoesBar” >

<PRICE theBeer = ” Bud” >2. 50</PRICE>

(PRICE theBeer
=7 | e 23, 00</PRECE >

</BAR> ---
<BERRneme:= 7 Bud?®isel dBy = 7 JoesBith:
SuesBar <= 7 /> .-

</BAR \ One item, the
1 BARS element

Example: /BARS/BAR

<BARS>
~<BAR name = ” JoesBar” >
{PRICE theBeer =” Bud” >2. 50</PRICE>

(PRICE theBeer
= ¥V her?l DBV 00<PRLCE>

</BAR> .-

<{BEER name = ” Bud” soldBy = ” JoesBar

SuesBar <" /> ---

This BAR element followed by
</BARS” all the other BAR elements

13

: /BARS/BAR/PRICE

<BARS>
{BAR name = ” JoesBar” >

<PRICE theBeer =” Bud” >2. 50</PRICE>

<PRICE theBeer
= 7 Miller” >3.00</PRIKE>
{/BARY ---

{BEER name = ” Bud” soldBy = ” JoesBar
These PRICE elements followed

SuesBar -+ /> by the PRICE elements
</BARS> of all the other bars.

14

Attributes in Paths

+ Instead of going to subelements with
a given tag, you can go to an
attribute of the elements you already
have.

* An attribute 1s indicated by putting
@ 1n front of 1ts name.

15

/BARS/BAR/PRICE/data(@theBeer)

(BARS>
{BAR name = 7 JoesBar” >
CPRICE [theBeer = ” Bud’] >2. 50</PRICE>
CPRICE [theBeeX = ” Millel” >3.00</PRICE

</BAR> .-
<{BEER name = ” Bud” \ saldBy = ” JoesBar

SuesBar :+” /> --- These attributes contribute
"Bud” "Miller” to the result,
N Al followed by other theBeer
values.

Sequences ends in an attribute

+ When a path expression ends in an
attribute, the result is typically
a sequence of values of primitive
type, for example.

/BARS/BAR/PRICE/data (@theBeer)

“Bud Miller” as the output

17

Paths that Begin Anywhere

+ |f the path starts from the document
node and begins with //X, then the
first step can begin at the root or
any subelement of the root, as long
ASe DHEr e de i3 W

18

<BARS>

<BAR
<
<
</BAl
<BEE!

: //PRICE

name = ~ JoesBar” >
PRICE theBeer =” Bud” >2. 50</PRICE>
T thoBoor =7 Miner” 53. 00</PRICE

T
R ligme =y & Bldiy sol&y /Z 7 JoesBar

SuesBar =7 /> ---

These PRICE elements and

</BARS> any other PRICE elements

in the entire document
19

Wild-Card *

« A star (*x) in place of a tag
represents any one tag.

* . /%/%/PRICE represents all
price objects at the third level of
nesting.

20

<BARS>

Example: /BARS/*

This BAR element, all other BAR
elements, the BEER element, all

/ other BEER elements
/

{BAR name = ” JoesBar” >

<
¢

& MigkPets 1 >8 300K/ PRICED

PRICE theBeer = ” Bud”[>2. 50</PRICE>
PRICE theBeer

KT
/

iAL

T z

] OJ

<BI

St

ER name = 7 Bud” soldBy = ” JoesBar

Blews. ooo oy oot

e

(7]

< /BARSD

21

Selection Conditions

« A condition inside [**] may follow a
tag.

+ 1T so, then only paths that have that
tag and also satisfy the condition
are included in the result of a path
expression.

22

*x /.
<BA!

: Selection Condition

2805

\The current

element.

BARS/BAR/PRICE [}
RS>
BAR name = 7 JoesBar” >

<FRICE theBeer

” Bud” >2. 50</PRICE>

(PRICE theBeer

</BAR> ---

§’\M\mer” >3. 00</PRICE>

The condition that the PRICE be
< $2.75 makes this price but not
the Miller price part of the result.

23

"
<BA

BAR name = ” JoesBar” >

: Attribute in Selection

BARS/BAR/PRICE|[@theBeer = ” Miller” |
RS>

{PRICE theBeer = ” Bud” >2. 50</PRICE>
CPRIGES[IEBcer =1 FMil]l e > 3. 00 PRICE>

C/BARD -+ |

Now, this PRICE element
is selected, along with
any other prices for Miller.

24

Axes

+ In general, path expressions allow
us to start at the root and execute
steps to find a sequence of nodes at
each step.

+ At each step, we may follow any one
of several axes.

* The default axis is child:: — go
to all the children of the current
set of nodes. x

: AXes

+ /BARS/BEER is really shorthand for
/BARS/child: :BEER .

* @ 1
att

* 1
e

s really shorthand for the
I Lbutess: axis.
hus, /BARS/BEER|[@name = ” Bud” | is

horthand for

A

BARS/BEER[attribute: :name = ” Bud” |

26

More Axes

* Some other useful axes are:

.. parent:: = parent(s) of the current
node (s).
& tdesceMdant - ®tr—self: ¥ = the cu#rent

node(s) and all descendants.
Note# & s neallyc $shorthand for haesaxis.

3 Seancestorsy , ancestor—or=sel f; etoc:
2 Nige] FNGETeRdOt) .

27

Classroom Exercises

<{Bookstore>
—<Book Price="85" ISBN="ISBN-0-13-713526-2">
{Title>A First Course in Database Systems</Title>

(Authors><Author><First Name>]Jeffrey</First Name><lLast Name>Ullman
{/Last Name></Author><Author><First Name>Jennifer</First Name><Las
t Name>Widom</Last Name></Author></Authors>

<{/Book>—
<{Book Price="100" TSBN="T1SBN-0-13-815504-6">
{Title>Database Systems: The Complete Book</Title>

(Authors><Author><First Name>Hector</First Name><{Last Name>Garcia-
Molina</Last Name></Author>

{Author><First Name)>Jeffrey</First Name><{Last Name>Ullman<{/Last Na
me></Author><{Author><First Name>Jennifer</First Name><Last Name>Wi
dom</Last Name></Author></Authors>

{Remark> Buy this book bundled with “A First Course” — a great
deal! <{/Remark>

</Book></Bookstore> =

Classroom Exercises (bookstore)

+ Al1l books costing less than $90
+ Titles of books costing less than $90

+ Titles of books costing less than $90
where “Ullman” is an author.

29

Answer 1
+ Al1l books costing less than $90

doc ("Bookstore. xml”) /Bookstore/Book|@Pric
e < 90]

Result:

{Book Price="85" ISBN="ISBN-0-13-713526-2">
{Title>A First Course in Database Systems</Title>

(Authors><Author><First Name>]Jeffrey</First Name><Last
Name>Ul Iman</Last Name></Author><{Author><First Name>Jen
nifer</First Name><Last Name>Widom</Last Name></Author>
{/Authors>

</Book>

30

Answer 2

* Titles of all books costing less than
$90

doc ("Bookstore. xml”) /Bookstore/Book | @Price
< 90]/Title

Result:

(Title>A First Course 1in Database
Systems</Title> I

Answer 3

+ 11tles of books costing less than
$90 where “Ullman” is an author.

doc ("Bookstore. xml”) /Bookstore/Book | @P
rice®s® 90.and
Authors/Author/Last Name =
“Ullman”|/Title

Result:

(Title>A First Course 1n Database
Systems</Title> *

XQuery

+ XQuery extends XPath to a query
language that has power similar to

SUL.

* Uses the same sequence—-of—-items data
mode]l.

+ XQuery 1s an expression language.

x Like relational algebra —— any XQuery
expression can be an argument of any
other XQuery expression.

S8

More About Item Sequences

+ XQuery will sometimes form sequences
of sequences.

+ All sequences are flattened.

x :(12(%(34)):(1234).

Empty
sequence

34

FLWR EXxpressions

. One or more and/or clauses.
.. Then an optional clause.
SR A clause.

let allows temporary variables, and
has no equivalent in SQL

for <~ SQL from
where & SQL where
return < SQL select

35

Semantics of FLWR Expressions

+ Bach creates a loop.
* produces only a local definition.

+ At each iteration of the nested loops,
1f any, evaluate the clause.

« 1T the clause returns TRUE,
invoke the clause, and append
1ts value to the output.

36

FOR Clauses

for <variable> in <expression>,
+ Variables begin with §$.

* A —variable takes on each item in
the sequence denoted by the
expression, 1n turn.

«+ Whatever follows this 1S executed
once for each value of the variable.

37

Our example : FO R “Expand the en-
closed string by

replacing variables
and path exps. by
for $beer in their values.”

document (|“bars. xm!l”) /BARS/BEER/@name

return
(BEERNAME> beer} /BEERNAME >

+ $beer ranges over the name attributes of
all beers in our example document.

* Result 1s a sequence of BEERNAME
elements: <BEERNAME>Bud</BEERNAME>
{BEERNAME>Mi11ler</BEERNAME> .

38

barsDTD.txt

Use of Braces {}

+ When a variable name like $x, or an
expression, could be text, we need
to surround it by braces to avoid
having it interpreted literally.

* . <A>$x is an A-element
Wl thicevatiile Fopda st deike
{A>Too is an A-element with ” foo”
as value.

x <A {$x} return the value of $x

39

Use of Braces — (cont.)

* return $x 1S unambiguous:

> return the element of $x represents

40

LET Clauses

let <variable> := <expression>,

+ Value of the variable becomes the
sequence of items defined by the
expression.

* Note does not cause iteration:
does.

41

: LET

let $d := document(” bars.xml”)
let $beers := $d/BARS/BEER/@name
return

{BEERNAMES> {$beers} </BEERNAMES>

«+ Returns one element with all the names
of the beers, like:

<BEERNAMES>Bud Miller ---</BEERNAMES>

42

Order-By Clauses

* FLWR is really FLWOR: an order—by
clause can precede the return.

« Form: order by <expression>

x With optional or

* LThe expression i1s evaluated for each
assignment to variables.

+ Determines placement in output sequence.

43

: Order-By

* List all prices for Bud, lowest first.

let $d := document (” bars.xml”)

for $p in
$d/BARS/BAR/PRICE|@theBeer=" Bud” |

OFCErT NI N

‘ o Order those bindings Generates bindings
returit ¢p by the values inside for $p to PRICE
the elements (auto- elements.

$; ;
Each binding is evaluated Matic coersion).
for the output. The

result is a sequence of
PRICE elements.

44

: SQL ORDER BY

+ SQL works the same way: it’ s the
result of the FROM and WHERE that get
ordered, not the output.

* . Using R(a, b), Then, the b-values

SENECHERE I'ROM. R

WEERE - >210

ORBER " Erse %

¢

are extracted from these
tuples and printed in the
same order.

R tuples with b>10
are ordered by their

a-values.
45

Predicates

+ Normally, conditions imply
existential quantification.

* . /BARS/BAR|[@name] means “all
the bars that have a name.”
* . /BARS/BEER | @soldAt

Bk Joesbary L eoilwes fthe set’ of beecss
that are sold at Joe’ s Bar.

46

: Comparisons

*+ How to produce the PRICE elements
(from all bars) for all the beers
that areRseld by Joel s Bar?

+ Output: BBP elements with the names
of the bar and beer as attributes and
the price element as a subelement.

<BBP bar= “joe’ s bar” beer = “Bud” >
3.4 </BBP>

47

Strategy

Create a triple for—-loop, with
variables ranging over all BEER
elements, all BAR elements, and all

PRICE elements within those BAR
elements.

Check that the beer is sold at
Joe’ s Bar and that the name of the

beer and theBeer in the PRICE
element match.

Construct the output element.

The Query

leE Shar sq: ShEecc i 7) /BARS
for Skhbegrsin Sbars/BEER True if “JoesBar”
for Sbar in S$Sbars/BAR appears anywhere

in the sequence
0T ‘epa CoNgin {'Sha @/ PRICER S -

where |[Sbeer/@soldBy = ”“JoesBar’{"and
Sprice/@theBeer = S$beer/@name

return <BBP bar = {Sbar/@name} beer
= {Sbeer/@name}>{Sprice}</BBP>

49

barsDTD.txt

Strict Comparisons

*+ 10 require that the things being
compared are sequences of only one
element, use the Fortran comparison
operators:

x ed e, A1, yle gtivge.

* . $beer/@soldAt eq ” JoesBar”
s Leuesonidsy 1f \Joel s As the onls
bar selling the beer.

50

Comparison of Elements and Values

+ When an element is compared to a
primitive value, the element is

treated as its value, if that value
1s atomic.

o . /BARS/BAR[@name="JoesBar”]/
PRICE [@theBeer="Bud”] eq ”2.50”

is true if Joe charges $2.50 for Bud.

o1

Comparison of Two Elements

x* 1t 1s 1nsufficient that two elements look
alike.

/BARS/BAR[@name="JoesBar”]/

PRICE [@theBeer="Bud”] eqg
/BARS/BAR[@name="SuesBar”]/

PRICE [@theBeer="Bud”]

1s false, even if Joe and Sue charge the
same for Bud.

52

Comparison of Elements - (cont.)

+ For elements to be equal, they must
be the same, physically, in the
implied document.

+ lmportant: elements are really
pointers to sections of particular
documents, not the text strings
appearing in the section.

53

Getting Data From Elements

*+ 1o compare the values of elements,
rather than their location 1n
documents.

+ To extract just the value (e.g., the

price itself) from an element £, use
data (£).

54

: data()

+ Modify the return for “find the
prices of beers at bars that sell a
beer Joe sells” to produce an empty
BBP element with price as one of its
attributes.
return <BBBFbar = {8bar/@nhame h€scect

= {Sbeer/@name} price =
{data(Sprice)} />

Instead of

return <BBP bar = {$Sbar/@name} beer
= {Sbeer/@name}>§Sprice}</BBP>

Eliminating Duplicates

* Use function distinct-values
applied to a sequence.

+ this function strips tags away from

elements and compares the string
values.

+ But it doesn’ t restore the tags in the
result.

56

Example: All the Distinct Prices

return distinct-values (
let SlhrsW=l deEh(CEies Sl)
return Sbars/BARS/BAR/PRICE

Remember: XQuery is
an expression language.
A guery can appear any
place a value can.

57

Quantifier Expressions

some $x in £| satisfies £,
.. EBEvaluate the sequence £.

.. Let $x (any variable) be each item
in the sequence, and evaluate £,.

5. Return TRUE if £, has TRUE for at
least one $x.

+ Analogously:
every $x in £ satisfies £

58

: Some

« 1he bars that sell at least one beer
for less than $2.

férm Shawe™ in
doc (”"bars.xml”) /BARS/BAR

where some $p in Sbar/PRICE

SawreabsalE) S p a0
return Sbar/@name

Notice: where $bar/PRICE < 2.00
would work as well.

: Every

« 1he bars that sell no beer for more
than $5.

fen Sbaw in
doc (”"bars.xml”) /BARS/BAR
where every Sp in Sbar/PRICE
S v reiEsseRl o p =g {0 0

return Sbar/@name

60

Branching Expressions

®if (£) then £, else E, is evaluated
by:
¢ Compute £;.
¢ If truey thegresult is £,;/ else the result
1S £s.
4 : the PRICE subelements of
$bar, provided that bar is Joe’ s.

if (Sbar/@name eq ”JoesBar”)

then Sbar/PRICE else |()

Empty sequence. Note there
is no°if-then expression.

Document Order

+ Comparison by document order: << and
2

* . $d/BARS/BEER | @hame=" Bud” |
<< $d/BARS/BEER[@name=" Miller” | is
true 1ff the Bud element appears
before the Miller element in the
document $d.

62

Set Operators

. 5 operate on
sequences of nodes.

x Meanings analogous to SQL.
x Result eliminates duplicates.

x Result appears in document order.

63

Classroom Exercises (1)

+ Titles of books costing less than $90
where ggul NiEn TERan Euithon

+ Find the book whose price is below
the average.

+ See the scheme.

64

Bookstore.xsd

Titles of books costing less than $90 where
‘ullman is an author

for $b in
doc ("Bookstore. xml”) /Bookstore/Book

where $b/@Price < 90 and
$b/Authors/Author/Last Name = “Ullman”

return $b/Title

65

Find the book whose price is below the
average

let $a :=
avg (doc ("Bookstore. xml”) /Bookstore/Boo
k/@Price)

for $b in
doc (“"Bookstore. xml”) /Bookstore/Book

where $b/@Price < $a

return <Book> { $b/Title } <Price>
{$b/data (@Price) } </Price> </Book>

66

XSLT

+ XSLT (extensible stylesheet language
- transforms) is another language
to process XML documents.

+ lransform XML into an HTML page that
could be displayed.

*+ It can also transform XML —> XML,
thus serving as a query language.

67

XSLT Programs

+ Like XML Schema, an XSLT program is
1tself an XML document.

+ XSLT has a special namespace of tags,
usually indicated by xsl:.

{?xml version="1.0" encoding="1S0-8859-
1<

{xsl 'stylesheet version="1.0"
xmlns:xs1="http://www. w3. org/1999/XSL/T
ransform”>

68

Templates

* The xsl:template element describes a
set of elements (of the document
being processed) and what should be
done with them.

+ The form: <Xslztempldte match = path

> oo {/xsl:template>

Attribute match gives an

XPath expression describing
how to find the nodes to which
the template applies.

69

: BARS Document -> Table

®To convert the bars. xml document
into an HTML document that looks
like the Sells(bar, beer, price)
relation.

@®The first template will match the
root of the document and produce
the table without any rows.

70

The Template for the Root

.— Template

<xsl:template match = ”/”> matches
enly the
<TABLE><TR> Lot

<IESEa r o At <FH>ee €8 h >

> priices /fBhe< /Tr>
</table>
</xsl:template>

N

Output of the template is
a table with the attributes
in the header row, no

., other rows. £

Outline of Strategy

Inside the HTML for the table is
xsl:apply—templates to extract data
from the document.

. From each BAR, use an xsl:variable 5

to remember the bar name.

xs1:for—each PRICE subelement,

generate a row, using b, and
xsl:value—of to extract the beer name

and price.

72

Recursive Use of Templates

@ An XSLT document usually contains
many templates.

®Start by finding the first one that
applies to the root.

&®Any template can have within it
{xsl:apply—templates/>, which causes
the template—matching to apply
recursively from the current node.

73

Apply-Templates

®Attribute select gives an XPath
expression describing the

sube]
temp]

ements to which we apply
lates.

€ Lxam

hle: <xsl:apply—templates

selectus” BARS/BAR” /> says to
follow all paths tagged BARS, BAR

from

the current node and apply all

templates there.

74

: Apply-Templates

<xsl:template match = ”/">
<TABLE><TR>
<TH>bar</TH><TH>beer</TH>
STH>Price< /PH></TR>

<xsl:apply-templates select
”BARS” />

</TABLE>
</xsl:template>

75

Extracting Values

®<xsl:value—of select = XPath

expression /> produces a value to be
placed in the output.

¢ . suppose we are applying a
template at a BAR element and want to
put the bar name into a table.

<xs |l cwalhrego f seedt A= QnamcBm/s

76

Variables

® Ve can declare x to be a variable with
{xsl:variahlfeBnancn= 2 /l

®Lxample:
< XSl VA ERENO ek allle. = "bae” >
<SeciliiiaRMhe—of select = 7 Qaame?:. /&

<hxdsdl TS a nelbalelive >

within a template that applies to BAR

elements will set variable bar to the name
of that bar.

77

Using Variables

®Put a § in front of the variable
name.

¢ . <TD>$bar</TD>

78

Completing the Table

1. We’ 11 apply a template at each
BAR element.

2. This template will assign a
variable b the value of the bar,
and iterate over each PRICE child.

3. For each PRICE child, we print a
row, using b, the theBeer
attribute, and the PRICE itself.

79

lteration

& <{xsl:for-each select = Xpath
expression, .

{/xsl:for—each>

executes the body of the for—each at
each child of the current node that is
reached by the path.

80

A variable

foreach The Template for BARS

bar

Constructs a bar-

<xsl:template match = "BAR"> :
beer-price row.

<xsl:variable name = “"b"”">

<xsl:value-of select = ”@name” />

</ xs levaRiciEiie >
<xsl:for—-each select = ”"PRICE”>

\'4

<TR=>EID>Ob</td><TE>
<xsl:value-of select\h = “"@theBeer” />
e i
Sac o lue—orb Selliect Tdata (.)|" Lk
<> e \\
</xsl:for-each> \ This
< el el e “\\\\\\\\Raamsowyaﬂ element

PRICE subelements
¥ of the bar.

Summarization

+ XPath: describe paths from the root
of the document by sequences of tags.

+ XQuery: query language for XML based
on Xpath.

* XSLT: for transformations of XML
documents.

