Relation Recognition

Fang Li Dept. of Computer Science & Engineering

Contents

- -- Semi-supervised learning
- -- Distant supervised learning
- -- Deep learning

Semi-supervised method

- Relation Bootstrapping
- ☐Gather a set of seeds
- □Iterate:
- 1. Find sentence with these seeds
- 2.Look at the context between or around the seeds to define a pattern
- 3. Use the pattern for more examples

Bootstrapping from seed entity pairs to learn relations

function Bootstrap(Relation R) **returns** new relation tuples

```
tuples ← Gather a set of seed tuples that have relation R
iterate
    sentences ← find sentences that contain entities in seeds
    patterns ← generalize the context between and around entities in sentences
    newpairs ← use patterns to grep for more tuples
    newpairs ← newpairs with high confidence
    tuples ← tuples + newpairs
return tuples
```

Confidence Value for Bootstrpping

- Given a document collection **D**, a current set of tuples **T**, and a proposed pattern **P**, two factors need to be considered:
- Hits: the set of tuples in T that p matches while looking in D.
- Finds: The total set of tuples that p finds in D

$$\mathit{Conf}_{\mathit{RlogF}}(p) = \frac{\mathit{hits}_p}{\mathit{finds}_p} \times \mathit{log}(\mathit{finds}_p)$$

 $Conf(CD) = 2/4 \times log (4) = 30\%$

A corpus D:

ABCDEF
BDCDFE

CDEFG HHECDE Tuple set T:

BCDE ECDE AUD

lecture of Internet-base Technology

Dipre: Extract <author,book> pairs

Brin, Sergei. 1998. Extracting Patterns and Relations from the World Wide Web.

Start with 5 seeds:

Author	Book
Isaac Asimov	The Robots of Dawn
David Brin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickens	Great Expectations
William Shakespeare	The Comedy of Errors

Find Instances:

The Comedy of Errors, by William Shakespeare, was

The Comedy of Errors, by William Shakespeare, is

The Comedy of Errors, one of William Shakespeare's earliest attempts

The Comedy of Errors, one of William Shakespeare's most

Extract patterns (group by middle, take longest common prefix/suffix)

Now iterate, finding new seeds that match the pattern

Example: Extract Person name and position title

☐ Search Engine Keywords: Wang Ning + vice Mayor

王宁出任北京市副市长 优秀区县委书记首成副部级 中国网络电视台

1天前

王宁出任北京市副市长 新浪新闻

2天前

王宁被任命为北京市副市长 为土生土长北京人 腾讯新闻

2天前

<u>王宁当选北京市副市长 张延昆不再担任(图|简历)_网易新闻中心</u>

Patterns:

[person][was assigned was selected was appointed as][position]

■ New examples:

<u>陆志鹏同志<mark>当选</mark>南通市委书记--组织人事-人民网</u>

易炼红<mark>当选长沙市委书记</mark> 网易新闻 曹炯芳当选湘潭市委书记 凤凰资讯 上海市发改委主任俞北华被任命为市政府副秘书长(图) 网易新闻 方洪添被任命为广东省食品药品监督管理局副局长 南方网 2015新增院士公布 浙大四位教授当选 How does the bootstrapping method differ from supervised methods for relation extraction previously described? (Select all that apply)

- ⇒A. The bootstrap method doesn't train a classifier.
 - B. The bootstrap does not require a human selected set of features
- C. The bootstrap iteratively expands its feature set.
 - D. The bootstrap method is nondeterministic (it will give different outputs for the same corpus and seed).

Distant supervision method

"Distant supervision for relation extraction without labeled data"

- What means "distant supervision"?
- What are the advantages of the method?
- What are the **disadvantages** of the method?

Distant Supervision

--Mike Mintz, et al. Distant supervision for relation extraction without labeled data ACL2009

- Combing bootstrapping with supervised learning
- ✓ Instead of 5 seeds, use a large database to get huge number of seeds
- Create lots of features from all these examples
- Combine in a supervised classifier

Existing Knowledge Base

■ DBPedia or Freebase:

tens of thousands of examples of many relations; such as,

- place-of-birth<Edwin Hubble, Marshfield>
- Place-of-birth<Albert Einstein,Ulm>

. . .

Wikipedia:

Extract all sentences that have two named entities that match the tuple, like the following:

- ...Hubble was born in Marshfield...
- ...Einstein, born (1879), Ulm...
- …Hubble's birthplace in Marshfield…

Collecting Training Data

Corpus text

Bill Gates founded Microsoft in 1975.

Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from...

Google was founded by Larry Page ...

Training data

(Bill Gates, Microsoft)

Label: Founder

Feature: X founded Y

Freebase

Founder: (Bill Gates, Microsoft)

Founder: (Larry Page, Google)

CollegeAttended: (Bill Gates, Harvard)

a freely available online database of structured semantic data. They use 1.8 million instances of 102 relations connecting 940,000 entities

The distant supervision algorithm for relation extraction

function DISTANT SUPERVISION(Database D, Text T) **returns** relation classifier C

```
foreach relation R

foreach tuple (e1,e2) of entities with relation R in D

sentences \leftarrow Sentences in T that contain e1 and e2

f \leftarrow Frequent features in sentences

observations \leftarrow observations + new training tuple (e1, e2, f, R)

C \leftarrow Train supervised classifier on observations

return C
```

Distantly supervised learning of relation extraction patterns

- For each relation
- For each tuple in big database
- Find sentences in large corpus with both entities
- Extract frequent features (parse, words, etc)
- Train supervised classifier using thousands of patterns

Born-In

<Edwin Hubble, Marshfield>
<Albert Einstein, Ulm>

Hubble was born in Marshfield Einstein, born (1879), Ulm Hubble's birthplace in Marshfield

PER was born in LOC PER, born (XXXX), LOC PER's birthplace in LOC

P(born-in | $f_1, f_2, f_3, ..., f_{70000}$)

Distant supervision: Lexical Features:

- The sequence of words between the two entities
- □ The part-of-speech tags of these words
- A flag indicating which entity came first in the sentence
- □ A window of k words to the left of Entity1 and their part-of-speech tags
- □ A window of k words to the right of Entity 2 and their part-of-speech tags

Distant supervision: Syntactic Features:

Use parser MINIPAR

- A dependency path between the two entities.
- For each entity, one 'window' node that is not part of the dependency path.

Distant supervision: Features

P(place_of_birth | f1,f2,f3,...f7000)

词汇特征的 K=0,1,2

Feature type	Left window	NE1	Middle	Y/	Right window
Lexical	0	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]
Syntactic	0	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	
Syntactic	0	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	0	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓inside Missouri]
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓inside Missouri]
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{ born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓ _{inside} Missouri]

Table 3: Features for 'Astronomer Edwin Hubble was born in Marshfield, Missouri'.

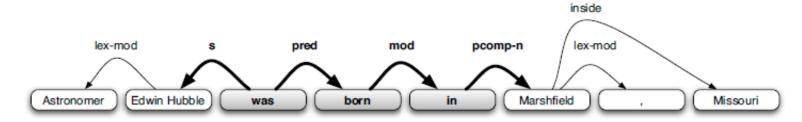


Figure 1: Dependency parse with dependency path from 'Edwin Hubble' to 'Marshfield' highlighted in boldface.

Examples of high-weight features for several relations

	SYN	is \uparrow_s	ORG	\uparrow_s is \downarrow_{pred} band \downarrow_{mod} from \downarrow_{pcn}	LOC	\uparrow_s is
/people/deceased_person/place_of_death	LEX		PER	died in	LOC	
	SYN	hanged \uparrow_s	PER	\uparrow_s hanged \downarrow_{mod} in \downarrow_{pcn}	LOC	\uparrow_s hanged
/people/person/nationality	LEX		PER	is a citizen of	LOC	
	SYN		PER	\Downarrow_{mod} from \Downarrow_{pcn}	LOC	
/people/person/parents	LEX		PER	, son of	PER	
	SYN	father \uparrow_{qen}	PER	\uparrow_{gen} father \downarrow_{person}	PER	\uparrow_{gen} father
/people/person/place_of_birth	LEX∽		PER	is the birthplace of	PER	J
	SYN		PER	\uparrow_s born \downarrow_{mod} in \downarrow_{pcn}	LOC	
/people/person/religion	LEX		PER	embraced	LOC	
	SYN	convert ψ_{appo}	PER	\Downarrow_{appo} convert \Downarrow_{mod} to \Downarrow_{pcn}	LOC	ψ_{appo} conver

Training and Testing

☐ Training: 900,000 Freebase relation instances, 800,000 Wikipedia articles

Testing: 900,000 Freebase relation instances, 400,000 different articles

Classifer: multi-class logistic regression classifier which returns a relation name and a confidence score.

Freebase Examples

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care
	,	

Human Evaluation Result

Relation name		100 instances			1000 instances		
Relation name	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat		0.51	0.53	0.47	0.57	0.42	
/music/artist/origin		0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Table 5: Estimated precision on human-evaluation experiments of the highest-ranked 100 and 1000 results per relation, using stratified samples. 'Average' gives the mean precision of the 10 relations. Key: Syn = syntactic features only. Lex = lexical features only. We use stratified samples because of the overabundance of *location-contains* instances among our high-confidence results.

Examples of their results

Relation name	New instance
/location/location/contains	Paris, Montmartre
/location/location/contains	Ontario, Fort Erie
/music/artist/origin	Mighty Wagon, Cincinnati
/people/deceased_person/place_of_death	Fyodor Kamensky, Clearwater
/people/person/nationality	Marianne Yvonne Heemskerk, Netherlands
/people/person/place_of_birth	Wavell Wayne Hinds, Kingston
/book/author/works_written	Upton Sinclair, Lanny Budd
/business/company/founders	WWE, Vince McMahon
/people/person/profession	Thomas Mellon, judge

Ten relation instances extracted by our system that did not appear in Freebase.

Advantages

- Does not need human annotation
- Large training corpus

Disadvantages of the method

□ Noises in training data, for example, founder(Bill Gates, Microsoft)

S1: Bill Gates is one of the founders of Microsoft Co.

S2: Bill Gates has founded the Microsoft Co.

S3: Bill Gates was CEO of the Microsoft Co. \times

S4: Bill Gates discussed with the CEO of the Microsoft Co.

for his retirement. \times

Relations are disjoined

Founded(Jobs, Apple), CEO-of(Jobs, Apple) can not be extracted both.

How to improve it?

Improved method:

Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, Daniel S. Weld

Computer Science & Engineering University of Washington Seattle, WA 98195, USA

Relation	Freebase Matches		MULTIR		
Kelation	#sents	% true	$\mid ilde{P} \mid$	$ ilde{R}$	
/business/person/company	302	89.0	100.0	25.8	
/people/person/place_lived	450	60.0	80.0	6.7	
/location/location/contains	2793	51.0	100.0	56.0	
/business/company/founders	95	48.4	71.4	10.9	
/people/person/nationality	723	41.0	85.7	15.0	
/location/neighborhood/neighborhood_of	68	39.7	100.0	11.1	
/people/person/children	30	80.0	100.0	8.3	
/people/deceased_person/place_of_death	68	22.1	100.0	20.0	
/people/person/place_of_birth	162	12.0	100.0	33.0	
/location/country/administrative_divisions	424	0.2	N/A	0.0	

Performance of Relation Classification (SemiEval-2010 task 8 dataset)

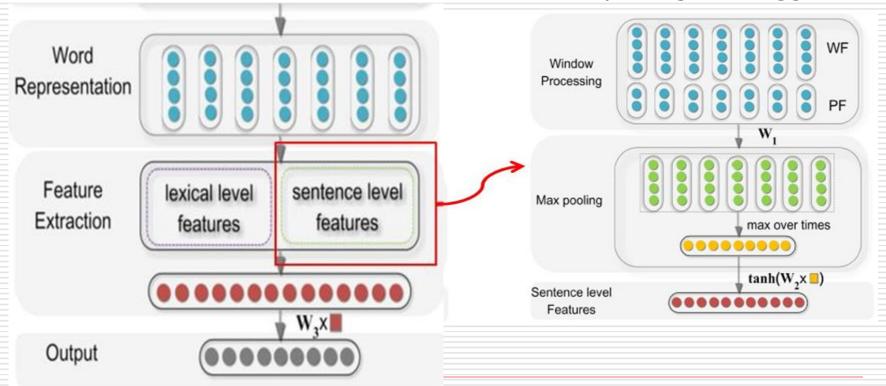
□ From Xianpei Han's tutorial in 2016,10,21 "Knowledge graph based sematic relation Extraction"

Classifier	Feature set	F_1
	POS, WordNet, prefixes and other morphological features,	
SVM	depdency parse, Levin classes, PropBank, FanmeNet,	82.2
	NomLex-Plus, Google n-gram, paraphrases, TextRunner	
RNN	Word embeddings	74.8
KININ	Word embeddings, POS, NER, WordNet	77.6
MVRNN	Word embeddings	79.1
MININ	Word embeddings, POS, NER, WordNet	82.4
CNN	Word embeddings	69.7
CNN	Word embeddings, word position embeddings, WordNet	82.7
Chain CNN	Word embeddings, POS, NER, WordNet	82.7
FCM	Word embeddings	80.6
FCM	Word embeddings, depedency parsing, NER	83.0
	Word embeddings	82.8 [†]
CR-CNN	Word embeddings, position embeddings	82.7
	Word embeddings, position embeddings	84.1 [†]
	Word embeddings	82.4
SDP-LSTM	Word embeddings, POS embeddings, WordNet embeddings, grammar relation embeddings	83.7

New Trends: Deep Learning

□ Training data → Word Embedding

Acme Inc. hired Mr Smith as their new CEO, replacing Mr Bloggs.



Zeng, Relation classification via convolutional deep neural network Coling 2014

Extract relations using new method

Translating Embeddings for Modeling Multi-relational Data

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán

Université de Technologie de Compiègne - CNRS
Heudiasyc UMR 7253
Compiègne, France
{bordesan, nusunier, agarciad}@utc.fr

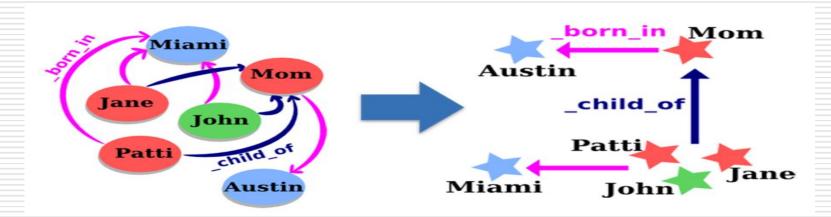
Jason Weston, Oksana Yakhnenko

Google
111 8th avenue
New York, NY, USA
{jweston, oksana}@google.com

lecture of Internet-based IE Technology

Relation Representation (Triplets)

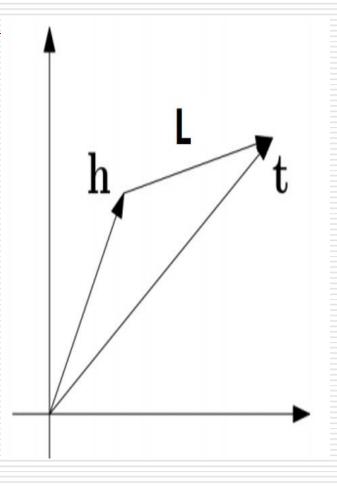
(head, label, tail) i.e (h,l,t): there exists a relationship of name label between the entities head and tail.



□ (Mom born_in Austin)

TransE:

□ If (h,l,t) holds, then the embedding of the tail entity t should be close to the embedding of the head entity h plus some vector that depends on the relationship /



Example

☐ Aim: H+L=T

T should be a nearest neighbor of H+L, while H+L should be far away from T otherwise.

(Yaoming born_in Shanghai) √
(Yaoming born_in Beijing) X

d(yaoming+born_in,Beijing) >> d(yaoming+born_in, Shanghai)

d: distance as dissimilarity function

Learn TransE

Minimize a margin-based ranking criterion over the training set:

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[\gamma + d(h+\ell,t) - d(h'+\ell,t') \right]_{+}$$

Corrupted triplets:

Positive examples

Negative examples

$$S'_{(h,\ell,t)} = \{(h',\ell,t)|h' \in E\} \cup \{(h,\ell,t')|t' \in E\}$$

The optimization is carried out by stochastic gradient descent.

Additional constraint: the L2-norm of the embeddings of entities is 1

Experimental Results

INPUT (HEAD AND LABEL)	PREDICTED TAILS
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,
	BFCA Critics' Choice Award for Best Comedy,
	MTV Movie Award for Best On-Screen Duo,
	MTV Movie Award for Best Breakthrough Performance,
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
	Screen Actors Guild Award for Best Actor - Motion Picture
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,
	Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,
	Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre	Animations, Computer Animation, Comedy film,
	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

TransE's Result

Head	China	Barack_Obama
Relation	/location/location/adjoin	/education/education/institution
1	Japan	Harvard_College
2	Taiwan	Massachusetts_Institute_of_Technology
3	Israel	American_University
4	South_Korea	University_of_Michigan
5	Argentina	Columbia_University
6	France	Princeton_University
7	Philippines	Emory_University
8	Hungary	Vanderbilt_University
9	North_Korea	University_of_Notre_Dame
10	Hong_Kong	Texas_A&M_University

Comparisons with several methods developed from TransE

Head	University_of_Cambridge				
Relation	/education/education/student				
Model	TransE	TransH	TransR		
1	John_Cleese	Stephen_Fry	David_Attenborough		
2	Samuel_Beckett	David_Attenborough	Stephen_Fry		
3	Harold_Pinter	Ralph_Vaughan_Williams	Stephen_Hawking		
4	Virginia_Woolf	Alan_Bennett	Ralph_Vaughan_Williams		
5	Graham_Chapman	Francis_Bacon	Alan_Bennett		
6	Philip_Pullman	Julian_Fellowes	Julian_Fellowes		
7	lan_McEwan	Hugh_Bonneville	Ernest_Rutherford		
8	Douglas_Adams	Graham_Chapman	Jonathan_Lynn		
9	Terry_Gilliam	Miriam_Margolyes	Tom_Hollander		
10	Richard_Dawkins	Stephen_Hawking	Chris_Weitz		

What are the disadvantages of TransE?

Can not extract 1 to N, N to 1, N to N relations.

(USA president Obama)

(USA president Bush)

(USA president Trump)

Source Codes

☐ KB2E:

https://github.com/thunlp/KB2E

TransE, TransH, TransR,...

References for Relation Extraction using deep learning methods

- Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation classification via convolutional deep neural network. In Proceedings of COLING 2014.
- Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision for relation extraction via piecewise convolutional neural networks. In Proceedings of **EMNLP**
- ☐ Lin, et al. (2016). Neural Relation Extraction with Selective Attention over Instances. ACL
- ☐ Zeng, et al. (2015). Distant Supervision for Relation **Extraction via Piecewise Convolutional Neural**

Networks. EMNLP lecture of Internet-based IE

Technology

Summarization

- ☐ Semi-supervised methods
- □ Distant supervision method
- □ Deep learning method

About the Project (1)

- □ Task: Employment relation extraction
- □ Training corpus:本报北京12月30日讯新华社记者胡晓梦、本报记者吴亚明报道:新年将至,国务院侨务办公室主任郭东坡今天通过新闻媒介,向海外同胞和国内归侨、侨眷、侨务工作者发表新年贺词。

(胡晓梦,新华社)

(吴亚明,新民晚报)

(郭东坡,国务院侨务办)

lecture of Internet-based IE Technology

About the Project (2)

- Methods:
- Pattern-based
- Supervised method or semisupervised or unsupervised methods

Training corpus are put online.

■ Evaluation:

Use test corpus with human annotated results to evaluate your algorithm.