## **Relation Recognition**

#### Fang Li Dept. of Computer Science & Engineering

#### Contents

#### -- Distant supervised learning

#### -- Deep learning

#### Distant supervision method

"Distant supervision for relation extraction without labeled data"

What means "distant supervision"?
What are the advantages of the method?

What are the **disadvantages** of the method?

## **Distant Supervision**

--Mike Mintz, et al. Distant supervision for relation extraction without labeled data ACL2009

- Combing bootstrapping with supervised learning
- Instead of 5 seeds, use a large database to get huge number of seeds
- Create lots of features from all these examples
- Combine in a supervised classifier

## Existing Knowledge Base

#### DBPedia or Freebase:

tens of thousands of examples of many relations; such as,

- place-of-birth<Edwin Hubble, Marshfield>
- Place-of-birth<Albert Einstein,Ulm>

#### Wikipedia:

. . .

Extract all sentences that have two named entities that match the tuple, like the following:

- Hubble was born in Marshfield...
- ...Einstein, born (1879), Ulm...
- ...Hubble's birthplace in Marshfield...

## **Collecting Training Data**

#### Corpus text

#### Bill Gates founded Microsoft in 1975.

Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from... Google was founded by Larry Page ...

#### Training data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y

#### Freebase

Founder: (<u>Bill Gates</u>, <u>Microsoft</u>) Founder: (Larry Page, Google) CollegeAttended: (Bill Gates, Harvard) a freely available online database of structured semantic data. They use 1.8 million instances of 102 relations connecting 940,000 entities

# The distant supervision algorithm for relation extraction

function DISTANT SUPERVISION(Database D, Text T) returns relation classifier C

#### foreach relation R

foreach tuple (e1, e2) of entities with relation R in D sentences  $\leftarrow$  Sentences in T that contain e1 and e2 $f \leftarrow$  Frequent features in sentences observations  $\leftarrow$  observations + new training tuple (e1, e2, f, R) $C \leftarrow$  Train supervised classifier on observations return C

#### Distantly supervised learning of relation extraction patterns

For each relation

2

4

5

- For each tuple in big database
- Find sentences in large corpus with both entities
  - Extract frequent features (parse, words, etc)
    - Train supervised classifier using thousands of patterns

#### Born-In

<Edwin Hubble, Marshfield> <Albert Einstein, Ulm>

Hubble was born in Marshfield Einstein, born (1879), Ulm Hubble's birthplace in Marshfield

PER was born in LOC PER, born (XXXX), LOC PER's birthplace in LOC

 $P(\text{born-in} \mid f_1, f_2, f_3, \dots, f_{70000})$ 

## Distant supervision: Lexical Features:

- The sequence of words between the two entities
- □ The part-of-speech tags of these words
- A flag indicating which entity came first in the sentence
- A window of k words to the left of Entity 1 and their part-of-speech tags
- □ A window of k words to the right of Entity 2 and their part-of-speech tags

## Distant supervision: Syntactic Features:

Use parser MINIPAR

- □ A dependency path between the two entities.
- For each entity, one 'window' node that is not part of the dependency path.

#### Distant supervision: Features

#### P(place\_of\_birth | f1,f2,f3,...f7000)

词汇特征的 K=0,1,2

| Feature type | Left window                            | NE1 | Middle                                                                                                        | N A | Right window                   |
|--------------|----------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|-----|--------------------------------|
| Lexical      | 0                                      | PER | [was/VERB born/VERB in/CLOSED]                                                                                | LOC | 0                              |
| Lexical      | [Astronomer]                           | PER | [was/VERB born/VERB in/CLOSED]                                                                                | LOC | [,]                            |
| Lexical      | [#PAD#, Astronomer]                    | PER | [was/VERB born/VERB in/CLOSED]                                                                                | LOC | [, Missouri]                   |
| Syntactic    | 0                                      | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | 0                              |
| Syntactic    | [Edwin Hubble $\Downarrow_{lex-mod}$ ] | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | 0                              |
| Syntactic    | [Astronomer $\Downarrow_{lex-mod}$ ]   | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | []                             |
| Syntactic    | 0                                      | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | $[\downarrow_{lex-mod},]$      |
| Syntactic    | [Edwin Hubble $\Downarrow_{lex-mod}$ ] | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | $[\downarrow_{lex-mod},]$      |
| Syntactic    | [Astronomer $\Downarrow_{lex-mod}$ ]   | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | $[\downarrow_{lex-mod},]$      |
| Syntactic    | 0                                      | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | [↓ <sub>inside</sub> Missouri] |
| Syntactic    | [Edwin Hubble $\Downarrow_{lex-mod}$ ] | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | [↓ <sub>inside</sub> Missouri] |
| Syntactic    | [Astronomer $\Downarrow_{lex-mod}$ ]   | PER | $[\Uparrow_s \text{ was } \Downarrow_{pred} \text{ born } \Downarrow_{mod} \text{ in } \Downarrow_{pcomp-n}]$ | LOC | [↓ <sub>inside</sub> Missouri] |

Table 3: Features for 'Astronomer Edwin Hubble was born in Marshfield, Missouri'.



Figure 1: Dependency parse with dependency path from 'Edwin Hubble' to 'Marshfield' highlighted in boldface.

# Examples of high-weight features for several relations

|                                       | SYN | is $\uparrow_s$             | ORG | $\uparrow_s$ is $\Downarrow_{pred}$ band $\Downarrow_{mod}$ from $\Downarrow_{pcn}$ | LOC | $\uparrow_s$ is            |
|---------------------------------------|-----|-----------------------------|-----|-------------------------------------------------------------------------------------|-----|----------------------------|
| people/deceased_person/place_of_death | LEX |                             | PER | died in                                                                             | LOC |                            |
| • • <u>-</u>                          | SYN | hanged $\uparrow_s$         | PER | $\uparrow_s$ hanged $\Downarrow_{mod}$ in $\Downarrow_{pcn}$                        | LOC | $\uparrow_s$ hanged        |
| people/person/nationality             | LEX |                             | PER | is a citizen of                                                                     | LOC |                            |
| * * * ·                               | SYN |                             | PER | $\Downarrow_{mod}$ from $\Downarrow_{pcn}$                                          | LOC |                            |
| people/person/parents                 | LEX |                             | PER | , son of                                                                            | PER |                            |
| * * * *                               | SYN | father $\Uparrow_{gen}$     | PER | $\Uparrow_{gen}$ father $\Downarrow_{person}$                                       | PER | ↑ <sub>gen</sub> father    |
| /people/person/place_of_birth         | LEX | . g                         | PER | is the birthplace of                                                                | PER |                            |
|                                       | SYN |                             | PER | $\uparrow_s$ born $\Downarrow_{mod}$ in $\Downarrow_{pcn}$                          | LOC |                            |
| /people/person/religion               | LEX |                             | PER | embraced                                                                            | LOC |                            |
|                                       | SYN | convert $\Downarrow_{appo}$ | PER | $\Downarrow_{appo}$ convert $\Downarrow_{mod}$ to $\Downarrow_{pcn}$                | LOC | $\Downarrow_{appo}$ conver |
|                                       |     |                             |     |                                                                                     |     |                            |

## Training and Testing

Training: 900,000 Freebase relation instances, 800,000 Wikipedia articles

□ Testing: 900,000 Freebase relation instances, 400,000 different articles

Classifer: multi-class logistic regression classifier which returns a relation name and a confidence score.

## Freebase Examples

| Relation name                           | Size    | Example                                 |  |  |  |  |
|-----------------------------------------|---------|-----------------------------------------|--|--|--|--|
| /people/person/nationality              | 281,107 | John Dugard, South Africa               |  |  |  |  |
| /location/location/contains             | 253,223 | Belgium, Nijlen                         |  |  |  |  |
| /people/person/profession               | 208,888 | Dusa McDuff, Mathematician              |  |  |  |  |
| /people/person/place_of_birth           | 105,799 | Edwin Hubble, Marshfield                |  |  |  |  |
| /dining/restaurant/cuisine              | 86,213  | MacAyo's Mexican Kitchen, Mexican       |  |  |  |  |
| /business/business_chain/location       | 66,529  | Apple Inc., Apple Inc., South Park, NC  |  |  |  |  |
| /biology/organism_classification_rank   | 42,806  | Scorpaeniformes, Order                  |  |  |  |  |
| /film/film/genre                        | 40,658  | Where the Sidewalk Ends, Film noir      |  |  |  |  |
| /film/film/language                     | 31,103  | Enter the Phoenix, Cantonese            |  |  |  |  |
| /biology/organism_higher_classification | 30,052  | Calopteryx, Calopterygidae              |  |  |  |  |
| /film/film/country                      | 27,217  | Turtle Diary, United States             |  |  |  |  |
| /film/writer/film                       | 23,856  | Irving Shulman, Rebel Without a Cause   |  |  |  |  |
| /film/director/film                     | 23,539  | Michael Mann, Collateral                |  |  |  |  |
| /film/producer/film                     | 22,079  | Diane Eskenazi, Aladdin                 |  |  |  |  |
| /people/deceased_person/place_of_death  | 18,814  | John W. Kern, Asheville                 |  |  |  |  |
| /music/artist/origin                    | 18,619  | The Octopus Project, Austin             |  |  |  |  |
| /people/person/religion                 | 17,582  | Joseph Chartrand, Catholicism           |  |  |  |  |
| /book/author/works_written              | 17,278  | Paul Auster, Travels in the Scriptorium |  |  |  |  |
| /soccer/football_position/players       | 17,244  | Midfielder, Chen Tao                    |  |  |  |  |
| /people/deceased_person/cause_of_death  | 16,709  | Richard Daintree, Tuberculosis          |  |  |  |  |
| /book/book/genre                        | 16,431  | Pony Soldiers, Science fiction          |  |  |  |  |
| /film/film/music                        | 14,070  | Stavisky, Stephen Sondheim              |  |  |  |  |
| /business/company/industry              | 13,805  | ATS Medical, Health care                |  |  |  |  |
|                                         |         |                                         |  |  |  |  |

## Human Evaluation Result

| Relation name                              |      | 100 instances |      |      | 1000 instances |      |  |
|--------------------------------------------|------|---------------|------|------|----------------|------|--|
|                                            |      | Lex           | Both | Syn  | Lex            | Both |  |
| /film/director/film                        | 0.49 | 0.43          | 0.44 | 0.49 | 0.41           | 0.46 |  |
| /film/writer/film                          | 0.70 | 0.60          | 0.65 | 0.71 | 0.61           | 0.69 |  |
| /geography/river/basin_countries           | 0.65 | 0.64          | 0.67 | 0.73 | 0.71           | 0.64 |  |
| /location/country/administrative_divisions | 0.68 | 0.59          | 0.70 | 0.72 | 0.68           | 0.72 |  |
| /location/location/contains                |      | 0.89          | 0.84 | 0.85 | 0.83           | 0.84 |  |
| /location/us_county/county_seat            |      | 0.51          | 0.53 | 0.47 | 0.57           | 0.42 |  |
| /music/artist/origin                       | 0.64 | 0.66          | 0.71 | 0.61 | 0.63           | 0.60 |  |
| /people/deceased_person/place_of_death     | 0.80 | 0.79          | 0.81 | 0.80 | 0.81           | 0.78 |  |
| /people/person/nationality                 | 0.61 | 0.70          | 0.72 | 0.56 | 0.61           | 0.63 |  |
| /people/person/place_of_birth              | 0.78 | 0.77          | 0.78 | 0.88 | 0.85           | 0.91 |  |
| Average                                    | 0.67 | 0.66          | 0.69 | 0.68 | 0.67           | 0.67 |  |

Table 5: Estimated precision on human-evaluation experiments of the highest-ranked 100 and 1000 results per relation, using stratified samples. 'Average' gives the mean precision of the 10 relations. Key: Syn = syntactic features only. Lex = lexical features only. We use stratified samples because of the overabundance of *location-contains* instances among our high-confidence results.

## Examples of their results

| Relation name                          | New instance                           |
|----------------------------------------|----------------------------------------|
| /location/location/contains            | Paris, Montmartre                      |
| /location/location/contains            | Ontario, Fort Erie                     |
| /music/artist/origin                   | Mighty Wagon, Cincinnati               |
| /people/deceased_person/place_of_death | Fyodor Kamensky, Clearwater            |
| /people/person/nationality             | Marianne Yvonne Heemskerk, Netherlands |
| /people/person/place_of_birth          | Wavell Wayne Hinds, Kingston           |
| /book/author/works_written             | Upton Sinclair, Lanny Budd             |
| /business/company/founders             | WWE, Vince McMahon                     |
| /people/person/profession              | Thomas Mellon, judge                   |

Ten relation instances extracted by our system that did not appear in Freebase.

### Advantages

#### Does not need human annotation

#### Large training corpus

## Disadvantages of the method

- Noises in training data, for example,
- founder(Bill Gates, Microsoft )
- S1: Bill Gates is one of the founders of Microsoft Co.
- S2: Bill Gates has founded the Microsoft Co.
- S3: Bill Gates was CEO of the Microsoft Co. ~ imes
- S4: Bill Gates discussed with the CEO of the Microsoft Co. for his retirement.  $\phantom{10}\times$
- Relations are disjoined
- Founded(Jobs, Apple), CEO-of(Jobs, Apple) can not be extracted both.
- How to improve it ?

# Improved method:

#### Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, Daniel S. Weld Computer Science & Engineering University of Washington

Seattle, WA 98195, USA

| Relation                                   | Freebase | Matches | MULTIR      |            |
|--------------------------------------------|----------|---------|-------------|------------|
| Kelation                                   | #sents   | % true  | $\tilde{P}$ | $	ilde{R}$ |
| /business/person/company                   | 302      | 89.0    | 100.0       | 25.8       |
| /people/person/place_lived                 | 450      | 60.0    | 80.0        | 6.7        |
| /location/location/contains                | 2793     | 51.0    | 100.0       | 56.0       |
| /business/company/founders                 | 95       | 48.4    | 71.4        | 10.9       |
| /people/person/nationality                 | 723      | 41.0    | 85.7        | 15.0       |
| /location/neighborhood/neighborhood_of     | 68       | 39.7    | 100.0       | 11.1       |
| /people/person/children                    | 30       | 80.0    | 100.0       | 8.3        |
| /people/deceased_person/place_of_death     | 68       | 22.1    | 100.0       | 20.0       |
| /people/person/place_of_birth              | 162      | 12.0    | 100.0       | 33.0       |
| /location/country/administrative_divisions | 424      | 0.2     | N/A         | 0.0        |

#### Performance of Relation Classification (SemiEval-2010 task 8 dataset)

From Xianpei Han's tutorial in 2016,10,21 "Knowledge graph based sematic relation Extraction"

| Classifier | Feature set                                                                      | $F_1$             |
|------------|----------------------------------------------------------------------------------|-------------------|
|            | POS, WordNet, prefixes and other morphological features,                         |                   |
| SVM        | depdency parse, Levin classes, PropBank, FanmeNet,                               | 82.2              |
|            | NomLex-Plus, Google n-gram, paraphrases, TextRunner                              |                   |
| RNN        | Word embeddings                                                                  | 74.8              |
| KININ      | Word embeddings, POS, NER, WordNet                                               | 77.6              |
| MUDNIN     | Word embeddings                                                                  | 79.1              |
| MVRNN      | Word embeddings, POS, NER, WordNet                                               | 82.4              |
| CNIN       | Word embeddings                                                                  | 69.7              |
| CNN        | Word embeddings, word position embeddings, WordNet                               | 82.7              |
| Chain CNN  | Word embeddings, POS, NER, WordNet                                               | 82.7              |
| ECM        | Word embeddings                                                                  | 80.6              |
| FCM        | Word embeddings, depedency parsing, NER                                          | 83.0              |
|            | Word embeddings                                                                  | 82.8 <sup>†</sup> |
| CR-CNN     | Word embeddings, position embeddings                                             | 82.7              |
|            | Word embeddings, position embeddings                                             | 84.1 <sup>†</sup> |
|            | Word embeddings                                                                  | 82.4              |
| SDP-LSTM   | Word embeddings, POS embeddings, WordNet embeddings, grammar relation embeddings | 83.7              |

## New Trends: Deep Learning

#### $\Box$ Training data $\rightarrow$ Word Embedding

Acme Inc. hired Mr Smith as their new CEO, replacing Mr Bloggs.



Zeng, Relation classification via convolutional deep neural network Coling 2014

#### Extract relations using new method

#### Translating Embeddings for Modeling Multi-relational Data

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán Université de Technologie de Compiègne – CNRS Heudiasyc UMR 7253 Compiègne, France {bordesan, nusunier, agarciad}@utc.fr

#### Jason Weston, Oksana Yakhnenko

Google 111 8th avenue New York, NY, USA {jweston, oksana}@google.com

#### Relation Representation (Triplets)

(head, label, tail) i.e (h,l,t): there exists a relationship of name label between the entities head and tail.



□ (Mom born\_in Austin)

#### TransE:

If (h,l,t) holds, then the embedding of the tail entity t should be close to the embedding of the head entity h plus some vector that depends on the relationship /



#### Example

#### □ Aim: H+L=T

T should be a nearest neighbor of H+L, while H+L should be far away from T otherwise.

(Yaoming born\_in Shanghai)  $\sqrt{}$ (Yaoming born\_in Beijing) X

d(yaoming+born\_in,Beijing) >> d(yaoming+born\_in, Shanghai)

d: distance as dissimilarity function

#### Learn TransE

Minimize a margin-based ranking criterion over the training set:

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[ \gamma + d(h+\ell,t) - d(h'+\ell,t') \right]_{+}$$

$$\text{Positive examples} \quad \text{Negative examples}$$

$$S'_{(h,\ell,t)} = \{(h',\ell,t) | h' \in E\} \cup \{(h,\ell,t') | t' \in E\}$$

The optimization is carried out by stochastic gradient descent. Additional constraint: the L2-norm of the embeddings of entities is 1

## Experimental Results

| INPUT (HEAD AND LABEL)                | PREDICTED TAILS                                                           |
|---------------------------------------|---------------------------------------------------------------------------|
| J. K. Rowling influenced by           | G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,         |
|                                       | Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming |
| Anthony LaPaglia performed in         | Lantana, Summer of Sam, Happy Feet, The House of Mirth,                   |
|                                       | Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake     |
| Camden County adjoins                 | Burlington County, Atlantic County, Gloucester County, Union County,      |
|                                       | Essex County, New Jersey, Passaic County, Ocean County, Bucks County      |
| The 40-Year-Old Virgin nominated for  | MTV Movie Award for Best Comedic Performance,                             |
|                                       | BFCA Critics' Choice Award for Best Comedy,                               |
|                                       | MTV Movie Award for Best On-Screen Duo,                                   |
|                                       | MTV Movie Award for Best Breakthrough Performance,                        |
|                                       | MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,            |
|                                       | D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,    |
|                                       | Screen Actors Guild Award for Best Actor - Motion Picture                 |
| Costa Rica football team has position | Forward, Defender, Midfielder, Goalkeepers,                               |
|                                       | Pitchers, Infielder, Outfielder, Center, Defenseman                       |
| Lil Wayne born in                     | New Orleans, Atlanta, Austin, St. Louis,                                  |
|                                       | Toronto, New York City, Wellington, Dallas, Puerto Rico                   |
| WALL-E has the genre                  | Animations, Computer Animation, Comedy film,                              |
|                                       | Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama      |

## TransE's Result

| Head     | China                     | Barack_Obama                          |
|----------|---------------------------|---------------------------------------|
| Relation | /location/location/adjoin | /education/education/institution      |
| 1        | Japan                     | Harvard_College                       |
| 2        | Taiwan                    | Massachusetts_Institute_of_Technology |
| 3        | Israel                    | American_University                   |
| 4        | South_Korea               | University_of_Michigan                |
| 5        | Argentina                 | Columbia_University                   |
| 6        | France                    | Princeton_University                  |
| 7        | Philippines               | Emory_University                      |
| 8        | Hungary                   | Vanderbilt_University                 |
| 9        | North_Korea               | University_of_Notre_Dame              |
| 10       | Hong_Kong                 | Texas_A&M_University                  |

## Comparisons with several methods developed from TransE

| Head     | University_of_Cambridge      |                        |                        |  |  |
|----------|------------------------------|------------------------|------------------------|--|--|
| Relation | /education/education/student |                        |                        |  |  |
| Model    | TransE                       | TransH                 | TransR                 |  |  |
| 1        | John_Cleese                  | Stephen_Fry            | David_Attenborough     |  |  |
| 2        | Samuel_Beckett               | David_Attenborough     | Stephen_Fry            |  |  |
| 3        | Harold_Pinter                | Ralph_Vaughan_Williams | Stephen_Hawking        |  |  |
| 4        | Virginia_Woolf               | Alan_Bennett           | Ralph_Vaughan_Williams |  |  |
| 5        | Graham_Chapman               | Francis_Bacon          | Alan_Bennett           |  |  |
| 6        | Philip_Pullman               | Julian_Fellowes        | Julian_Fellowes        |  |  |
| 7        | lan_McEwan                   | Hugh_Bonneville        | Ernest_Rutherford      |  |  |
| 8        | Douglas_Adams                | Graham_Chapman         | Jonathan_Lynn          |  |  |
| 9        | Terry_Gilliam                | Miriam_Margolyes       | Tom_Hollander          |  |  |
| 10       | Richard_Dawkins              | Stephen_Hawking        | Chris_Weitz            |  |  |

# What are the disadvantages of TransE?

#### Can not extract 1 to N, N to 1, N to N relations.

(USA president Obama)(USA president Bush)(USA president Trump)

### Source Codes

#### KB2E: <u>https://github.com/thunlp/KB2E</u>

#### TransE, TransH, TransR,...

## References for Relation Extraction using deep learning methods

- Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. Relation classification via convolutional deep neural network. In Proceedings of COLING 2014.
- Daojian Zeng,Kang Liu,Yubo Chen,and Jun Zhao.
   Distant supervision for relation extraction via piecewise convolutional neural networks. In Proceedings of EMNLP
- Lin, et al. (2016). Neural Relation Extraction with Selective Attention over Instances. ACL
- Zeng, et al. (2015). Distant Supervision for Relation Extraction via Piecewise Convolutional Neural

### Summarization

Semi-supervised methods
 Distant supervision method
 Deep learning method

## Discussion topic: How to identify the CEO of the company?

- □ 1993年7月,深圳市政府任命**夏斌**为深交所总经理。(+)
- □ 任汇川,中国平安集团总经理,生于1969年,1992毕业于哈尔 滨工程大学,同年加入中国平安集团,是平安集团迄今最年轻的 本土高层管理人员,也是该集团年轻管理团队的典范之一。(+)
- □ 湖北日报传媒集团总经理张勤耘涉严重违纪被调查. (+)
- 2014年6月7日 中国移动2010年5月31日确认,李跃出任中国移动总经理,原中国移动总裁王建宙任中国移动党组书记兼任集团公司董事长。(+)
- □ 开业仅两年的前海人寿或将迎来第二波高管团队换血潮,正式获批 上任不到半年的总经理傅杰也传闻将出走。(-)
- □ 公司实行总经理负责制,总经理是公司的法定代表人。(-)

## About the Project (1)

□ Task: Employment relation extraction

Training corpus:本报北京12月30日讯 新华社记者胡晓梦、本报记者吴亚明报道: 新年将至,国务院侨务办公室主任郭东坡今 天通过新闻媒介,向海外同胞和国内归侨、 侨眷、侨务工作者发表新年贺词。

(胡晓梦,新华社) (吴亚明,新民晚报) (郭东坡,国务院侨务办)

## About the Project (2)

Methods:

Pattern-based

 Supervised method or semisupervised or unsupervised methods

Training corpus are put online.

Evaluation:

Use test corpus with human annotated results to evaluate your algorithm.