Named Entity Recognition --machine learning methods

Contents

Models Introduction
 CRF model

 NE identification using Machine Learning Approach
 Supervised learning
 Semi-supervised learning

Machine Learning method (idea)

- □ Based on Probability:
- "smith was appointed as CEO of IBM"
- Category: Person, position, company, nn.
- If we know:
- P(smith | person)=0.8 $\sqrt{}$
- P(smith | company)=0.1
- P(smith | position) =0.05
- P(smith | nn) =0.05

Machine learning method (idea)

□ Sequence labeling:

.

W: smith was appointed as CEO of IBM NC : Per nn nn nn Pos nn CO

NC: CO Per nn nn Per nn Per

P(NC sequences | W sequence) Which NC sequences has a larger probability?

Machine learning method (idea)

□ Classification

W: smith was appointed as CEO of IBM

With sliding window

Classification Model

Category: Person, position, company, nn

Machine learning for NE recognition

Supervised Learning

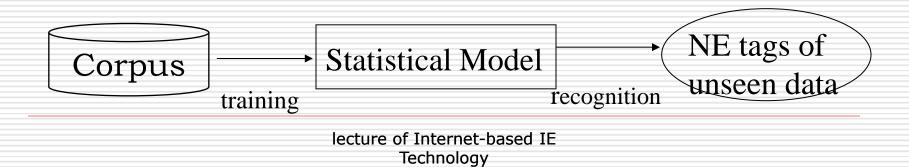
- Training is based on available very large annotated corpus.
- Mainly statistical-based models used
- 1. Bigram model
- 2. HMM (Hidden Markov Model)
- 3. CRF (conditional random field)

Supervised Machine Learning for NE Recognition

1. Construct a training corpus by manual annotation

e.g. I lived in <LO>Beijing</LO>

- Extract necessary statistics from the corpus to build a statistical model which can automatically estimate Pr(NC Sequence / W Sequence) for unseen data.
- 2. For any unseen data, based on the statistical model to search the NC sequence which maximizes the probability Pr(NC Sequence | W Sequence).



Statistical Model for Named Entity Recognition

Given a sequence of words (W), the goal of NE recognition is to find the sequence of name-class (NC) with maximum Pr(NC/W).

argmax_{nc sequence}Pr(NCSequence|WSequence) e.g, given word sequence :

it has set up a joint venture in Hong Kong

possible name-class sequence (LO: location OR: organization)

it	has	set	up	a	joint	venture	in	Hong	Kong
NN	NN	NN	NN	NN	NN	NN	NN	LO	LO
LO	NN	NN	NN	NN	NN	NN	NN	OR	LO

Encoding classes for sequence labeling

IO encoding Fred showed Sue Mengqiu Huang nn Per Per Per Per **IOB** encoding Fred showed Sue Menggiu Huang B-Per nn B-Per B-Per I-Per IO encoding is simple, much fast than **IOB** encoding

N-gram Model for NE Recognition

Question: How to evaluate Pr(NC Sequence/ Sentence) based on unigram and bigram information?

One solution: transfer the conditional probability into (NC,Sentence) joint probability (*Bayes' equation*)

Decouple a sentence into bigram sequences (*Markov assumption*)

Bayes Equation

Based on Bayes equation:

 $argmax_{nc sequence} Pr(NCSequence | W Sequence)$ $= argmax_{nc sequence} \frac{Pr(W Sequence, NC Sequence)}{Pr(W Sequence)}$ $= argmax_{nc sequence} Pr(W Sequence, NC Sequence,)$

Markov Assumption

Pr(NCSequence, W Sequence)

- $= Pr(w_n, nc_n, w_{n-1}, nc_{n-1}, ..., w_0, nc_0)$
- $= Pr(w_0, nc_0)Pr(w_1, nc_1 | w_0, nc_0)Pr(w_2, nc_2 | w_1, nc_1, w_0, nc_0)$
- ...Pr(Wh, ncn | Wn 1, ncn 1, ..., W0, nco)

Bigram Markov assumption:

 $Pr(w_2, nc_2 | w_1, nc_1, w_0, nc_0) = Pr(w_2, nc_2 | w_1, nc_1)$

 $Pr(W_n, nc_n | W_{n-1}, nc_{n-1}, ..., W_0, nc_0) = Pr(W_n, nc_n | W_{n-1}, nc_{n-1})$

Bigram-based NE Tagger

So the final formula is:

Pr(NCSequence, WSequence)

= $Pr(w_0, nc_0)Pr(w_1, nc_1 | w_0, nc_0)Pr(w_2, nc_2 | w_1, nc_1)$

 \dots Pr(w_n , nc_n | w_n - 1, nc_n - 1)

The size of the training corpus is large enough to provide fairly good bigram information.

Parameter Estimation based on Bayesian Analysis

• Question: how to estimate model parameters, *i.e.*

 $Pr(W_n, nc_n | W_n - 1, nc_n - 1)$

• Parameter estimation based on Bayesian analysis: select parameters which maximize

Pr(parameter | trainingcorpus)

• Based on Bayes equation, this is equivalent to maximize

Pr(parameter)Pr(training corpus | parameter)

Prior Probability

Maximum Likelihood Estimation

• The aim of maximum likelihood estimation (MLE) is to find the parameter value(s) that can predict the training corpus with the highest probability.

argmax_{parameter}Pr(training corpus| parameter)

i.e. the prior probability is neglected. C is the count • The MLE for the bigram statistical NE tagger:

$$Pr(w_{n}, nc_{n} | w_{n-1}, nc_{n-1}) = \frac{C(w_{n}, nc_{n}, w_{n-1}, nc_{n-1})}{C(w_{n-1}, nc_{n-1})}$$

Smoothing (平滑技术)

- limited size of training corpus \rightarrow MLE suffers from training data over-fitting. MLE simply assign zero or even $\frac{O}{O}$ probabilities to unseen events. O
- Smoothing: *add one* or modify MLE by taking the sampling space into consideration, *e.g. backing-off to estimations with larger sampling space*

$$Pr(w_{n}, nc_{n} | w_{n-1}, nc_{n-1}) = \frac{C(w_{n}, nc_{n}, w_{n-1}, nc_{n-1}) + 1}{C(w_{n-1}, nc_{n-1}) + 1}$$

Smoothing (平滑技术)

- Unseen bigrams.
 e.g. Input sentence: Patt Gibbs Pr(Gibbs, nc_{Gibbs}. | Patt, nc_{Patt})=0
- Smoothing: modify MLE by taking the sampling space into consideration, e.g. backing-off to estimations with larger sampling space

$$\Pr(Gibbs, NC_{Gibbs} | Patt, NC_{Patt}) \approx \lambda \Pr(Gibbs, NC_{Gibbs} | NC_{Patt})$$

CRF model

- Lafferty, Pereira, and McCallum proposed this model in 2001
- □ A best model for named entity recognition
- A sequence model, the theory is complicated and omitted.
- Training is slow

General Working Flow

Training

- 1. Collect representative training documents
- Label each token for its entity or other (nn)
- Design feature extractors (templates)
- Train the sequence model

Testing

- 1. Input test documents
- Run sequence model to predict labels for each token
- Correctly output the recognized entities (match the output format)

Features for sequence labeling

- Words
 - Current word (essentially like a learned dictionary)
 - Previous/next word (context)
- Other kinds of inferred linguistic classification
 - Part-of-speech tags
- Label context
 - Previous (and perhaps next) label

For example

Feature Notation	Comment
w ₀	Current word (token)
W ₁	Next word
W ₋₁	Previous word
w ₀ w ₁	Current and next
W ₋₁ W ₀	Previous and current
$W_{-1}W_{1}$	Previous and next
W ₂	Next next
	and friends

Features commonly used in training named entity recognition systems

- □ identity of wi
- identity of neighboring words
- part of speech of wi
- part of speech of neighboing words
- base-phrase syntactic chunk label of wi and neighboring words
- presence of wi in a gazeteer
- □ wi contains a particular prefix (from all prefixes of length<=4)
- □ wi contains a particular suffix (from all suffixes of length<=4)
- wi is all upper case
- word shape of wi
- word shape of neighboring words
- □ short word shape of wi
- short word shape of neighboring words
- presence of hyphen

Training corpus (for CRF)

Word	POS	Chunk	Short shape	Label
American	NNP	B-NP	Xx	B-ORG
Airlines	NNPS	I-NP	Xx	I-ORG
,	,	0	,	0
а	DT	B-NP	Х	0
unit	NN	I-NP	Х	0
of	IN	B-PP	Х	0
AMR	NNP	B-NP	Х	B-ORG
Corp.	NNP	I-NP	Xx.	I-ORG
,	,	0	,	0
immediately	RB	B-ADVP	X	0
matched	VBD	B-VP	Х	0
the	DT	B-NP	Х	0
move	NN	I-NP	Х	0
,	,	0	,	0
spokesman	NN	B-NP	X	0
Tim	NNP	I-NP	Xx	B-PER
Wagner	NNP	I-NP	Xx	I-PER
said	VBD	B-VP	Х	0
	,	0		0

Feature Template

Each line is a template, special macro %x[row,col] is used to specify a token in the input file.

Input: Data						
He	PRP	B-NP				
reckons	VBZ	B-VP				
the	DT	B-NP << CURRENT TOKEN				
current	JJ	I-NP				
account	NN	I-NP				

template	expanded feature	
%x[0,0]	the	
%x[0,1]	DT	
%x[-1,0]	rokens	
%x[-2,1]	PRP	
%x[0,0]/%x[0,1]	the/DT	
ABC%x[0,1]123	ABCDT123	

Feature Template (cont.)

When you give a template "U01:%x[0,1]", CRF++ automatically generates a set of feature functions (func1 ... funcN) like:

```
func1 = if (output = B-NP and feature="U01:DT") return 1 else return 0
func2 = if (output = I-NP and feature="U01:DT") return 1 else return 0
func3 = if (output = 0 and feature="U01:DT") return 1 else return 0
....
funcXX = if (output = B-NP and feature="U01:NN") return 1 else return 0
funcXY = if (output = 0 and feature="U01:NN") return 1 else return 0
....
```

Example of a template

Unigram U00:%x[-2,0] U01:%x[-1,0] U02:%x[0,0] U03:%x[1,0] U04:%x[2,0] U05:%x[-1,0]/%x[0,0] U06:%x[0,0]/%x[1,0]

```
U10:%x[-2,1]

U11:%x[-1,1]

U12:%x[0,1]q

U13:%x[1,1]

U14:%x[2,1]

U15:%x[-2,1]/%x[-1,1]

U16:%x[-1,1]/%x[0,1]

U17:%x[0,1]/%x[1,1]

U18:%x[1,1]/%x[2,1]
```

```
U20:%x[-2,1]/%x[-1,1]/%x[0,1]
U21:%x[-1,1]/%x[0,1]/%x[1,1]
U22:%x[0,1]/%x[1,1]/%x[2,1]
```

```
# Bigram
B
```

 Unigram template: first character, 'U'
 Bigram template: first character, 'B'
 U01:identifiers for

distinguishing

relative positions.

Training

Crf_learn template_file train_file model_file

Parameters

-a CRF-L2 or CRF-L1: changing the regularization algorithm.

-c float: larger c, CRF tends to overfit to the given training corpus.

-f NUM: cut-off threshold. Use the features that occurs no less than NUM times in the given training data.

-p NUM: use multi-threading to faster the training step. NUM is the number of threads.

Testing

Crf_test -m model test_file

Parameter

 v sets verbose level. Default value is 0, Level 1 gives probabilities for each tag, and a conditional probability for the output.

 n best outputs: get n-best results sorted by the conditional probability of CRF

Software – CRF++

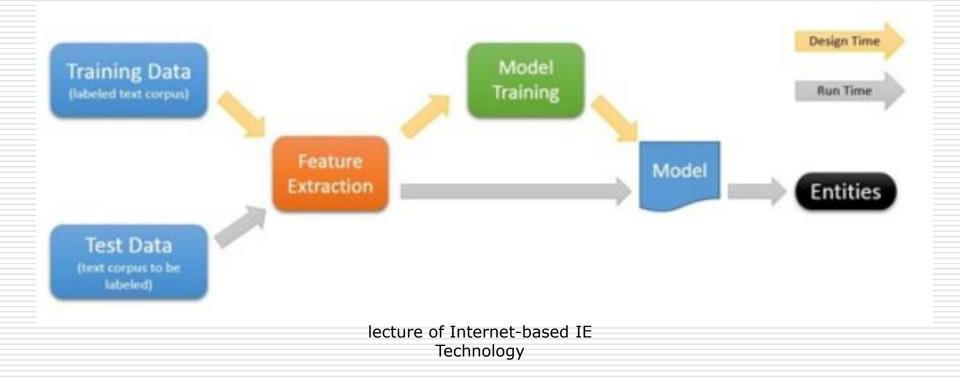
- http://code.google.com/p/crfpp/ , its homepage is now at: http://crfpp.googlecode.com/svn/trunk/ doc/index.html ,
- Easy to use input & output format
- http://crfpp.sourceforge.net/

Supervised Machine Learning and Knowledge **Bottleneck**

- Requires considerable size of training corpus, hence facing serious knowledge bottleneck.
- cannot effectively support user-defined named entities which are important for open-domain IE

Supervised Machine learning Method (summarization)

Feature extraction: very important. Model selection:



Chinese named entity results (CRF+MEM) in 2006

	Precision	Recall	F-score
LOC	94.19%	87.14%	90.53
ORG	83.59%	80.39%	81.96
PER	92.35%	74.66%	82.57

Table 2: The performance of the msra_a run broken down by entity type.

	Precision	Recall	F-score
LOC	93.09%	87.35%	90.13
ORG	75.51%	78.51	76.98
PER	91.52	79.27	84.95

Table 3: The performance of the msra_b run broken down by entity type.

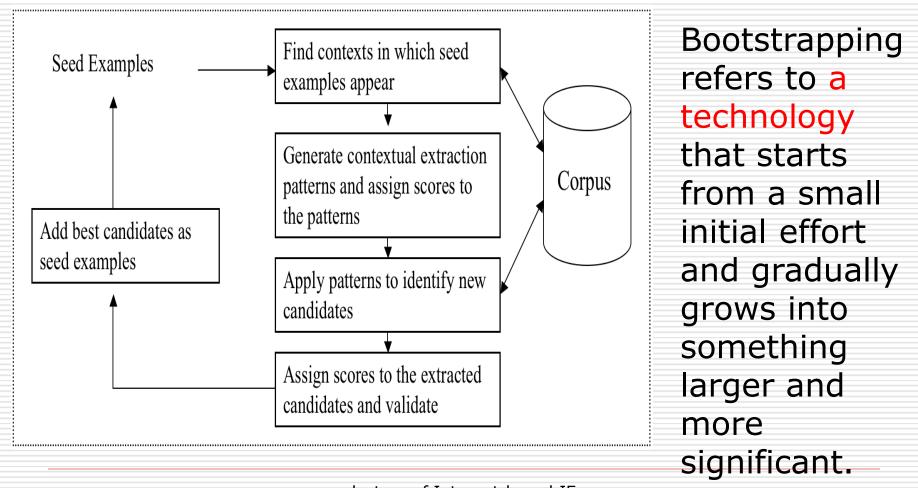
Semi-supervised method

- □ Training Corpus:
- ✓ few seeds and large un-annotated corpus
- Training methods:
- Bootstrapping
- Others Expansion methods

Named Entity recognition based on semi-supervised learning (basic idea)

- *Define manually a small set of trusted seeds*
- Training then only uses un-labeled data
- Initialize system by labeling the corpus with the seeds
- Extract and generalize patterns from the context of the seeds
- Use the patterns to further label the corpus and to extend the seed set (bootstrapping & expansion)
- *Repeat the process unless no new terms can be identified.*

Bootstrapping Algorithm



For Example

- □ Seeds: 腾讯公司
- Find <u>contexts</u> in which seeds appear
- ✓ 腾讯公司<u>CEO马</u>化腾说。。。
- ✓ 7月21日,<u>腾讯宣布</u>启动AI加速器
- ✓ 腾讯<u>宣布</u>成立人工智能医学影像联合实验室
- Generate <u>pattern</u> based on the context
- ✓ XX company CEO \rightarrow XX is a company name
- ✓ XX announced \rightarrow XX is a company name
- □ <u>Apply the pattern to find new one</u>
- □ 虹华公司CEO在一个大会上... → Hong Hua is a company
- □ 华为宣布进军欧洲市场 → Huawei is a company
- □ <u>某</u>公司CEO撤销了。。。→Some is not a company

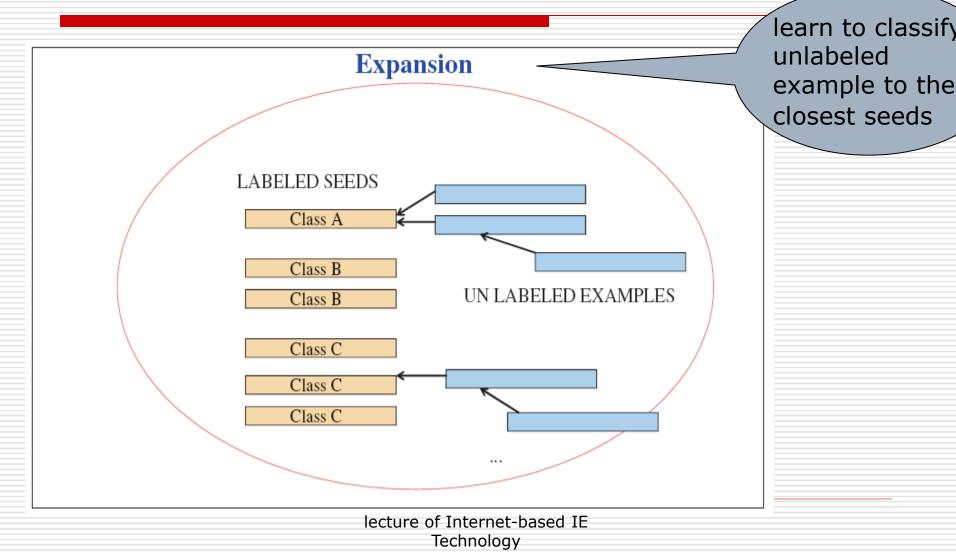
How to score the patterns?

- In order to find highly relevant or highly frequent patterns:
- \square relevance rate: $R_i = F_i / N_i$
 - F_i: the number of instances of pattern i that were activated in the positive examples.
 - N_i: the total number of instances of pattern i activated in the training corpus
- $\Box \text{ score}_i = R_i * \log (F_i)$

Bootstrapping algorithm (summarization)

- Starts with a small number of seed examples.
- Finds occurrences of these examples in a large set of documents.
- □ Generates contextual extraction patterns (rules) and assigns confidence scores to the patterns.
- Applies the extraction patterns to the documents and extracts new candidates.
- Assigns scores to the extracted candidates, and chooses the best ones to add to the seed set.
- Perform many similar iterations, and at every iteration it learns more patterns and can extract more instances.

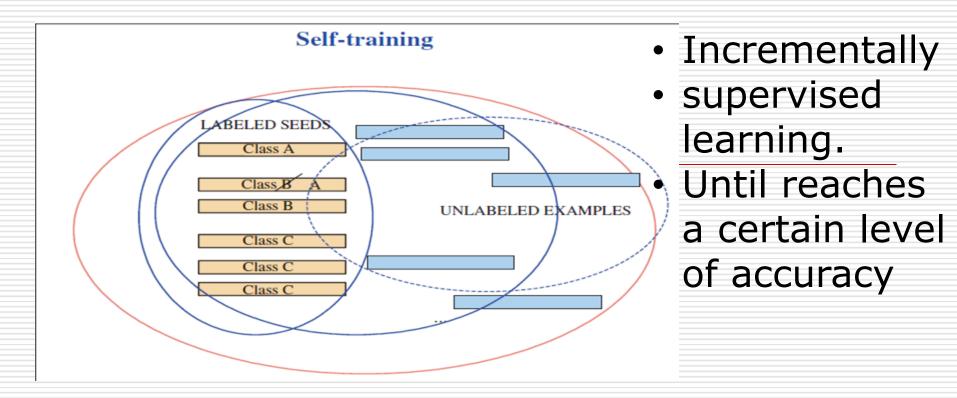
Other Learning Methods



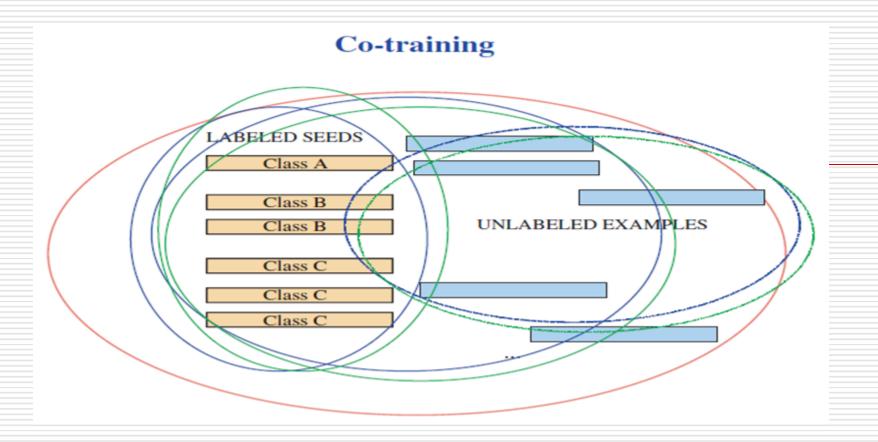
How to identify unlabeled example based on seeds?

Many Techniques besides bootstrapping:

- Self-learning
- Co-training
- Active learning



- 1. Labeled data \rightarrow training \rightarrow model(1)
- 2. Unlabeled data \rightarrow model(1) \rightarrow new labeled data
- Labeled data + new labeled data → training → model (2)
- Unlabeled data → model(2) → new labeled data
- 5. More data \rightarrow training \rightarrow model(3)
- 6. ...



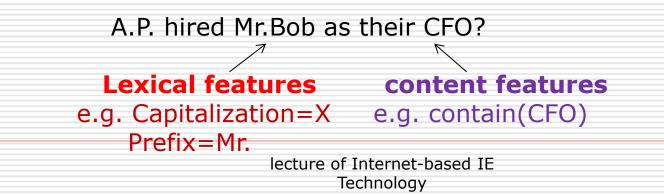
1. Labeled data \rightarrow training \rightarrow modelA (1) + modelB (1)

2. Unlabled data \rightarrow modelA & modelB \rightarrow labeled Data by modelA & modelB

3. Labeled data + new labeled data → training → modelA(2), modelB(2) 4. More unlabeled data → modelA(2), modelB(2) → labeled data by A,B 5. ...

Co-training (cont.)

- two (or more) classifiers are trained using the same seed set of labeled examples, but each classifier trains with a disjoint subset of features.
- These feature subsets are commonly referred to as different views that the classifiers have on the training examples.



A co-training algorithm

- features x can be separated into two types x_1, x_2
- either x_1 or x_2 is sufficient for classification i.e.

there exists functions f_1 and f_2 such that

 $f(x) = f_1(x_1) = f_2(x_2)$ has low error

Given:

- a set L of labeled training examples
- a set U of unlabeled examples

Create a pool U' of examples by choosing u examples at random from ULoop for k iterations:

Use L to train a classifier h_1 that considers only the x_1 portion of x Use L to train a classifier h_2 that considers only the x_2 portion of x Allow h_1 to label p positive and n negative examples from U' Allow h_2 to label p positive and n negative examples from U' Add these self-labeled examples to L Randomly choose 2p + 2n examples from U to replenish U'

The co-training algorithm

- 1. Learn a classifier $f_1(x_1)$ from a set of labeled examples L
- 2. Run the classifier on unlabeled examples
- Pick some high-confidence predictions and add then to L
- 4. Repeat steps 1-3 but learn $f_2(x_2)$
- 5. Start over....

The idea: f₂ is trained on errors made by f₁, which are uncorrelated with f₂'s errors.

Active Learning

- Human involved: all examples are labeled by a human
- Unlabeled data to be labeled: is carefully selected by the machine.

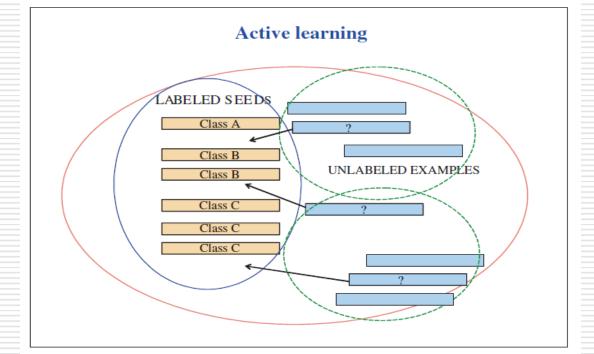


Fig. 6.5. Active learning: Representative and diverse examples to be labeled by humans are selected based on clustering.

Selective examples in active learning

- Most *uncertain* and most *informative Representative* or *diverse* with the other unlabeled examples
- How to select those examples ?
- □ The probability , Entropy-based measure \rightarrow uncertain
- □ Similarity calculation, clustering, outliers in the clusters →

representative

lecture of Internet-based IE Technology

Experiments of supervised and semi-supervised method

Chinese NP chunking: Experiments with Supervised and semisupervised learning 国立台湾大学 2008年的文章

	j			1
	Tag accuracy	Precision	Recall	F-rate
封閉測試:测证	话料和训练语题	料同种类型,70	%训练,30%	测试
supervised	92.06%	84.65%	86.28%	85.46%
supervised II	91.76%	81.71%	86.05%	83.82%
semi-supervised	92.19%	<mark>84.85%</mark>	<mark>86.64%</mark>	85.73%
開放測試:测试语料与训练语料完全不同				
supervised	89.03%	67.31%	72.92%	70%
supervised II	83.83%	63.06%	69.23%	66%
semi-supervised	91.61%	<mark>76.47%</mark> ~	<mark>£1 25%</mark>	78.79%
lecture of Internet-based IE Technology				When test corpus and training corpus are different.

Summarization

Machine learning methods to identify named entities.

Supervised vs. semi-supervised methods

Core learning engines are language independent

Feature extraction relies on language specific properties

References

Christopher D.Manning, Hinrich Schuetze, "Foundation of statistical natural language processing"
 Chapter 5 and chapter 6 of the textbook
 Mark Stevenson and Mark A.Greenwood, "Comparing Information Extraction Pattern Models"