
89

 5 Supervised Classification

5.1 Introduction

Supervised learning is a very popular approach in any text classification
task. Many different algorithms are available that learn classification pat-
terns from a set of labeled or classified examples. Given this sample of ex-
amples, the task is to model the classification process and to use the model
to predict the classes of new, previously unseen examples. In information
retrieval the supervised techniques are very popular for the classification
of documents into subject categories (e.g., the classification of news into
financial, political, cultural, sports, …) using the words of a document as
main features. In information extraction usually smaller content units are
classified with a variety of classification schemes ranging from rather ge-
neric categories such as generic semantic roles of sentence constituents to
very specific classes such as the number of heavily burned people in a
firework accident.

As in text categorization, the amount of training examples is often lim-
ited, or training examples are expensive to build. When the example set is
small, it very often represents incomplete knowledge about the classifica-
tion model sought. This danger is especially present in natural language
data where a large variety of patterns express the same content.

Parallel to text categorization, the amount of different features is large
and the feature set could include some noisy features. There are many dif-
ferent words, syntactic, semantic and discourse patterns that make up the
context of an information element. But, compared to text categorization
lesser features in the context are indicative of the class sought. Often, the
features behave dependently and the dependency is not always restricted to
co-occurrence of certain feature values, it sometimes also demands that
feature values occur in a certain order in the text. When different classes
are to be assigned to text constituents, the class assignment might also be
dependent on classes previously assigned.

90 5 Supervised Classification

approaches that have been used to extract information from text and rele-
vant references were cited. In this chapter we dig deeper into the current
and most successful algorithms for information extraction that use a super-
vised learning approach. The chosen classifiers allow dealing with incom-
plete data and with a large set of features that on occasion might be noisy.
They also have the potential to be used for weakly supervised learning (de-
scribed in the next chapter), and incorporate dependencies in their models.

As seen in Chap. 4 a feature vector x is described by a number of fea-
tures (see Eq. (4.1)) that may refer to the information element to be classi-
fied, to the close context of the element, to the more global context of the
document in which the element occurs, and perhaps to the context of
the document collection. The goal is to assign a label y to a new example.
Among the statistical learning techniques a distinction is often made be-

model of the joint probability, p(x((,y) and makes its predictions by using
Bayes’ rule to calculate p(y x)1 and then selects the most likely label y. An
example of a generative classifier that we will discuss in this chapter is a
hidden Markov model. A discriminative classifier models the posterior r
probability p(y x) directly and selects the most likely label x y, or learns a di-
rect map from inputs x to the class labels. An example is the maximum en-
tropy model, which is very often used in information extraction. Here, the
joint probability p(x((,y) is modeled directly from the inputs x. Another ex-
ample is a Support Vector Machine, which is a quite popular learning
technique for information extraction. Some of the classifiers adhere to the
maximum entropy principle. This principle states that, when we make in-
ferences based on incomplete information, we should draw them from that
probability distribution that has the maximum entropy permitted by the in-

to this principle. They are the maximum entropy model and conditional
random fields.

In information extraction sometimes a relation exists between the vari-
ous classes. In such cases it is valuable not to classify a feature vector
separately from other feature vectors in order to obtain a more accurate

1 With a slight abuse in notation in the discussion of the probabilistic classifiers,
we will also use p(y((x) to denote the entire conditional probability distribution
provided by the model, with the interpretation that y and x are placeholders rather
than specific instantiations. A model p(y x) is an element of all conditional prob-x
ability distributions. In the case that feature vectors take only discrete values, we
will denote the probabilities by the capitalized letter P.

dan, 2002). Given inputs x and their labels y, a generative classifierr learns a
tween generative and discriminative classifiers (Vapnik, 1988; Ng and Jor-

formation we have (Jaynes, 1982). Two of the discussed classifiers adhere

Chap. 2 gave an extensive historical overview of machine learning

9

classification of the individual extracted information. This is referred to as
context-dependent classification as opposed to context-free classification.
So, the class to which a feature vector is assigned depends on 1) the feature
vector itself; 2) the values of other feature vectors; and 3) the existing rela-
tion among the various classes. In information extraction, dependencies
exist at the level of descriptive features and at the level of classes, the latter
also referring to classes that can be grouped in higher-level concepts (e.g.,
scripts such as a bank robbery script). We study two context-dependent
classifiers, namely a hidden Markov model and one based on conditional
random fields.

Learning techniques that present the learned patterns in representations
that are well conceivable and interpretable by humans are still popular in
information extraction. Rule and tree learning is the oldest of such ap-
proaches. When the rules learned are represented in logical propositions or
first-order predicate logic, this form of learning is often called inductive
logic programming (ILP). The term relational learning refers to learning
in any format that represents relations, including, but not limited to logic
programs, graph representations, probabilistic networks, etc. In the last two
sections of this chapter we study respectively rule and tree learning, and
relational learning.

The selection of classifiers in this chapter by no means excludes other
supervised learning algorithms for which we refer to Mitchell (1997) and
Theodoridis and Koutroumbas (2003) for a comprehensive overview of the
supervised classification techniques.

When a binary classifier is learned in an information extraction task, we
are usually confronted with an unbalanced example set, i.e., there are usu-
ally too many negative examples as compared to the positive examples.
Here techniques of active learning discussed in the next chapter might be
of help to select a subset of negative examples.

When using binary classification methods such as a Support Vector
Machine, we are usually confronted with the multi-class problem. The lar-
ger the number of classes the more classifiers need to be trained and ap-
plied. We can handle the multi-class problem by using a one-vs-rest (one
class versus all other classes) method or a pair wise method (one class ver-
sus another class). Both methods construct multi-class SVMs by combin-
ing several binary SVMs. When classes are not mutually exclusive, the
one-vs-rest approach is advisable.

In information extraction we are usually confronted with a complex
problem. For instance, on one hand there is the detection of the boundaries
of the information unit in the text. On the other hand there is the classifica-
tion of the information unit. One can tackle these problems separately, or
learn and test the extractor in one run. Sometimes the semantic classes to

5.1 Introduction 91

92 5 Supervised Classification

be assigned are hierarchically structured. This is often the case for entities
to be recognized in biomedical texts. The hierarchical structure can be ex-
ploited both in an efficient training and testing of the classifier by assum-
ing that one class is subsumed by the other. As an alternative, in relational
learning one can learn class assignment and relations between classes. A
similar situation occurs where components of a class and their chronologi-
cal order signal a superclass. An important motivation for separating the
classification tasks is when they use a different feature set. For instance,
with the boundary recognition task, the orthographic features are impor-

will be tackled in Chap. 10.

5.2 Support Vector Machines

Early machine learning algorithms aimed at learning representations of
simple symbolic functions that could be understood and verified by ex-
perts. Hence, the goal of learning in this paradigm was to output a hy-
pothesis that performed the correct classification of the training data, and
the learning algorithms were designed to find such an accurate fit to the
data. The hypothesis is complete when it covers all positive examples, and
it is consistent when it does not cover any negative ones. It is possible that t
a hypothesis does not converge to a (nearly) complete and (nearly) consis-
tent one, indicating that there is no rule that discriminates between the
positive and the negative examples. This can occur either for noisy data, or
in case where the rule language is not sufficiently complex to represent the
dichotomy between positive and negative examples.

This situation has fed the interest in learning a mathematical function
that discriminates the classes in the training data. Among these, linear
functions are the best understood and the easiest to apply. Traditional sta-
tistics and neural network technology have developed many methods for
discriminating between two classes of instances using linear functions.
They can be called linear learning machines as they use hypotheses that
form linear combinations of the input variables.

In general, complex real-world applications require more expressive
hypothesis spaces than the ones formed by linear functions (Minsky

issue of separating the learning tasks or combining them in one classifier
tant, while in the classification task the context words are valuable. The

alternative solution by mapping the data into a high dimensional feature
abstract features of the data are exploited. Kernel representations offer an
a simple linear combination of the given features, but requires that more
and Papert, 1969). Frequently, the target concept cannot be expressed as

5.2 Support Vector Machines 93

space where a linear separation of the data becomes easier. In natural lan-
guage classification, it is often not easy to find a complete and consistent
hypothesis that fits the training data. And in some cases linear functions
are insufficient in order to discriminate the examples of two classes. This
is because natural language is full of exceptions and ambiguities. We may
not capture sufficient training data, or the training data might be noisy in
order to cope with these phenomena, or the function we are trying to learn
does not have a simple logical representation.

In this section we will lay out the principles of a Support Vector Ma-
chine for data that are linearly or nearly linearly separable. We will also
introduce kernel methods because we think they are a suitable technology
for certain information extraction tasks.

The technique of Support Vector Machines (Cristianini and Shawe-

two classes. In information extraction tasks the two classes are often the
positive and negative examples of a class. In the theory discussed below
we will use the terms positive and negative examples. This does not ex-
clude that any two different semantic classes can be discriminated.

Fig. 5.1. A maximal margin hyperplane with its support vectors highlighted (after

rable and then generalize the idea to data that are not necessarily linearly
separable and to examples that cannot be represented by linear decision
surfaces, which leads us to the use of kernel functions.

We will first discuss the technique for example data that are linearly sepa-

Taylor, 2000) is a method that finds a function that discriminates between

Christianini and Shawe-Taylor, 2000).

94 5 Supervised Classification

In a classical linear discriminant analysis, we find a linear combination
of the features (variables) that forms the hyperplane that discriminates be-
tween the two classes (e.g., line in a two-dimensional feature space, plane
in a three-dimensional feature space). Generally, many different hyper-
planes exist that separate the examples of the training set in positive and
negative examples among which the best one should be chosen. For in-
stance, one can choose the hyperplane that realizes the maximum margin
between the positive and negative examples. The hope is that this leads to
a better generalization performance on unseen examples. Or in other
words, the hyperplane with the margin d that has the maximum Euclidean d
distance to the closest training examples (support vectors) is chosen. More
formally, we compute this hyperplane as follows:

Given the set S of n training examples:

S ={(x1,y1),...,(xn,yn)}

where xi ∈ℜ pℜ (p p((-dimensional space) and yi ∈ {–1,+1} indicating that xi is
respectively a negative or a positive example.

When we train with data that are linearly separable, it is assumed that
some hyperplane exists which separates the positive from the negative ex-
amples. The points which lie on this hyperplane satisfy:

w ⋅ xi + b = 0 (5.1)

where w defines the direction perpendicular to the hyperplane (normal to
the hyperplane). Varying the value of b moves the hyperplane parallel to
itself. The quantities w and b are generally referred to as respectively
weight vector and r bias. The perpendicular distance from the hyperplane to
the origin is measured by:

b

w
 (5.2)

where w is the Euclidean norm of w.

Let d+ (d-) be the shortest distance from the separating hyperplane to the
closest positive (negative) example. d+ and d- thus define the margin to the
hyperplane. The task is now to find the hyperplane with the largest margin.

Given the training data that are linearly separable and that satisfy the
following constraints:

5.2 Support Vector Machines 95

w ⋅ xi + b ≥ +1 for yi = +1 (5.3)

 w ⋅ xi + b ≤ −1 for yi = 1 (5.4)

which can be combined in 1 set of inequalities:

yi(w ⋅ xi + b) −1≥ 0 for i = 1,…, n (5.5)

The hyperplane that defines one margin is defined by:

 H1 : w ⋅ xi + b =1 (5.6)

with perpendicular distance from the origin:

1− b

w
 (5.7)

The hyperplane that defines the other margin is defined by:

H 2 : w ⋅ xi + b = −1 (5.8)

with perpendicular distance from the origin:

−1− b

w
 (5.9)

Hence d+ = d- =
1
w

 and the margin =
2
w

.

In order to maximize the margin the following objective function is com-
puted:

Minimizew,b w ⋅w

Subject to yi(w ⋅ xi + b) −1≥ 0, i =1,...,n
 (5.10)

−

96 5 Supervised Classification

Linear learning machines can be expressed in a dual representation, which
turns out to be easier to solve than the primal problem since handling ine-
quality constraints directly is difficult. The dual problem is obtained by in-
troducing Lagrange multipliers λiλ , also called dual variables. We can
transform the primal representation into a dual one by setting to zero the
derivatives of the Lagrangian with respect to the primal variables, and
substituting the relations that are obtained in this way back into the La-

Maximize W (λ)λλ = λiλλ
i=1

n

− 1

2
λiλλ λjλλ yjj iyi jyy xi⋅xjx

i, j=1

n

Subject to: λiλλ ≥ 0

λiλλ yλi i = 0
i=1

n

,0 i =1,...,n

 (5.11)

It can be noticed that training examples only need to be inputted as inner
products (see Eq. (5.11)), meaning that the hypothesis can be expressed as
a linear combination of the training points. By solving a quadratic optimi-
zation problem, the decision function h(x(() for a test instance x is derived as
follows:

h(x) = sign(f (x)) (5.12)

f (x) = λiλλ yλiλλ i xi ⋅ x + b
i=1

n

 (5.13)

The function in Eq. (5.13) only depends on the support vectors for which
λiλ > 0. Only the training examples that are support vectors influence the
decision function. Also, the decision rule can be evaluated by using just
inner products between the test point and the training points.

We can also train a soft margin Support Vector Machine which is able
to deal with some noise, i.e., classifying examples that are linearly separa-
ble while taking into account some errors. In this case, the amount of train-
ing error is measured using slack variables ξiξ , the sum of which must not
exceed some upper bound.

simpler constraints:

grangian, hence removing the dependence on the primal variables. The
resulting function contains only dual variables and is maximized under

5.2 Support Vector Machines 97

The hyperplanes that define the margins are now defined as:

H1 : w ⋅ xi + b =1−ξiξξ (5.14)

H 2 : w ⋅ xi + b = −1+ξiξξ (5.15)

Hence, we assume the following objective function to maximize the mar-
gin:

Minimize
ξ , w, b

w ⋅w +C ξ
i

2ξξ
i=1

n

Subject to yi(w ⋅ xi +b) −1+ξiξξ ≥ 0 , i = 1,...,n

 (5.16)

where ξ
i

2ξξ
i =1

n

 = penalty for misclassification

C = weighting factor.

The decision function is computed as in the case of data objects that are
linearly separable (cf. Eq. (5.13)).

When classifying natural language data, it is not always possible to line-
arly separate the data. In this case we can map them into a feature space
where they are linearly separable (see Fig. 5.2). However, working in a
high dimensional feature space gives computational problems, as one has
to work with very large vectors. In addition, there is a generalization the-
ory problem (the so-called curse of dimensionality), i.e., when using too
many features, we need a corresponding number of samples to insure a
correct mapping between the features and the classes. However, in the dual
representation the data appear only inside inner products (both in the train-
ing algorithm shown by Eq. (5.11) and in the decision function of Eq.
(5.13)). In both cases a kernel function (Eq. (5.19)) can be used in the
computations.

A Support Vector Machine is a kernel based method. It chooses a kernel
function that projects the data typically into a high dimensional feature
space where a linear separation of the data is easier.

98 5 Supervised Classification

º • φ φ(φφ º) φ(•)φφ

º • • φ(φφ º) φ(•) φφ φ(•)φφ

º • φ(φφ º) φ(•)φφ

Formally, a kernel function K is a mapping K: S xS S → [0, ∞] from the
instance space of training examples S to a similarity score:S

K(xi,xjx) = φkφφ (xi))φkφφ (xjx) =
k

φ(φ xi) ⋅φ(φ xjx) (5.17)

In other words a kernel function is an inner product in some feature space
(this feature space can be potentially very complex). The kernel function
must be symmetric [K(KK x((i,xjx) = K(KK x((jx ,jj xi)] and positive semi-definite. By
semi-definite we require that if x1,…,xn ∈ S, then the n x n matrix G de-
fined by Gij = K (K x((i,xjx) is positive semi-definite2. The matrix2 G is called the G
Gram matrix or the kernel matrix. Given G, the support vector classifier
finds a hyperplane with maximum margins that separates the instances of
different classes. In the decision function f(ff x) we can just replace the dot
products with kernels K(KK x((i,x,, jx).

h(x) = sign(f (x)) (5.18)

f (x) = λiλλ yλiλλ i φ(φ xi) ⋅φ(φ x) + b
i=1

n

 (5.19)

Or

f (x) = λiλλ yλiλλ iK(xi,x) + b
i=1

n

2 A matrix2 A ∈ ℜpxpx is a positive semi-definite matrix if 0≥ℜ∈∀ Axxx∀∀ Tp . A
positive semi-definite matrix has non-negative eigenvalues.

(after Christianini and Shawe-Taylor 2000).
Fig. 5.2. A mapping of the features can make the classification task more easy

5.2 Support Vector Machines 99

To classify an unseen instance x, the classifier first projects x into the fea-
ture space defined by the kernel function. Classification then consists of
determining on which side of the separating hyperplane x lies. If we have a
way of efficiently computing the inner product φ(φ xi) ⋅φ(φ x) in the feature
space as a function of the original input points, the decision rule of Eq.
(5.19) can be evaluated by at most n iterations of this process.

An example of a simple kernel function is the bag-of-words kernel used
in text categorization where a document is represented by a binary vector,
and each element corresponds to the presence or absence of a particular
word in the document. Here, φkφφ (x((i) = 1 if word w occurs in document xi

and word order is not considered. Thus, the kernel function K(KK x((i,xjx) is a
simple function that returns the number of words in common between xi

and xjx .
Kernel methods are effective at reducing the feature engineering burden

for structured objects. In natural language processing tasks, the objects be-
ing modeled are often strings, trees or other discrete structures. By calcu-
lating the similarity between two such objects, kernel methods can employ
dynamic programming solutions to efficiently enumerate over substruc-
tures that would be too costly to explicitly include as features.

Another example that is relevant in information extraction is the tree
kernel. Tree kernels constitute a particular case of more general kernels de-

2001). The idea is to split the structured object in parts and to define a ker-
nel on the “atoms” and to recursively compute the kernel over larger parts
in order to get the kernel of the whole structure.

The property of kernel methods to map complex objects in a feature
space where a more easy discrimination between objects can be performed
and the capability of the methods to efficiently consider the features of
complex objects make them also interesting for information extraction
tasks. In information extraction we can combine parse tree similarity with
a similarity based on feature correspondence of the nodes of the trees. In
the feature vector of each node additional attributes can be modeled (e.g.,
POS, general POS, entity type, entity level, WordNet hypernyms). Another
example in information extraction would be to model script tree similarity
of discourses where nodes store information about certain actions and their
arguments.

We illustrate the use of a tree kernel in an entity relation recognition

the purpose of this research is to find relations between entities that are al-
ready recognized as persons, companies, locations, etc. (e.g., John works
for Concentra).

fined on a discrete structure (convolution kernels) (Collins and Duffy,

task (Zalenko et al., 2003; Culotto and Sorensen, 2004). More specifically

100 5 Supervised Classification

In this example, the training set is composed of parsed sentences in
which the sought relations are annotated. For each entity pair found in the
same sentence, a dependency tree of this training example is captured
based on the syntactic parse of the sentence. Then, a tree kernel can be de-
fined that is used in a SVM to classify the test examples.

The kernel function incorporates two functions that consider attribute
correspondence of two nodes ti and tjt : A matching function m(ti,tjt) ∈ {0, 1}
and a similarity function s(ti,tjt) ∈ [0,∞]. The former just determines
whether two nodes are matchable or not, i.e., two nodes can be matched
when they are of compatible type. The latter computes the correspondence
of the nodes ti and tjt based on a similarity function that operates on thej

nodes’ attribute values.
 For two dependency trees T1T and T2TT the tree kernel K(KK T1T ,T2TT) can be de-
fined by the following recursive function:

K(ti,tjt) =
0, if m (ti, tjt) = 0

s(ti,tjt) +KcKK (ti c[],tjt c[]) otherwise
 (5.20)

where KcKK is a kernel function that defines the similarity of the tree in terms
of children subsequences. Note that two nodes are not matchable when one
of them is nil. Let a and b be sequences of indices such that a is a sequence
a1 ≤ a2 ≤ … ak and likewise for b. Let d(a) = ak –k a1 + 1 and l(a) be the
length of a. Then KcKK can be defined as:

KcKK (ti[c], tjt [c]) = λdλλ (a)λdλλ (b)K(ti a[],tjt b[])
a,b,l(a) = l(b)

 (5.21)

The constant 0 < λ < 1 is a decay factor that penalizes matching subse-λ
quences that are spread out within the child sequences.

Intuitively, whenever we find a pair of matching nodes, the model
searches for all matching subsequences of the children of each node. For
each matching pair of nodes (s titt ,tjt) in a matching subsequence, we accumu-
late the result of the similarity function s(ti ,tjt) and then recursively search
for matching subsequences of their children ti[c] and tjt [c]. Two types of
tree kernels are considered in this model. A contiguous kernel only
matches child subsequences that are uninterrupted by non-matching nodes.
Therefore, d(a) = l(a). On the other hand, a sparse tree kernel, allows non-
matching nodes within matching subsequences.

The above example shows that kernel methods have a lot to offer in in-
formation extraction. Complex information contexts can be modeled in a

kernel function, and problem-specific kernel functions can be drafted. The
problem is then concentrated on finding the suitable kernel function. The
use of kernels as a general technique for using linear machines in a non-
linear fashion can be exported to other learning systems (e.g., nearest
neighbor classifiers).

Generally, Support Vector Machines are successfully employed in named

ognition (e.g., Zhang and Lee 2003; Mehay et al., 2005) and in entity rela-

Vector Machines have the advantage that they can cope with many (some-
times) noisy features without being doomed by the curse of dimensional-
ity.

5.3 Maximum Entropy Models

The maximum entropy model (sometimes referred to as MAXENT) com-
putes the probability distribution p(x((,y) with maximum entropy that satis-
fies the constraints set by the training examples (Berger et al., 1996).
Among the possible distributions that fit the training data, the one is cho-
sen that maximizes the entropy. The concept of entropy is known from

tainty concerning an event, and from another viewpoint a measure of ran-
domness of a message (here a feature vector).

Let us first explain the maximum entropy model with a simple example
of named entity recognition. Suppose we want to model the probability of
a named entity being a disease or not when it appears in three very simple
contexts. In our example the contexts are composed of the word that is to
be classified being one of the set {neuromuscular, Lou Gerigh, person}.
In other words, the aim is to compute the joint probability distribution p
defined over {neuromuscular, Lou Gerigh, person} x {disease, nodisease}
given a training set S of nf training examples:

S = {(S x((1, y) , (x 2, y) ,…, (x((,y n) }.

Because p is a probability distribution, a first constraint on the model is
that:

p(x,y)
x,y

=1 (5.22)

5.3 Maximum Entropy Models 101

entity recognition tasks (e.g., Isozaki and Kazawa, 2002), noun phrase
coreferent resolution (e.g., Isozaki and Hirao, 2003) and semantic role rec-

tion recognition (Culotto and Sorensen, 2004). As explained above Support

Shannon’s information theory (Shannon, 1948). It is a measure of uncer-

102 5 Supervised Classification

or
p(neuromuscular, disease) + p(Lou Gerigh, disease) + p (person((, disease)
+ p(neuromuscular, nodisease) + p(Lou Gerigh, nodisease) + p(person((,
nodisease) = 1

It is obvious that numerous distributions satisfy this constraint, as seen
in the Tables 5.1 and 5.2.
 The training set will impose additional constraints on the distribution. In
a maximum entropy framework, constraints imposed on a model are repre-
sented by k binary-valued3 features known as feature functions. A feature
function fjff takes the following form:

fjff (x,y) =
1 if (x,y) satisfies a certain constraint

0 otherwise
(5.23)

Table 5.1. An example of a distribution that satisfies the constraint in Eq. (5.22).

disease nodisease
neuromuscular 1/4 1/8
Lou Gerigh 1/8 1/8

1/8 1/4
Total 1.0

Table 5.2. An example of a distribution that in the most uncertain way satisfies
the constraint in Eq. (5.22).

disease nodisease
neuromuscular 1/6 1/6
Lou Gerigh 1/6 1/6

1/6 1/6
Total 1.0

From the training set we learn that in 50% of the examples in which a dis-
ease is mentioned the term Lou Gerigh occurs and that 70% of the exam-
ples of the training set are classified as disease imposing the following
constraints expressed by the feature functions:

3 The model is not restricted to binary features. For binary features efficient nu-
merical methods exist for computing the model parameters of Eq. (5.35).

person

person

fLouGehrigff (x,y) =
1 if x1= Lou Gerigh and y = disease

0 otherwise
 (5.24)

fdiseaseff (x,y) =
1 if y = disease

0 otherwise
 (5.25)

In this simplified example, our training set does not give any information
about the other context terms. The problem is how to find the most uncer-
tain model that satisfies the constraints. In Table 5.3 one can again look for
the most uniform distribution satisfying these constraints, but the example
makes it clear that the choice is not always obvious. The maximum en-
tropy model offers here a solution. Thus, when training the system, we
choose the model p* that preserves as much uncertainty as possible, or
which maximizes the entropy H(HH p(() between all the models p ∈ P that sat-
isfy the constraints enforced by the training examples.

 H(p(() = −
),(

),(log),(
yx

yxpyxp (5.26)

)(maxarg* pHp
Pp∈

= (5.27)

In the examples above we have considered an input training example char-
acterized by a certain label y and a feature vector x, containing the context
of the word (e.g., as described by surrounding words and their POS tag).
We can collect n number of training examples and summarize the training
sample S in terms of its empirical probability distribution: p~ defined by:

5.3 Maximum Entropy Models 103

(5.24) and (5.25).

disease nodisease
neuromuscular ? ?
Lou Gerigh 0.5 ?

? ?
Total 0.7 1.0
person

Table 5.3. An example of a distribution that satisfies the constraints in Eqs. (5.22),

104 5 Supervised Classification

p̃(x,y) ≡ no

n
 (5.28)

where no = number of times a particular pair (x((,y) occurs in S andS no ≥ 0.

We want to compute the expected value of the feature function fjff with re-
spect to the empirical distribution p̃(x,y) .4

Ep̃EE (fjff) = p̃(x,y) fjff (x,y)
x,y

 (5.29)

The statistics of a feature function are captured and it is required that the
model that we are building accords with it. We do this by constraining the
expected value that the model assigns to the corresponding feature func-
tion fjff . The expected value of fjff with respect to the model p(y x) is:

EpEE (fjff) = p̃(x) p(y x) fjff (x,y)
x,y

 (5.30)

where p̃(x) is the empirical distribution of x in the training sample. We
constrain this expected value to be the same as the expected value of fjff in
the training sample, i.e., the empirical expectation of fjff . That is we require:

)()(~ jpjp fjE~ppfjEpp = (5.31)

Combining Eqs. (5.29), (5.30) and (5.31) yields the following constraint
equation:

p̃(x) p(y x) fjff (x,y)
x,y

= p̃(x,y) fjff (x,y)
x,y

(5.32)

By restricting attention to these models p(y x) for which Eq. (5.31) holds,
we are eliminating from consideration those models that do not agree with
the training samples. In addition, according to the principle of maximum
entropy we should select the distribution which is most uniform. A

4 The notation is sometimes abused: fjff (x((,y) will both denote the value of fjff for a
particular pair (x((,y) as well as the entire function fjff .

mathematical measure of the uniformity of a conditional distribution p(y x)
is provided by the conditional entropy. The conditional entropy H(HH Y X)XX
measures how much entropy a random variable Y has remaining, if weY
have already learned completely the value of a second random variable X.
The conditional entropy of a discrete random Y givenY X:

 H(Y X) = p(x)H(Y X = x)
x∈X

 (5.33)

H(Y X) = − p(x) p(y x) log p(y x)
y∈Yx∈X

(5.34)

or5

H(p) ≡ − p̃(x) p(y x)
x∈X ,y∈Y

log p(y x)

Note that p̃(x) is estimated from the training set and p(y((x) is the learned x
model. When the model has no uncertainty at all, the entropy is zero.
When the values of y are uniformly distributed, the entropy is log y . It has
been shown that there is always a unique model p*(y x) with maximum
entropy that obeys the constraints set by the training set. Considering the
feature vector x of a test example, this distribution has the following expo-
nential form:

p *(y x) = 1

Z
exp λjλ fλjjλλ jff (x,y)

j =1

k

, 0 < λjλλ <∞ (5.35)

where fjff (x((, y) is one of the k binary-valued feature functions
λjλ = parameter adjusted to model the observed statistics
Z = normalizing constant computed as: Z

Z = exp(λjλ fλjjλλ jff (x,y))
j=1

k

y
 (5.36))))

So, the task is to define the parameters λjλ in λj p which maximize H(HH p((). In
simple cases we can find the solution analytically, in more complex cases

5 Following Berger et al. (1996) we use here the notation H(p(() in order to empha-
size the dependence of the entropy on the probably distribution p instead of the
common notation H (H Y X) where Y and Y X are random variables. X

5.3 Maximum Entropy Models 105

()

106 5 Supervised Classification

we need numerical methods to derive λjλ given a set of constraints. The λj

problem can be considered as a constrained optimization problem, where
we have to find a set of parameters of an exponential model, which maxi-
mizes its log likelihood. Different numerical methods can be applied for
this task among which are generalized iterative scaling (Darroch and

We also have to efficiently compute the expectation of each feature
function. Eq. (5.30) cannot be efficiently computed, because it would in-
volve summing over all possible combinations of x and y, a potentially in-
finite set. Instead the following approximation is used, which takes into
account the n training examples xi:

EpEE (fjff) = 1

n
p(y xi) fjff (xi,y)

yi=1

n

 (5.37)

The maximum entropy model has been successfully applied to natural lan-
guage tasks in which context-sensitive modeling is important (Berger et al.,

model has been used in named entity recognition (e.g., Chieu and Hwee

nition (Fleischman et al., 2003; Mehay et al., 2005). The maximum entropy
model offers many advantages. The classifier allows to model dependen-
cies between features, which certainly exist in many information extraction
tasks. The classifier has the advantage that there is no need for an a priori
feature selection, as features that just are randomly associated with a cer-
tain class, will keep their randomness in the model. This has the advantage
that you can train and experiment with many context features in the model,
in an attempt to decrease the ambiguity of the learned patterns. Moreover,
the principle of maximum entropy states that when we make inferences
based on incomplete information, we should draw them from a probability
distribution that has the maximum entropy permitted by the information

training set is often incomplete given the large variety of natural language
patterns that convey the semantic classes sought. Here, the maximum en-
tropy approach offers a satisfactory solution.

The above classification methods assume that there is no relation be-
tween various classes. In information extraction in particular and in text
understanding in general, content is often dependent. For instance, when
there is no grant approved, there is also no beneficiary of the grant. Or,
more formally one can say: There is only one or a finite number of ways in

Ratcliff, 1972), improved iterative scaling (Della Pietra et al., 1997), gradi-
ent ascent and conjugate gradient (Malouf, 2002).

2002), coreference resolution (e.g., Kehler, 1997) and semantic role recog-

that we do have (Jaynes, 1982). In many information extraction tasks, our

1996; Ratnaparkhi, 1998) among which is information extraction. The

which information can be sequenced in a text or in a text sentence in order
to convey its meaning. The scripts developed by Schank and his school in
the 1970s and 1980s are an illustrative example (e.g., you have to get on
the bus before you can ride the bus). But also, at the more fine-grained
level of the sentence the functional position of an information unit in de-
pendency with the other units defines the fine-grained meaning of the sen-
tence units (e.g., semantic roles). In other words, information contained in
text often has a certain dependency, one cannot exist without the other, or
it has a high chance to occur with other information. This dependency and
the nature of the dependency can be signaled by lexical items (and their
co-occurrence in a large corpus) and refined by the syntactical constructs
of the language including the discourse structure.

In pattern recognition there are a number of algorithms for context-
dependent classification. In these models, the objects are described by fea-
ture vectors, but the features and their values stored in different feature
vectors together contribute to the classification. In order to reduce the
computational complexity of the algorithms the vectors are often processed
in a certain order and the dependency upon vectors previously processed
is limited. The class to which a feature vector is assigned depends on its
own value, on the values of the other feature vectors and on the existing re-
lation among the various classes. In other words, having obtained the class
ci for a feature vector xi, the next feature vector could not always belong to
any other class. In the following sections we will discuss two common ap-
proaches to context-dependent information recognition: Hidden Markov
models and conditional random fields. We foresee that many other useful
context dependent classification algorithms will be developed in text un-
derstanding. In context-dependent classification, feature vectors are often
referred to as observations. For instance, the feature vector xi occurs in a
sequence of observations X = (X x((1,…,xT)TT .

5.4 Hidden Markov Models

In Chap. 2 we have seen that finite state automata quite successfully rec-
ognize a sequence of information units in a sentence or a text. In such a
model a text is considered as a sequence of symbols and not as an unor-
dered set. The task is to assign a class sequence Y= (y((1,…,yT)TT to the se-
quence of observations X = (X x((1,…,xT)TT . Research in information extraction
has recently investigated probabilistic sequence models, where the task is
to assign the most probable sequence of classes to the chain of observa-
tions. Typically, the model of the content is implemented as a Markov

5.4 Hidden Markov Models 107

108 5 Supervised Classification

chain of states, in which transition probabilities between states and the
probabilities of emissions of certain symbols of the alphabet are modeled.

 The states are shown as circles and the start state is indicated as start.
Possible transitions are shown by edges that connect states, and an edge is
labeled with the probability of this transition. Transitions with zero prob-
ability are omitted from the graph. Note that the probabilities of the edges
that go out from each state sum to 1. From this representation, it should be
clear that a Markov model can be thought as a (non-deterministic) finite
state automaton with probabilities attached to each edge.

Fig. 5.3. An example Markov model that represents a Belgian criminal court
decision. Some examples of emissions are shown without their probabilities.

court start victim accus ed

date
number

date
letter

offence

routine
opinion

opinion

routine
founda-
tion

founda-
tion

verdict

Nineteen
hundred d

John Smith Transport
law

1.0

0.86

0.144

1.0

1.0

0.27

0.73

0.62

0.38

0.30

0.50

0.200

0.37 0.3

0.7

0.25

0.25

0.2

0.3

0.5

0.5

1.01

0.133

0.50

conclusion
end

1.0

as a Markov chain.
In Fig. 5.3 the content of a Belgian criminal court decision is modeled

 The probability of a sequence of states or classes Y = (Y y1,…,yT) is easily TT

calculated for a Markov chain:

 P(y1,…,yT) = T P(y1)P(y2 y1) P(y3 y1, y2) … P (yT y1,…,yT-1) (5.38)

A first order Markov model assumes that class dependence is limited only
within two successive classes yielding:

P(y1,…,yT) =T P(y1)P(y2 y1) P(y3 y2)…P (yT yT-1) (5.39)

 109

= P(y) P(yi yi − 1)
i= 2

T∏ (5.40)

In Fig. 5.3 only some of the emission symbols are shown. The models that
we consider in the context of information extraction have a discrete output,
i.e., an observation outputs discrete values.

A first order Markov model is composed of a set of states Y with speci-Y
fied initial and final states y1 and yT,TT a set of transitions between states, and
a discrete vocabulary of output symbols = {σ1σ , σ2σσ ,…,σkσσ }. In information
extraction the emission symbols are usually words. The model generates
an observation X = (X x((1,…,xT) by beginning in the initial state, transitioningTT

to a new state, emitting an output symbol, transitioning to another state,
emitting another symbol, and so on, until a transition is made into the final
state. The parameters of the model are the transition probabilities P(yi yi-1)
that one state follows another and the emission probabilities P(x((i yi) that a
state emits a particular output symbol.6

Classification regards the recognition of the most probable path in the
model. For the task of information extraction this translates into the fol-
lowing procedure. Having observed the following sequence of feature vec-
tors X = (x((1,…,xT), we have to find the respective sequence of classes or TT

states Y = (Y y1,…,yT) that is most probably followed in the model. We com-TT

pute Y* for which

Y*= argmax
Y

P(Y X) (5.41)

P(Y X) =P(y1)P(x1 y1) P(yi yi − 1)P(xi

i= 2

T

∏ yi) (5.42)

In order to compute the most probable path the Viterbi algorithm is used.
Instead of a brute-force computation, by which all possible paths are com-
puted, the Viterbi algorithm efficiently computes a subset of these paths. It
is based on the observation that, if you look at the best path that goes
through a given state yi at a given time ti, the path is the concatenation of
the best path that goes from state y1 to yi (while emitting symbols corre-
sponding to the feature vectors x1 to xi respectively at times t1 to ti) with the
best path from state yi to the final state yT (while emitting symbols corre-
sponding to the feature vectors xi + 1 to xT respectively at times ti+1 to tT).TT

This is because the probability of a path going through state yi is simply
the product of the probabilities of the two parts (before and after yi), so that

6 We mean here the discrete symbol that is represented by the feature vector x.

5.4 Hidden Markov Models

110 5 Supervised Classification

the maximum probability of the global path is obtained when each part has
a maximum probability.

When we want to train a Markov model based on labeled sequences Xall XX
there are usually two steps. First, one has to define the model of states or
classes, which is called the topology of the model. Secondly, one has to
learn the emission and transition probabilities of the model. The first step
is usually drafted by hand when training an information extraction system
(although at the end of this section we will mention some attempts to learn
a state model). In the second step, the probabilities of the model are
learned based on the classified training examples. The task is learning the
probabilities of the initial state, the state transitions and the emissions of a
model µ.

In a visible Markov model (Fig. 5.4), the state sequence that actuallyl
generated an example is known, i.e., we can directly observe the states and
the emitted symbols. If we can identify the path that was taken inside the
model to produce each training sequence, we are able to estimate the prob-
abilities by the relative frequency of each transition from each state and of
emitting each symbol. The labeling is used to directly compute the prob-
abilities of the parameters of the Markov model by means of maximum
likelihood estimates in the training set XallXX . The transition probabilities
P(y’ y) and the emission probabilities P(x((y) are based on the counts of re-
spectively the class transitions ξ(ξξ y->y’) or ξ(ξξ y,y’) and of the emissions oc-
curring in a classγ (y) where y↑x↑↑ i considered at the different times t:

P(y' y) =
ξtξξ (y,y)

t=1

T−1

γ tγ (y)
t=1

T−1 (5.43)

 P(x y) =
γ tγ (y)

t=1 and y↑x

T

γ tγ (y)
t=1

T (5.44)

state sequence that the model passed through when generating the training
examples. The states of the training examples are not fully observable.
This is often the case in an information extraction task from a sequence of

’

In a hidden Markov modell (Rabiner, 1989) (Fig. 5.5) you do not know the

111

words. Each state (e.g., word) is associated with a class that we want to ex-
tract. Some states are just background states, when they represent informa-
tion not to be extracted or semantically labeled. As a result some of the
words are observed as emission symbols and have an unknown class or
state.

In this case the transition and emission probabilities are inferred from a
sequence of observations via some optimization function that is iteratively
computed. The training of parameters is usually performed via the Baum-
Welch algorithm, which is a special case of the Expectation-Maximization

Fig. 5.4. Example of a visible Markov Model for a named entity recognition task.

and the emissions of the model µ. The Baum-Welch approach is character-µ
ized by the following steps:

1. Start with initial estimates for the probabilities chosen randomly or
according to some prior knowledge.

2. Apply the model on the training data:
Expectation step (E): Use the current model and observations to
calculate the expected number of traversals across each arc and the
expected number of traversals across each arc while producing a
given output.

5.4 Hidden Markov Models

Title

First name

Verbal
process Last name

said

John

Callender

Mr.

0.30

0.70

1.00

1.00
0.80

0.37

0.06

0.83

The task is learning the probabilities of the initial state, the state transitions
algorithm (EM) (Dempster et al., 1977).

into a model that most likely produces these ratios.
Maximization step (M): Use these calculations to update the model

112 5 Supervised Classification

Fig. 5.5. Example of a hidden Markov model for a named entity recognition task.

3. Iterate step 2 until a convergence criterion is satisfied (e.g., when the
differences of the values with the values of a previous step are
smaller than a threshold value ε).εε

Expectation step (E)
We consider the number of times that a path passes through state y at time
t and through statet y’ at the next time t + 1 and the number of times thist
state transition occurs while generating the training sequences XallXX given l

the parameters of the current model µ. We then can define: µ

ξtξξ (y,y’) ≡ ξtξξ (y,y’ XallXX ,µ) = µµ
ξtξξ (y, y , XallXX µ)µµ

P(XallXX µ)µµ
(5.45)

=
α(α yt = y)P(y y)P(xt + 1 y)β(β yt + 1= y)

P(XallXX µ)µ
(5.46)

where)(yyt =α represents the path history terminating at time t and statet
y (i.e., the probability of being at state y at time t and outputting the first t
symbols) and β(β yt + 1 = y) represents the future of the path, which at time
t + 1 is at state y’ and then evolves unconstrained until the end (i.e., the

?

?

Verbal
process

Last name

smart

Callender

grammarian

?

?

?

?

?

?

0.34 0.04

’

’

’’’

 113

probability of being at the remaining states and outputting the remaining
symbols). We define also the probability of being at time t at statet y:

γ tγγ (y) ≡γ tγγ (y XallXX ,µ)µµ = α(yt = y)β(yt = y)
P(XallXX µ)µµ

 (5.47)

γ t(y)
t=1

T−1

 can be regarded as the expected number of transitions from state y

given the model µ and the observation sequencesµ XallXX .

−

=

1

1

),(
T

t

t yyξ can be regarded as the expected number of transitions from

state y to state y’, given the model µ and the observation sequences XallXX .

Maximization step (M)
During the M-step the following formulas compute reasonable estimates of
the unknown model parameters:

−

=

−

== 1

1

1

1

)(

),(
)(T

t

t

T

t

t

y

yy
yyP

γ

ξ
 (5.48)

P(x y) =
γ tγγ (y)

t=1 and y↑x

T

γ tγγ (y)
t=1

T (5.49)

P (y) =γ 1(y) (5.50)

Practical implementations of the HMM have to cope with problems of zero
probabilities as the values of α (yt) and β(β y((t) are smaller than one and when
used in products tend to go to zero, which demands for an appropriate scal-
ing of these values.
 A hidden Markov model is a popular technique to detect and classify a

5.4 Hidden Markov Models

’

’

linear sequence of information in text. The first information extraction

’

114 5 Supervised Classification

fixed or partially fixed order, such as the title, author, and journal from
both the headers and reference sections of papers. Ray and Craven (2001)
apply HMMs to Medline texts to extract the proteins, locations, genes and
disorders and their relationships. Zhang et al. (2004) use also HMMs for
the recognition of biomedical named entities.
 The disadvantage of using HMM for information extraction is that we
need large amounts of training data for guaranteeing that all state transi-
tions will appear a sufficient number of times in order to learn the prob-
abilities in a satisfactory way. Content can be expressed in many linguistic
variant forms, not at least if one just considers the words of a text. In addi-
tion there is the need for an a priori notion of the model’s topology (the
possible sequences of states) or that this topology should automatically be
learned. Existing work has generally used a handcrafted topology, in
which states are connected manually in a reasonable way after evaluating
the training corpus. There have been several attempts to automatically
learn an appropriate topology for information extraction tasks. Examples
can be found in Seymore et al. (1999) and McCallum et al. (1999).

5.5 Conditional Random Fields

Conditional random fields (CRF) regard a statistical method based on un-
directed graphical models. The method exhibits a number of properties that
makes it very well suited for information extraction tasks. Like the dis-
criminative learning models it can accommodate many statistically corre-
lated features of the input example. This contrasts with generative models,
which often require conditional independent assumptions in order to make
the computations tractable. Nonetheless, the discriminative methods seen
so far do not incorporate context dependency of classes unless they resort
to some heuristics to find an acceptable combination of classes. Condi-
tional random fields incorporate both the possibility of incorporating de-
pendent features and the possibility of context-dependent learning, making
the technique as one of the best current approaches to information extrac-

thought of a generalization of both the maximum entropy model and the
hidden Markov model.

systems that used HMM technology were developed by Leek (1997),
whose system extracted gene names and locations from scientific abstracts,
and by Bikel et al. (1997) who used this technology for named entity recog-
nition. McCallum et al. (1999) extracted document segments that occur in a

tion in empirical evaluations (Lafferty et al., 2001). This method can be

Let X be a random variable over data sequences to be labeled andX Y a Y
random variable over corresponding label sequences. All components YiYY of
Y are assumed to range over a finite label alphabet . For example, in an
information extraction task, X might range over the sentences of a text,X
while Y ranges over the semantic classes to be recognized in these sen-
tences. A conditional random field is viewed as an undirected graphical

element YvYY of Y. If each random variable YvYY obeys the Markov property
with respect to G (e.g., in a first order model the transition probability de-
pends only on the neighboring state), then the model (Y,YY X) is a conditionalXX
random field. In theory the structure of graph G may be arbitrary, however,G
when modeling sequences, the simplest and most common graph structure
encountered is that in which the nodes corresponding to elements of Y
form a simple first-order Markov chain. In this case the conditional ran-
dom field forms a probabilistic finite state automaton.

In information extraction conditional random fields are often used to la-
bel sequential data, although the method can also be used in other settings.
We focus here on a conditional random field that represents a sequence of
extraction classes. Such a CRF defines a conditional probability distribu-
tion p(Y X) of label sequences given input sequences. We assume that the XX
random variable sequences X and Y have the same length and useY x =
(x1,…,xT) andT y = (y1,…,yT) for an input sequence and label sequence
respectively.7 Instead of defining a joint distribution over both label and
observation sequences, the model defines a conditional probability over
labeled sequences. A novel observation sequence x is labeled with y, so
that the conditional probability p(y x) is maximized.

Comparable to the maximum entropy model, we define a set of k bi-k
nary-valued8 features or feature functions that each express some charac-
teristic of the empirical distribution of the training data that should also
hold in the model distribution. Each local feature is either a state feature
s(yi, x, i) or a transition feature t(y((i-1, yi, x, i), where yi-1 and yi are class la-
bels, x an input sequence, and i an input position. When i is 1 (start state of
the sequence), t(yi-1, yi , x, i) = 0. Examples of such features are:

7 Note that we represent here an instantiation of an observation sequence as x in
contrast with the rest of this book where we use x as an instantiation of a feature
vector. Analogically, we use y for the representation of a label sequence.
8 See footnote 3.

5.5 Conditional Random Fields 115

model or Markov random field, conditioned on XX (Jordan, 1999, Wallach,

node v ∈ V corresponding to each of the random variables representing an
2004). We define G = (V, E) to be an undirected graph such that there is a

116 5 Supervised Classification

sjs (yi, x, i) =
1 if the observation at position i is the word say

0 otherwise
 (5.51)

tjt (yi − 1, yi, x, i) =
 and yi has POS tag NNP

0 otherwise

 (5.52)
Feature functions thus depend on the current state (in case of a state feature
function) or on the previous and current states (in the case of a transition
feature function). We can use a more global notation fjff for a feature func-
tion where fjff (yi-1, yi, x, i) is either a state function sjs (yi, x, i) = sjs (yi-1, yi, x, i)
or a transition function tjt (y((i-1,yi, x, i).
 The CRF’s global feature vector FjFF (x((,y) for the input sequence x and la-
bel sequence y is given by:

FjFF (x, y) = fjff (yi − 1,yi, x, i)
i=1

T

 (5.53)

where i ranges over input positions (such as a sequence of words in a
document) or in terms of the graphical model over the values on T input T
nodes. Considering k feature functions, the conditional probability distri-
bution defined by the CRF is then:

p(y x) = 1

Z
exp(λ jλ FjF (x, y))

j=1

k

 p(y x) = 1

Z
exp(λ jλ fλ jj jff (yi − 1,yi , x, i)

i=1

T

)
j=1

k

 (5.54)

where λjλ = parameter adjusted to model the observed statistics
 Z = normalizing constant computed as:

Z = exp(λ jλ Fjj jF (x, y))
j=1

k

y∈Y

Z is a normalization factor for observation sequence x computed over dif-
j

“ ”

“ “ ”

or

ferent possible state sequences and fff ranges over all k feature functions.

1 if yi - 1 has tag title

The most probable label sequence y* for input sequence x is:

y*= argmax
y

p(y x) (5.55)

For a chain-structured conditional random field, the probability p(y|x) of
label sequence y given an observation sequence x can be easily computed
by using matrices and relying on algorithms for solving path problems in
graphs. To simplify the expressions we add a start andt end state, respec-d
tively represented by yo and yT+1. Let be de alphabet from which labels
are drawn and y and y’ be labels drawn from this alphabet, we define a set

i i x

MiMM (y ,y x) = exp(λjλ fλjjλλ jff (y , y, x, i))
j =1

k

 (5.56)

The conditional probability of a label sequence y given observation se-
quence x can be written as:

p(y x) = 1

Z
MiMM

i = 1

T +1

∏ (yi − 1,yi x) (5.57)

The normalization factor Z for observation sequence x, may be computed
from the set of MiM (x(() matrices. Z is given by the (Z start, end) entry of thedd
product of all T + 1 MiM (x) matrices.

Z = MiMM (x)

i =1

T +1

∏
start , end

 (5.58)

The conditional random field as defined by Eq. (5.54) is heavily motivated
by the principle of maximum entropy. As seen earlier in this chapter the
entropy of a probability distribution is a measure of uncertainty and is
maximized when the distribution in question is as uniform as possible,
subject to the constraints set by the training examples. The distribution that
is as uniform as possible while ensuring that the expectation of each fea-
ture function with respect to the empirical distribution of the training data
equals the expected value of the feature function with respect to the model
distribution.

As for the maximum entropy model, we need numerical methods in or-
der to derive λjλ given the set of constraints. The problem can be considered λj

5.5 Conditional Random Feilds 117

, ,

matrix with elements of the form:
of TT + 1 matrices {MM (((x) | i = 1, …, T + 1}, where each MM (((x) is a

118 5 Supervised Classification

as a constrained optimization problem, where we have to find a set of pa-
rameters of an exponential model, which maximizes its log likelihood. We
refer here to the references given above on numerical methods for deter-
mining the model parameters for the maximum entropy model. Here also,
we are confronted with the problem of efficiently calculating the expecta-
tion of each feature function with respect to the CRF model distribution for
every observation sequence x in the training data. Fortunately, dynamic
programming techniques that are similar to the Baum-Welch algorithm
that is commonly used for estimating the parameters of a hidden Markov
model, can be used here for parameter estimation (Lafferty et al., 2001).

Conditional random fields have been implemented for named entity rec-

(Ahn et al., 2005). They allow representing dependencies on previous clas-
sifications in a discourse. While adhering to the maximum entity principle,
they offer a valid solution when learning from incomplete information.
Given that in information extraction tasks, we often lack an annotated
training set that covers all extraction patterns, this is a valuable asset.

 Conditional random fields are a restricted class of undirected graphical

model many characteristics of the texts not only with regard to an input
sequence, its terms and their characteristics, but they can also take into ac-
count other discourse features that occur in previous sentences. Condi-
tional random fields have here been illustrated with the case of a linear
sequence of observations. Other graph models can be valuable for infor-
mation extraction tasks.

For instance, a relational Markov network can represent arbitrary de-k
pendencies between extractions (e.g., Taskar et al., 2004). This model al-
lows for a collective classification of a set of related entities by integrating
information from features of individual entities as well as the relations
between them. For example, in a protein named entity recognition task,
repeated references to the same protein are common. If the context sur-
rounding one occurrence of a name offers good evidence that the name is a
protein, then this should influence the tagging of another occurrence of the
same name in a different ambiguous context, if we assume the one sense

5.6 Decision Rules and Trees

Learning of rules and trees aims at inducing classifying expressions in the
form of decision rules and trees from example cases. These are one of the

ognition (McCallum and Li, 2003) and timex recognition and normalization

per discourse heuristic (Bunescu and Mooney, 2004).

models (Jordan, 1999). The advantage is that the feature functions can

oldest approaches to machine learning and were also part of one of the
oldest applications of machine learning in information extraction. Each de-
cision rule is associated with a particular class, and a rule that is satisfied,
i.e., evaluated as true, is an indication of its class. Thus, classifying new
cases involves the application of the learned classifying expressions and
assignment to the corresponding class upon positive evaluation.

The rules are found by searching these combinations of features or of
feature relations that are discriminative for each class. Given a set of posi-
tive examples and a set of negative examples (if available) of a class, the
training algorithms generate a rule that covers all (or most) of the positive
examples and none (or fewest) of the negative examples. Having found
this rule, it is added to the rule set, and the cases that satisfy the rule are
removed from further consideration. The process is repeated until no more
example cases remain to be covered.

The paradigm of searching possible hypotheses also applies to tree and
rule learning. There are two major ways for accessing this search space

most general towards the most specific hypothesis. One starts from the
most general rule possible (often an empty clause), which is specialized at
the encounter of a negative example that is covered. The principle is to add
features to the rule. Specific-to-general methods search the hypothesis
space from the most specific towards the most general hypothesis and will
progressively generalize examples. One starts with a positive example,
which forms the initial rule for the definition of the concept to be learned.
This rule is generalized at the encounter of another positive example that is
not covered. The principle is to drop features. The combination of the gen-
eral-to-specific and the specific-to-general methods is the so-called version

tive examples specify the most general hypothesis. Positive examples gen-
eralize the most specific hypothesis. The version spaces model suffers
from practical and computational limitations. To test all possible hypothe-
ses is most of the time impossible given the number of feature combina-
tions.

The most widely used method is tree learning. The vectors of the train-
ing examples induce classification expressions in the form of a decision
tree. A decision tree can be translated in if-then rules to improve the read-
ability of the learned expressions. A decision tree consists of nodes and
branches. Each node, except for terminal nodes or leaves, represents a test
or decision and branches into subtrees for each possible outcome of the
test. The tree can be used to classify an object by starting at the root of the
tree and moving through it until a leaf (class of the object) is encountered.

5.6 Decision Rules and Trees 119

(Mitchell, 1977). General-to-specific methods search the space from the

spaces method, which starts from two hypotheses (Mitchell, 1977). Nega-

120 5 Supervised Classification

top-down, greedy way by selecting the most discriminative feature and use
it as a test to the root node of the tree. A descendant node is then created
for each possible value of this feature, and the training examples are sorted
to the appropriate descendant node (i.e., down the branch corresponding to
the example’s value for this feature). The entire process is then repeated
using the training examples associated with each descendant node to select
the best feature to test at that point in the tree. This forms a greedy search
for an acceptable decision tree, in which the algorithm never backtracks to
reconsider earlier choices. In this way not all the hypotheses of the search
space are tested. Additional mechanisms can be incorporated. For instance,
by searching a rule or tree that covers most of the positive examples and
removal of these examples from further training, the search space is di-
vided into subspaces, for each of which a covering rule is sought. Other
ways for reducing the search space regard preferring simple rules above
complex ones and by branching and bounding the search space when the
method will not consider a set of hypotheses if there is some criterion that
allows assuming that they are inferior to the current best hypothesis. The
selection of the most discriminative feature at each node except for a leave
node, is often done by selecting the one with the largest information gain,
i.e., the feature that causes the largest reduction in entropy when the train-
ing examples are classified according to the outcome of the test at the
node. As seen above, entropy is a measure of uncertainty.

More specifically, given a collection S of training examples, if the clas-
sification can take on k different values, then the entropy of S relative to
the k classifications is defined as: k

Entropy(S) ≡ −pi log 2

i = 1

k

p2 i (5.59)

where pi is the proportion of S belonging to class k. The information gain
of a feature f is the expected reduction in entropy caused by partitioning
the examples according to this feature.

Gain(S, f) ≡ Entropy(S) −
Sv

S
v∈Values(f)

EntropyE (SvSS) 5.60)(

where Values(f = set of all possible values of featuref) f
 Sv = subset of S for which feature f has valuef v.

Basic algorithms (e.g., C4.5 of Quinlan, 1993) construct the trees in a

Rule and tree learning algorithms were the first algorithms that have
been used in information extraction, and they are still popular learning
techniques for information extraction. The factors that play a role in their
popularity are their expressive power, which makes them compatible with
human-engineered knowledge rules and their easy interaction with other
knowledge resources. Because of their greedy nature the algorithms usu-
ally perform better when the feature set is limited. Information extraction
tasks sometimes naturally can make use of a limited set of features that ex-
hibit some dependencies between the features (e.g., in coreference resolu-
tion).

Induction of rules and trees was a very popular information extraction
technique in the 1990s. It has been applied among others to information

be a popular and successful technique in coreference resolution (McCarthy

5.7 Relational Learning

When the learned rules are written in a logical formalism, the learning is

The most simple rules are expressed in propositional logic, but often the
learner will also acquire expressions in first-order predicate logic. The
classifier learns small programs containing predicates, constants and vari-
ables, which can be used to make inferences, hence the term inductive
logic programming.

Inductive logic programming is a subcategory of relational learning.
Unless rule representation is severely restricted, the learning is often
intractable. In order to counter this problem for a specific extraction prob-
lem, domain-specific heuristics are implemented. However, we lack ge-
neric ILP methods that could be applicable to a variety of information
extraction problems. Relational learning refers to all techniques that learn
structured concept definitions from structured examples. Relational learn-
ing is concerned with the classification of patterns whose presence signi-
fies that certain elements of a structure are in a particular relation to one
another. The structure of the instances can have different formats (e.g.,
logical programs, Bayesian networks, graphs). The learning algorithm re-
ceives input examples of which the complete structure is classified.

In information extraction relational learning that learns first-order predi-
cates has been implemented for extracting rather structured information

5.7 Relational Learning 121

extraction from semi-structured text (Soderland, 1999) and it continues to

and Lehnert 1995; Soon et al., 2001; Ng and Cardie, 2002).

often referred to as inductive logic programming (ILP) (Mooney, 1997).

such as information in job postings (Califf and Mooney, 1997) and in

122 5 Supervised Classification

tional models based on statistics. The kernel methods, the hidden Markov
models and conditional random fields can be seen as relational learning
models. In these cases, the relational model is chosen because the proposi-
tional, nominal or ordinal representations might become too large, or could
loose much of the inherent domain structure.

Many questions have still to be solved and appropriate algorithms for
relational learning should be drafted. Relational learning could offer suit-
able solutions to recognize information in texts.

5.8 Conclusions

Supervised pattern recognition techniques are very useful in information
extraction. Many useful approaches exist. As we will see in Chap. 9 they
currently constitute the most successful techniques. However, there is the
bottleneck of acquiring sufficient annotated examples. In the next chapter
it is shown how unsupervised learning techniques aid in resolving this
problem.

Information extraction techniques recognize rather simple patterns that
classify information in a particular semantic class. As we will discuss in

where meaning is assigned based on a conglomerate of different concepts
and their relations found in the unstructured sources.

5.9 Bibliography

Ahn, David, Sisay F. Adafre and Maarten de Rijke (2005). Extracting temporal in-
formation from open domain text. In Proceedings of the 5th Dutch-Belgian In-
formation Retrieval Workshop (DIR’05). Twente.

Berger, Adam, Stephen A. Della Pietra and Vincent J. Della Pietra (1996). A
maximum entropy approach to natural language processing. Computational
Linguistics, 22 (1), 39-71.

Bikel, Daniel M., Scott Miller, Richard Schwartz and Ralph Weischedel (1997).
Nymble: A high-performance learning name-finder. In Proceedings Fifth Con-
ference on Applied Natural Language Processing (pp. 194-201). Washington,
DC.

Bunescu, Razvan and Raymond J. Mooney (2004). Collective information extrac-
tion with relational Markov networks. In Proceedings of the 42nd Annual Meet-d

ing of the Association for Computational Linguistics (pp. 439-446). East
Stroudsburgh, PA: ACL.

seminar announcements (Roth and Yih, 2001). In addition, there exist rela-

the final chapter, there is a need for more advanced recognition of content,

Califf, Mary E. and Raymond J. Mooney (1997). Relational learning of pattern-

Computational Natural Language Learning (pp. 9-15). ACL.
Chieu, H.L. and Ng Hwee Tou (2002). Named entity recognition: A maximum en-

tropy approach using global information. In COLING 2002. Proceedings of the
19th International Conference on Computational Linguistics (pp. 190-196).
San Francisco: Morgan Kaufmann.

Christianini, Nello and John Shawe-Taylor (2000). An Introduction to Support
Vector Machines and Other Kernel Based Learning Methods. Cambridge, UK:
Cambridge University Press.

Collins, Michael and Nigel Duffy (2001). Convolution kernels for natural lan-
guage. In Thomas G. Dietterich, Sue Becker and Zoubin Ghahramani (Eds.),
Advances in Neural Information Processing Systems 14 (pp. 625-632). Cam-
bridge, MA: The MIT Press.

Culotto, Aron and Jeffrey Sorenson (2004). Dependency tree kernels for relation
extraction. In Proceedings of the 42nd Annual Meeting of the Association for d

Computational Linguistics (pp. 424-430). East Stroudsburg, PA: ACL.
Darroch, J.N. and D. Ratcliff (1972). Generalized iterative scaling for log-linear

models. The Annals of Mathematical Statistics, 43, 1470-1480.
Dempster, A.P., N.M. Laird and D.B. Rubin (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal Royal Statistical Society Series
B 39, 1-38.

Della Pietra, Stephen, Vincent Della Pietra and John Lafferty (1997). Inducing
features of random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19, 380-393.

Fleischman, Michael, Namhee Kwon and Eduard Hovy (2003). A maximum en-
tropy approach to FrameNet tagging. In Proceedings of the Human Language
Technology Conference of the North American Chapter for Computational
Linguistics. East Stroudsburg, PA: ACL.

Isozaki, Hideki and Hideto Kazawa (2002). Efficient support vector classifiers for
named entity recognition. In COLING 2002. Proceedings of the 19th Interna-
tional Conference on Computational Linguistics (pp. 390-396). San Francisco,
CA: Morgan Kaufmann.

Isozaki, Hideki and Tsutomu Hirao (2003). Japanese zero pronoun resolution
based on ranking rules and machine learning. In Proceedings of EMNLP-2003
(pp. 184-191). ACL.

Jaynes, Edwin T. (1982). On the rationale of maximum-entropy models. Proceed-
ings of the IEEE, 70 (9), 939-952.

Jordan, Michael I. (1999). Learning in Graphical Models. Cambridge, MA: The
MIT Press.

Kehler, Andrew (1997). Probabilistic coreference in information extraction. In
Proceedings of the Second Conference on Empirical Methods in Natural Lan-
guage Processing (pp. 163-173). Somerset, NJ: ACL.

Lafferty, John, Andrew McCallum and Fernando C.N. Pereira (2001). Conditional
random fields: Probabilistic models for segmenting and labelling sequence
data. In Proceedings of the 18th International Conference on Machine Learning
(pp. 282-289). San Francisco, CA: Morgan Kaufmann.

5.9 Bibliography 123

matching rules for information extraction. In T.M. Ellison (Ed.), CoNLL:

124 5 Supervised Classification

els. Master thesis, University of California San Diego.
Malouf, Robert (2002). A comparison of algorithms for maximum entropy pa-

rameter estimation. In Proceedings of the Sixth Conference on Natural Lan-
guage Learning (CoNLL-2002) (pp. 49-55). San Francisco, CA: Morgan
Kaufmann.

McCallum, Andrew, Kamal Nigam, Jason Rennie and Kristie Seymore (1999). A
machine learning approach to building domain-specific search engines. In Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelli-
gence (pp. 662-667). San Mateo, CA: Morgan Kaufmann.

McCallum, Andrew, Andrew Ng and Michael I. Jordan (2002). On discriminative
vs. generative classifiers: A comparison of logistic regression and naive Bayes.
In Thomas Dietterich, Suzanna Becker and Zoubin Ghahramani (Eds.), Ad-
vances in Neural Information Processing Systems 14 (pp. 609-616). Cam-
bridge, MA: The MIT Press.

McCallum, Andrew and Wei Li (2003). Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced lexicons.
In Proceedings of the Seventh Conference on Natural Language Learning
(CoNLL). East Stroudsburg, PA: ACL.

coreference resolution. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (pp. 1050-1055). San Mateo, CA: Morgan
Kaufmann.

Mehay Dennis N., Rik De Busser and Marie-Francine Moens (2005). Labeling
generic semantic roles. In Harry Bunt, Jeroen Geertzen and Elias Thyse (Eds.),
Proceedings of the Sixth International Workshop on Computational Semantics
(IWCS-6) (pp. 175-187). Tilburg, The Netherlands: Tilburg University.

Minsky, Marvin L. and Seymour A. Papert (1969). Perceptrons. The MIT Press.
Mitchell, Tom (1977). Version spaces: A candidate elimination approach to rule

learning. In Proceedings of the 5th International Joint Conference on Artificial
Intelligence (pp. 305-310). Cambridge, MA: William Kaufmann.

Mitchell, Tom (1997). Machine Learning. MacGraw Hill.
Mooney, Raymond (1997). Inductive logic programming for natural language

processing. In Inductive Logic Programming, volume 1314 of LNAI (pp. 3-24). I
Berlin: Springer.

Ng, Andrew Y. and Michael Jordan (2002). On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and naïve Bayes. Neural Informa-
tion Processing 2002.

Ng, Vincent and Claire Cardie (2002). Improving machine learning approaches to
coreference resolution. In Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-2002((). San Francisco, CA: Morgan
Kaufmann.

Quinlan, J. Ross (1993). C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann.

Rabiner, Lawrence L. (1989). A tutorial on hidden Markov models and selected
applications. In Proceedings of the IEEE 77 (pp. 257-285). Los Alamitos, CA:E
The IEEE Computer Society.

Leek, Timothy Robert (1997). Information Extraction using Hidden Markov Mod-

McCarthy, Joseph and Wendy G. Lehnert (1995). Using decision trees for

 125

Ratnaparkhi, Adwait (1998). Maximum Entropy Models for Natural Language
Ambiguity Resolution. Ph.D. thesis, University of Pennsylvania.

Ray, Soumya and Mark Craven (2001). Representing sentence structure in hidden
Markov models for information extraction. In Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence, Seattle, WA. San Francisco,
CA: Morgan Kaufmann.

Roth, Dan and Wen-tau Yih (2001). Relational learning via propositional al-
gorithms: An information extraction case study. In Proceedings of the 17th77
International Joint Conference on Artificial Intelligence (pp. 1257-1263). San
Francisco, CA: Morgan Kaufmann.

Seymore, Kristie, Andrew McCallum and Ronald Rosenfeld (1999). Learning
hidden Markov model structure for information extraction. In Proceedings of
the AAAI 99 Workshop on Machine Learning for Information Extraction.

Shannon, Claude E. (1948). A mathematical theory of communication. Bell Sys-
tem Technical Journal, 27, 379-423, 623-656.

Soderland, Stephen (1999). Learning information extraction rules for semi-
structured and free text. Machine Learning, 1-3, 233-272.

Soon, Wee Meng, Hwee Tou Ng and Daniel Chung Yong Lim (2001). A machine
learning approach to coreference resolution of noun phrases. Computational
Linguistics, 27 (4), 521-544.

Taskar, Ben, Vassil Chatalbashev and Daphne Koller (2004). Learning associative
Markov networks. In Proceedings of the Twenty-First International Confer-
ence on Machine Learning. San Mateo, CA: Morgan Kaufmann.

Theodoridis, Sergios and Konstantinos Koutroumbas (2003). Pattern Recognition.
Amsterdam, The Netherlands: Academic Press.

Vapnik, Vladimir N. (1988). Statistical Learning Theory. New York: John Wiley
and Sons.

Wallach, Hanna M. (2004). Conditional random fields: An introduction. Univer-
sity of Pennsylvania CIS Technical Report MS-CIS-04-21.

Zalenko, Dimitry, Chinatsu Aone and Antony Richardella (2003). Kernel methods
for relation extraction. Journal of Machine Learning Research, 3, 1083-1106.

Zhang, Dell and Wee Sun Lee (2003). Question classification using Support Vec-
tor Machines. In Proceedings of the Twenty-Sixth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (pp.l
26-31). New York: ACM.

Zhang, Jie, Dan Shen, Guodong Zu, Su Jian and Chew-Lim Tan (2004). Enhanc-
ing HMM-based biomedical named entity recognition by studying special phe-
nomena. Journal of Biomedical Informatics, 37, 411-422.

5.9 Bibliography

