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 5 Supervised Classification 

5.1 Introduction 

Supervised learning is a very popular approach in any text classification
task. Many different algorithms are available that learn classification pat-
terns from a set of labeled or classified examples. Given this sample of ex-
amples, the task is to model the classification process and to use the model 
to predict the classes of new, previously unseen examples. In information 
retrieval the supervised techniques are very popular for the classification
of documents into subject categories (e.g., the classification of news into 
financial, political, cultural, sports, …) using the words of a document as 
main features. In information extraction usually smaller content units are 
classified with a variety of classification schemes ranging from rather ge-
neric categories such as generic semantic roles of sentence constituents to 
very specific classes such as the number of heavily burned people in a 
firework accident. 

As in text categorization, the amount of training examples is often lim-
ited, or training examples are expensive to build. When the example set is 
small, it very often represents incomplete knowledge about the classifica-
tion model sought. This danger is especially present in natural language 
data where a large variety of patterns express the same content.

Parallel to text categorization, the amount of different features is large 
and the feature set could include some noisy features. There are many dif-
ferent words, syntactic, semantic and discourse patterns that make up the
context of an information element. But, compared to text categorization 
lesser features in the context are indicative of the class sought. Often, the 
features behave dependently and the dependency is not always restricted to
co-occurrence of certain feature values, it sometimes also demands that
feature values occur in a certain order in the text. When different classes 
are to be assigned to text constituents, the class assignment might also be 
dependent on classes previously assigned. 
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approaches that have been used to extract information from text and rele-
vant references were cited. In this chapter we dig deeper into the current 
and most successful algorithms for information extraction that use a super-
vised learning approach. The chosen classifiers allow dealing with incom-
plete data and with a large set of features that on occasion might be noisy. 
They also have the potential to be used for weakly supervised learning (de-
scribed in the next chapter), and incorporate dependencies in their models.  

As seen in Chap. 4 a feature vector x is described by a number of fea-
tures (see Eq. (4.1)) that may refer to the information element to be classi-
fied, to the close context of the element, to the more global context of the
document in which the element occurs, and perhaps to the context of 
the document collection. The goal is to assign a label y to a new example.
Among the statistical learning techniques a distinction is often made be-

model of the joint probability, p(x(( ,y) and makes its predictions by using
Bayes’ rule to calculate p(y x)1 and then selects the most likely label y. An 
example of a generative classifier that we will discuss in this chapter is a 
hidden Markov model. A discriminative classifier models the posterior r
probability p(y x) directly and selects the most likely label x y, or learns a di-
rect map from inputs x to the class labels. An example is the maximum en-
tropy model, which is very often used in information extraction. Here, the 
joint probability p(x(( ,y) is modeled directly from the inputs x. Another ex-
ample is a Support Vector Machine, which is a quite popular learning
technique for information extraction. Some of the classifiers adhere to the 
maximum entropy principle. This principle states that, when we make in-
ferences based on incomplete information, we should draw them from that 
probability distribution that has the maximum entropy permitted by the in-

to this principle. They are the maximum entropy model and conditional 
random fields.

In information extraction sometimes a relation exists between the vari-
ous classes. In such cases it is valuable not to classify a feature vector 
separately from other feature vectors in order to obtain a more accurate

1 With a slight abuse in notation in the discussion of the probabilistic classifiers,
we will also use p(y(( x) to denote the entire conditional probability distribution
provided by the model, with the interpretation that y and x are placeholders rather 
than specific instantiations. A model p(y x) is an element of all conditional prob-x
ability distributions.  In the case that feature vectors take only discrete values, we 
will denote the probabilities by the capitalized letter P.

dan, 2002). Given inputs x and their labels y, a generative classifierr learns a 
tween generative and discriminative classifiers (Vapnik, 1988; Ng and Jor-

formation we have (Jaynes, 1982). Two of the discussed classifiers adhere

Chap. 2 gave an extensive historical overview of machine learning 
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classification of the individual extracted information. This is referred to as 
context-dependent classification as opposed to context-free classification.
So, the class to which a feature vector is assigned depends on 1) the feature
vector itself; 2) the values of other feature vectors; and 3) the existing rela-
tion among the various classes. In information extraction, dependencies
exist at the level of descriptive features and at the level of classes, the latter 
also referring to classes that can be grouped in higher-level concepts (e.g.,
scripts such as a bank robbery script). We study two context-dependent 
classifiers, namely a hidden Markov model and one based on conditional 
random fields.

Learning techniques that present the learned patterns in representations 
that are well conceivable and interpretable by humans are still popular in 
information extraction. Rule and tree learning is the oldest of such ap-
proaches. When the rules learned are represented in logical propositions or 
first-order predicate logic, this form of learning is often called inductive
logic programming (ILP). The term relational learning refers to learning 
in any format that represents relations, including, but not limited to logic
programs, graph representations, probabilistic networks, etc. In the last two
sections of this chapter we study respectively rule and tree learning, and 
relational learning. 

The selection of classifiers in this chapter by no means excludes other 
supervised learning algorithms for which we refer to Mitchell (1997) and 
Theodoridis and Koutroumbas (2003) for a comprehensive overview of the 
supervised classification techniques.  

When a binary classifier is learned in an information extraction task, we 
are usually confronted with an unbalanced example set, i.e., there are usu-
ally too many negative examples as compared to the positive examples. 
Here techniques of active learning discussed in the next chapter might be 
of help to select a subset of negative examples. 

When using binary classification methods such as a Support Vector 
Machine, we are usually confronted with the multi-class problem. The lar-
ger the number of classes the more classifiers need to be trained and ap-
plied. We can handle the multi-class problem by using a one-vs-rest (one 
class versus all other classes) method or a pair wise method (one class ver-
sus another class). Both methods construct multi-class SVMs by combin-
ing several binary SVMs. When classes are not mutually exclusive, the 
one-vs-rest approach is advisable.  

In information extraction we are usually confronted with a complex 
problem. For instance, on one hand there is the detection of the boundaries
of the information unit in the text. On the other hand there is the classifica-
tion of the information unit. One can tackle these problems separately, or 
learn and test the extractor in one run. Sometimes the semantic classes to
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be assigned are hierarchically structured. This is often the case for entities 
to be recognized in biomedical texts. The hierarchical structure can be ex-
ploited both in an efficient training and testing of the classifier by assum-
ing that one class is subsumed by the other. As an alternative, in relational 
learning one can learn class assignment and relations between classes. A 
similar situation occurs where components of a class and their chronologi-
cal order signal a superclass. An important motivation for separating the 
classification tasks is when they use a different feature set. For instance,
with the boundary recognition task, the orthographic features are impor-

will be tackled in Chap. 10. 

5.2 Support Vector Machines 

Early machine learning algorithms aimed at learning representations of 
simple symbolic functions that could be understood and verified by ex-
perts. Hence, the goal of learning in this paradigm was to output a hy-
pothesis that performed the correct classification of the training data, and 
the learning algorithms were designed to find such an accurate fit to the
data. The hypothesis is complete when it covers all positive examples, and 
it is consistent when it does not cover any negative ones. It is possible that t
a hypothesis does not converge to a (nearly) complete and (nearly) consis-
tent one, indicating that there is no rule that discriminates between the 
positive and the negative examples. This can occur either for noisy data, or 
in case where the rule language is not sufficiently complex to represent the 
dichotomy between positive and negative examples. 

This situation has fed the interest in learning a mathematical function
that discriminates the classes in the training data. Among these, linear 
functions are the best understood and the easiest to apply. Traditional sta-
tistics and neural network technology have developed many methods for
discriminating between two classes of instances using linear functions.
They can be called linear learning machines as they use hypotheses that
form linear combinations of the input variables.  

In general, complex real-world applications require more expressive 
hypothesis spaces than the ones formed by linear functions (Minsky

issue of separating the learning tasks or combining them in one classifier 
tant, while in the classification task the context words are valuable. The

alternative solution by mapping the data into a high dimensional feature
abstract features of the data are exploited. Kernel representations offer an 
a simple linear combination of the given features, but requires that more 
and Papert, 1969). Frequently, the target concept cannot be expressed as  
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space where a linear separation of the data becomes easier. In natural lan-
guage classification, it is often not easy to find a complete and consistent 
hypothesis that fits the training data. And in some cases linear functions
are insufficient in order to discriminate the examples of two classes. This 
is because natural language is full of exceptions and ambiguities. We may 
not capture sufficient training data, or the training data might be noisy in 
order to cope with these phenomena, or the function we are trying to learn
does not have a simple logical representation.  

In this section we will lay out the principles of a Support Vector Ma-
chine for data that are linearly or nearly linearly separable. We will also
introduce kernel methods because we think they are a suitable technology 
for certain information extraction tasks.  

The technique of Support Vector Machines (Cristianini and Shawe-

two classes. In information extraction tasks the two classes are often the
positive and negative examples of a class. In the theory discussed below
we will use the terms positive and negative examples. This does not ex-
clude that any two different semantic classes can be discriminated.  

Fig. 5.1. A maximal margin hyperplane with its support vectors highlighted (after

rable and then generalize the idea to data that are not necessarily linearly 
separable and to examples that cannot be represented by linear decision 
surfaces, which leads us to the use of kernel functions. 

We will first discuss the technique for example data that are linearly sepa-

Taylor, 2000) is a method that finds a function that discriminates between 

Christianini and Shawe-Taylor, 2000).  



94                                                                                 5 Supervised Classification

In a classical linear discriminant analysis, we find a linear combination 
of the features (variables) that forms the hyperplane that discriminates be-
tween the two classes (e.g., line in a two-dimensional feature space, plane 
in a three-dimensional feature space). Generally, many different hyper-
planes exist that separate the examples of the training set in positive and 
negative examples among which the best one should be chosen. For in-
stance, one can choose the hyperplane that realizes the maximum margin
between the positive and negative examples. The hope is that this leads to 
a better generalization performance on unseen examples. Or in other 
words, the hyperplane with the margin d that has the maximum Euclidean d
distance to the closest training examples (support vectors) is chosen. More 
formally, we compute this hyperplane as follows:

Given the set S of n training examples: 

S ={(x1,y1),...,(xn,yn)}

where xi ∈ℜ pℜ (p p(( -dimensional space) and yi ∈ {–1,+1} indicating that xi is
respectively a negative or a positive example.  

When we train with data that are linearly separable, it is assumed that 
some hyperplane exists which separates the positive from the negative ex-
amples. The points which lie on this hyperplane satisfy:  

w ⋅ xi + b = 0           (5.1) 

where w defines the direction perpendicular to the hyperplane (normal to 
the hyperplane). Varying the value of b moves the hyperplane parallel to 
itself. The quantities w and b are generally referred to as respectively
weight vector and r bias. The perpendicular distance from the hyperplane to 
the origin is measured by: 

b

w
                  (5.2) 

where w is the Euclidean norm of w.

Let d+ (d-) be the shortest distance from the separating hyperplane to the 
closest positive (negative) example. d+ and d- thus define the margin to the
hyperplane. The task is now to find the hyperplane with the largest margin.  

Given the training data that are linearly separable and that satisfy the
following constraints:
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w ⋅ xi + b ≥ +1          for yi = +1           (5.3)

         w ⋅ xi + b ≤ −1          for yi = 1          (5.4)

which can be combined in 1 set of inequalities:  

yi( w ⋅ xi + b) −1≥ 0      for i = 1,…, n          (5.5)

The hyperplane that defines one margin is defined by: 

             H1 : w ⋅ xi + b =1                        (5.6)

with perpendicular distance from the origin:

1− b

w
             (5.7) 

The hyperplane that defines the other margin is defined by:  

H 2 : w ⋅ xi + b = −1            (5.8)

with perpendicular distance from the origin: 

−1− b

w
            (5.9) 

Hence d+ = d- =
1
w

 and the margin =
2
w

.

In order to maximize the margin the following objective function is com-
puted:  

Minimizew,b w ⋅w

Subject to yi( w ⋅ xi + b) −1≥ 0,   i =1,...,n
      (5.10)

−
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Linear learning machines can be expressed in a dual representation, which
turns out to be easier to solve than the primal problem since handling ine-
quality constraints directly is difficult. The dual problem is obtained by in-
troducing Lagrange multipliers λiλ , also called dual variables. We can 
transform the primal representation into a dual one by setting to zero the
derivatives of the Lagrangian with respect to the primal variables, and 
substituting the relations that are obtained in this way back into the La-

Maximize W (λ)λλ = λiλλ
i=1

n

− 1

2
λiλλ λjλλ yjj iyi jyy xi⋅xjx

i, j=1

n

Subject to:  λiλλ ≥ 0

λiλλ yλi i = 0
i=1

n

,0 i =1,...,n

        (5.11) 

It can be noticed that training examples only need to be inputted as inner 
products (see Eq. (5.11)), meaning that the hypothesis can be expressed as 
a linear combination of the training points. By solving a quadratic optimi-
zation problem, the decision function h(x(( ) for a test instance x is derived as
follows: 

h(x) = sign( f (x))          (5.12)

f (x) = λiλλ yλiλλ i xi ⋅ x + b
i=1

n

         (5.13)

The function in Eq. (5.13) only depends on the support vectors for which
λiλ > 0. Only the training examples that are support vectors influence the
decision function. Also, the decision rule can be evaluated by using just 
inner products between the test point and the training points. 

We can also train a soft margin Support Vector Machine which is able
to deal with some noise, i.e., classifying examples that are linearly separa-
ble while taking into account some errors. In this case, the amount of train-
ing error is measured using slack variables ξiξ , the sum of which must not 
exceed some upper bound.  

simpler constraints:  

grangian, hence removing the dependence on the primal variables. The 
resulting function contains only dual variables and is maximized under 
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The hyperplanes that define the margins are now defined as:  

H1 : w ⋅ xi + b =1−ξiξξ                     (5.14)

H 2 : w ⋅ xi + b = −1+ξiξξ                (5.15) 

Hence, we assume the following objective function to maximize the mar-
gin: 

Minimize
ξ , w, b

w ⋅w +C ξ
i

2ξξ
i=1

n

Subject to yi( w ⋅ xi +b) −1+ξiξξ ≥ 0 ,    i =  1,...,n

     (5.16) 

where ξ
i

2ξξ
i =1

n

 =   penalty for misclassification

C = weighting factor.  

The decision function is computed as in the case of data objects that are 
linearly separable (cf. Eq. (5.13)). 

When classifying natural language data, it is not always possible to line-
arly separate the data. In this case we can map them into a feature space 
where they are linearly separable (see Fig. 5.2). However, working in a 
high dimensional feature space gives computational problems, as one has
to work with very large vectors. In addition, there is a generalization the-
ory problem (the so-called curse of dimensionality), i.e., when using too 
many features, we need a corresponding number of samples to insure a 
correct mapping between the features and the classes. However, in the dual 
representation the data appear only inside inner products (both in the train-
ing algorithm shown by Eq. (5.11) and in the decision function of Eq. 
(5.13)). In both cases a kernel function (Eq. (5.19)) can be used in the 
computations. 

A Support Vector Machine is a kernel based method. It chooses a kernel 
function that projects the data typically into a high dimensional feature
space where a linear separation of the data is easier.  
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º • φ φ(φφ º)           φ(•)φφ

º • • φ(φφ º) φ(•)   φφ φ(•)φφ

º • φ(φφ º) φ(•)φφ

Formally, a kernel function K is a mapping K: S xS S → [0, ∞] from the
instance space of training examples S to a similarity score:S

K(xi,xjx ) = φkφφ (xi))φkφφ (xjx ) =
k

φ(φ xi) ⋅φ(φ xjx )         (5.17) 

In other words a kernel function is an inner product in some feature space 
(this feature space can be potentially very complex). The kernel function
must be symmetric [K(KK x(( i,xjx ) = K(KK x(( jx ,jj xi)] and positive semi-definite. By 
semi-definite we require that if x1,…,xn ∈ S, then the n x n matrix G de-
fined by Gij = K (K x(( i,xjx ) is positive semi-definite2. The matrix2 G is called the G
Gram matrix or the kernel matrix. Given G, the support vector classifier 
finds a hyperplane with maximum margins that separates the instances of 
different classes. In the decision function f(ff x) we can just replace the dot 
products with kernels K(KK x(( i,x,, jx ).

h(x) = sign( f (x))          (5.18) 

f (x) = λiλλ yλiλλ i φ(φ xi) ⋅φ(φ x) + b
i=1

n

        (5.19)

Or 

f (x) = λiλλ yλiλλ iK(xi,x) + b
i=1

n

2 A matrix2 A ∈ ℜpxpx is a positive semi-definite matrix if 0≥ℜ∈∀ Axxx∀∀ Tp . A 
positive semi-definite matrix has non-negative eigenvalues.

(after Christianini and Shawe-Taylor 2000).  
Fig. 5.2. A mapping of the features can make the classification task more easy
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To classify an unseen instance x, the classifier first projects x into the fea-
ture space defined by the kernel function. Classification then consists of 
determining on which side of the separating hyperplane x lies. If we have a 
way of efficiently computing the inner product φ(φ xi) ⋅φ(φ x)  in the feature 
space as a function of the original input points, the decision rule of Eq.
(5.19) can be evaluated by at most n iterations of this process.

An example of a simple kernel function is the bag-of-words kernel used 
in text categorization where a document is represented by a binary vector,
and each element corresponds to the presence or absence of a particular 
word in the document. Here, φkφφ (x(( i) = 1 if word w occurs in document xi

and word order is not considered. Thus, the kernel function K(KK x(( i,xjx ) is a 
simple function that returns the number of words in common between xi

and xjx .
Kernel methods are effective at reducing the feature engineering burden 

for structured objects. In natural language processing tasks, the objects be-
ing modeled are often strings, trees or other discrete structures. By calcu-
lating the similarity between two such objects, kernel methods can employ
dynamic programming solutions to efficiently enumerate over substruc-
tures that would be too costly to explicitly include as features. 

Another example that is relevant in information extraction is the tree 
kernel. Tree kernels constitute a particular case of more general kernels de-

2001). The idea is to split the structured object in parts and to define a ker-
nel on the “atoms” and to recursively compute the kernel over larger parts
in order to get the kernel of the whole structure. 

The property of kernel methods to map complex objects in a feature 
space where a more easy discrimination between objects can be performed
and the capability of the methods to efficiently consider the features of 
complex objects make them also interesting for information extraction 
tasks. In information extraction we can combine parse tree similarity with 
a similarity based on feature correspondence of the nodes of the trees. In 
the feature vector of each node additional attributes can be modeled (e.g., 
POS, general POS, entity type, entity level, WordNet hypernyms). Another 
example in information extraction would be to model script tree similarity
of discourses where nodes store information about certain actions and their 
arguments.  

We illustrate the use of a tree kernel in an entity relation recognition 

the purpose of this research is to find relations between entities that are al-
ready recognized as persons, companies, locations, etc. (e.g., John works
for Concentra).  

fined on a discrete structure (convolution kernels) (Collins and Duffy,

task (Zalenko et al., 2003; Culotto and Sorensen, 2004). More specifically
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In this example, the training set is composed of parsed sentences in 
which the sought relations are annotated. For each entity pair found in the
same sentence, a dependency tree of this training example is captured 
based on the syntactic parse of the sentence. Then, a tree kernel can be de-
fined that is used in a SVM to classify the test examples. 

The kernel function incorporates two functions that consider attribute
correspondence of two nodes ti and tjt : A matching function m(ti,tjt ) ∈ {0, 1} 
and a similarity function s(ti,tjt ) ∈ [0,∞]. The former just determines
whether two nodes are matchable or not, i.e., two nodes can be matched 
when they are of compatible type. The latter computes the correspondence 
of the nodes ti and tjt  based on a similarity function that operates on thej

nodes’ attribute values. 
 For two dependency trees T1T and T2TT the tree kernel K(KK T1T ,T2TT ) can be de-
fined by the following recursive function:  

K(ti,tjt ) =
0,                                      if m (ti, tjt ) =  0

s(ti,tjt ) +KcKK (ti c[ ],tjt c[ ])       otherwise 
     (5.20) 

where KcKK is a kernel function that defines the similarity of the tree in terms 
of children subsequences. Note that two nodes are not matchable when one 
of them is nil. Let a and b be sequences of indices such that a is a sequence 
a1 ≤ a2 ≤ … ak and likewise for b. Let d(a) = ak –k a1 + 1 and l(a) be the 
length of a. Then KcKK can be defined as: 

KcKK (ti[c], tjt [c]) = λdλλ (a )λdλλ (b )K(ti a[ ],tjt b[ ])
a,b,l(a ) = l(b )

       (5.21) 

The constant 0 < λ < 1 is a decay factor that penalizes matching subse-λ
quences that are spread out within the child sequences.  

Intuitively, whenever we find a pair of matching nodes, the model 
searches for all matching subsequences of the children of each node. For 
each matching pair of nodes (s titt ,tjt ) in a matching subsequence, we accumu-
late the result of the similarity function s(ti ,tjt ) and then recursively search 
for matching subsequences of their children ti[c] and tjt [c]. Two types of 
tree kernels are considered in this model. A contiguous kernel only 
matches child subsequences that are uninterrupted by non-matching nodes.
Therefore, d(a) = l(a). On the other hand, a sparse tree kernel, allows non-
matching nodes within matching subsequences. 

The above example shows that kernel methods have a lot to offer in in-
formation extraction. Complex information contexts can be modeled in a



kernel function, and problem-specific kernel functions can be drafted. The 
problem is then concentrated on finding the suitable kernel function. The
use of kernels as a general technique for using linear machines in a non-
linear fashion can be exported to other learning systems (e.g., nearest 
neighbor classifiers).  

Generally, Support Vector Machines are successfully employed in named

ognition (e.g., Zhang and Lee 2003; Mehay et al., 2005) and in entity rela-

Vector Machines have the advantage that they can cope with many (some-
times) noisy features without being doomed by the curse of dimensional-
ity.  

5.3 Maximum Entropy Models

The maximum entropy model (sometimes referred to as MAXENT) com-
putes the probability distribution p(x(( ,y) with maximum entropy that satis-
fies the constraints set by the training examples (Berger et al., 1996). 
Among the possible distributions that fit the training data, the one is cho-
sen that maximizes the entropy. The concept of entropy is known from 

tainty concerning an event, and from another viewpoint a measure of ran-
domness of a message (here a feature vector). 

Let us first explain the maximum entropy model with a simple example 
of named entity recognition. Suppose we want to model the probability of 
a named entity being a disease or not when it appears in three very simple
contexts. In our example the contexts are composed of the word that is to
be classified being one of the set {neuromuscular, Lou Gerigh, person}. 
In other words, the aim is to compute the joint probability distribution p
defined over {neuromuscular, Lou Gerigh, person} x {disease, nodisease}
given a training set S of nf training examples:  

S = {(S x(( 1, y) , (x 2, y)  ,…, (x(( ,y n) }.

Because p is a probability distribution, a first constraint on the model is 
that:

p(x,y)
x,y

=1           (5.22) 
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entity recognition tasks (e.g., Isozaki and Kazawa, 2002), noun phrase
coreferent resolution (e.g., Isozaki and Hirao, 2003) and semantic role rec-

tion recognition (Culotto and Sorensen, 2004). As explained above Support 

Shannon’s information theory (Shannon, 1948). It is a measure of uncer-
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or
p(neuromuscular, disease) + p(Lou Gerigh, disease) + p (person(( , disease)
+ p(neuromuscular, nodisease) + p(Lou Gerigh, nodisease) + p(person(( ,
nodisease) = 1

It is obvious that numerous distributions satisfy this constraint, as seen 
in the Tables 5.1 and 5.2.  
 The training set will impose additional constraints on the distribution. In
a maximum entropy framework, constraints imposed on a model are repre-
sented by k binary-valued3 features known as feature functions. A feature
function fjff takes the following form:  

fjff (x,y) =
1  if (x,y) satisfies a certain constraint

0 otherwise
(5.23) 

Table 5.1. An example of a distribution that satisfies the constraint in Eq. (5.22).  

disease nodisease
neuromuscular 1/4 1/8 
Lou Gerigh 1/8 1/8  

1/8 1/4  
Total   1.0

Table 5.2. An example of a distribution that in the most uncertain way satisfies 
the constraint in Eq. (5.22).  

disease nodisease 
neuromuscular 1/6 1/6  
Lou Gerigh 1/6 1/6  

1/6 1/6  
Total   1.0

From the training set we learn that in 50% of the examples in which a dis-
ease is mentioned the term Lou Gerigh occurs and that 70% of the exam-
ples of the training set are classified as disease imposing the following
constraints expressed by the feature functions: 

3 The model is not restricted to binary features. For binary features efficient nu-
merical methods exist for computing the model parameters of Eq. (5.35). 

person

person



fLouGehrigff (x,y) =
1 if x1= Lou Gerigh and y = disease

0 otherwise
        (5.24) 

fdiseaseff (x,y) =
1  if y = disease

0 otherwise
        (5.25)

In this simplified example, our training set does not give any information 
about the other context terms. The problem is how to find the most uncer-
tain model that satisfies the constraints. In Table 5.3 one can again look for 
the most uniform distribution satisfying these constraints, but the example
makes it clear that the choice is not always obvious. The maximum en-
tropy model offers here a solution. Thus, when training the system, we 
choose the model p* that preserves as much uncertainty as possible, or 
which maximizes the entropy H(HH p(( ) between all the models p ∈ P that sat-
isfy the constraints enforced by the training examples.  

            H(p(( ) = −
),(

),(log),(
yx

yxpyxp        (5.26)

                       )(maxarg* pHp
Pp∈

=         (5.27) 

In the examples above we have considered an input training example char-
acterized by a certain label y and a feature vector x, containing the context 
of the word (e.g., as described by surrounding words and their POS tag).
We can collect n number of training examples and summarize the training
sample S in terms of its empirical probability distribution: p~  defined by: 
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(5.24) and (5.25). 

disease nodisease 
neuromuscular ? ?  
Lou Gerigh 0.5 ? 

? ?  
Total 0.7  1.0
person

Table 5.3. An example of a distribution that satisfies the constraints in Eqs. (5.22),
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p̃(x,y) ≡ no

n
                     (5.28) 

where no = number of times a particular pair (x(( ,y) occurs in S andS no ≥ 0.

We want to compute the expected value of the feature function fjff with re-
spect to the empirical distribution p̃(x,y) .4

Ep̃EE ( fjff ) = p̃(x,y) fjff (x,y)
x,y

                    (5.29) 

The statistics of a feature function are captured and it is required that the
model that we are building accords with it. We do this by constraining the
expected value that the model assigns to the corresponding feature func-
tion fjff . The expected value of fjff with respect to the model p(y x) is:

EpEE ( fjff ) = p̃(x) p(y x) fjff (x,y)
x,y

                    (5.30)

where p̃(x) is the empirical distribution of x in the training sample. We 
constrain this expected value to be the same as the expected value of fjff in
the training sample, i.e., the empirical expectation of fjff . That is we require:

)()( ~ jpjp fjE~ppfjEpp =                      (5.31)

Combining Eqs. (5.29), (5.30) and (5.31) yields the following constraint 
equation: 

p̃(x) p(y x) fjff (x,y)
x,y

= p̃(x,y) fjff (x,y)
x,y

(5.32) 

By restricting attention to these models p(y x) for which Eq. (5.31) holds,
we are eliminating from consideration those models that do not agree with 
the training samples. In addition, according to the principle of maximum 
entropy we should select the distribution which is most uniform. A 

4 The notation is sometimes abused: fjff (x(( ,y) will both denote the value of fjff for a      
particular pair (x(( ,y) as well as the entire function fjff .



mathematical measure of the uniformity of a conditional distribution p(y x)
is provided by the conditional entropy. The conditional entropy H(HH Y X)XX
measures how much entropy a random variable Y has remaining, if weY
have already learned completely the value of a second random variable X.
The conditional entropy of a discrete random Y givenY X:

              H(Y X) = p(x)H(Y X = x)
x∈X

               (5.33)

H(Y X) = − p(x) p(y x) log p(y x)
y∈Yx∈X

(5.34)

or5

H( p) ≡ − p̃(x) p(y x)
x∈X ,y∈Y

log p(y x)

Note that p̃(x) is estimated from the training set and p(y(( x) is the learned x
model. When the model has no uncertainty at all, the entropy is zero.
When the values of y are uniformly distributed, the entropy is log y . It has 
been shown that there is always a unique model p*(y x) with maximum 
entropy that obeys the constraints set by the training set. Considering the 
feature vector x of a test example, this distribution has the following expo-
nential form:

p *(y x) = 1

Z
exp λjλ fλjjλλ jff (x,y)

j =1

k

,  0 < λjλλ <∞ (5.35) 

where fjff (x(( , y) is one of the k binary-valued feature functions 
λjλ = parameter adjusted to model the observed statistics
Z = normalizing constant computed as:  Z

Z = exp( λjλ fλjjλλ jff (x,y))
j=1

k

y
        (5.36))))

So, the task is to define the parameters λjλ in λj p which maximize H(HH p(( ). In
simple cases we can find the solution analytically, in more complex cases 

5 Following Berger et al. (1996) we use here the notation H(p(( ) in order to empha-
size the dependence of the entropy on the probably distribution p instead of the
common notation H (H Y X) where Y and Y X are random variables. X
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we need numerical methods to derive λjλ given a set of constraints. The λj

problem can be considered as a constrained optimization problem, where 
we have to find a set of parameters of an exponential model, which maxi-
mizes its log likelihood. Different numerical methods can be applied for 
this task among which are generalized iterative scaling (Darroch and 

We also have to efficiently compute the expectation of each feature
function. Eq. (5.30) cannot be efficiently computed, because it would in-
volve summing over all possible combinations of x and y, a potentially in-
finite set. Instead the following approximation is used, which takes into
account the n training examples xi:

EpEE ( fjff ) = 1

n
p(y xi) fjff (xi,y)

yi=1

n

                      (5.37) 

The maximum entropy model has been successfully applied to natural lan-
guage tasks in which context-sensitive modeling is important (Berger et al.,

model has been used in named entity recognition (e.g., Chieu and Hwee 

nition (Fleischman et al., 2003; Mehay et al., 2005). The maximum entropy
model offers many advantages. The classifier allows to model dependen-
cies between features, which certainly exist in many information extraction
tasks. The classifier has the advantage that there is no need for an a priori
feature selection, as features that just are randomly associated with a cer-
tain class, will keep their randomness in the model. This has the advantage
that you can train and experiment with many context features in the model, 
in an attempt to decrease the ambiguity of the learned patterns. Moreover,
the principle of maximum entropy states that when we make inferences 
based on incomplete information, we should draw them from a probability 
distribution that has the maximum entropy permitted by the information 

training set is often incomplete given the large variety of natural language
patterns that convey the semantic classes sought. Here, the maximum en-
tropy approach offers a satisfactory solution.  

The above classification methods assume that there is no relation be-
tween various classes. In information extraction in particular and in text 
understanding in general, content is often dependent. For instance, when 
there is no grant approved, there is also no beneficiary of the grant. Or,
more formally one can say: There is only one or a finite number of ways in

Ratcliff, 1972), improved iterative scaling (Della Pietra et al., 1997), gradi-
ent ascent and conjugate gradient (Malouf, 2002).  

2002), coreference resolution (e.g., Kehler, 1997) and semantic role recog-

that we do have (Jaynes, 1982). In many information extraction tasks, our 

1996; Ratnaparkhi, 1998) among which is information extraction. The



which information can be sequenced in a text or in a text sentence in order 
to convey its meaning. The scripts developed by Schank and his school in 
the 1970s and 1980s are an illustrative example (e.g., you have to get on 
the bus before you can ride the bus). But also, at the more fine-grained 
level of the sentence the functional position of an information unit in de-
pendency with the other units defines the fine-grained meaning of the sen-
tence units (e.g., semantic roles). In other words, information contained in
text often has a certain dependency, one cannot exist without the other, or 
it has a high chance to occur with other information. This dependency and 
the nature of the dependency can be signaled by lexical items (and their 
co-occurrence in a large corpus) and refined by the syntactical constructs
of the language including the discourse structure.  

In pattern recognition there are a number of algorithms for context-
dependent classification. In these models, the objects are described by fea-
ture vectors, but the features and their values stored in different feature 
vectors together contribute to the classification. In order to reduce the
computational complexity of the algorithms the vectors are often processed 
in a certain order and the dependency upon vectors previously processed  
is limited. The class to which a feature vector is assigned depends on its
own value, on the values of the other feature vectors and on the existing re-
lation among the various classes. In other words, having obtained the class 
ci for a feature vector xi, the next feature vector could not always belong to 
any other class. In the following sections we will discuss two common ap-
proaches to context-dependent information recognition: Hidden Markov
models and conditional random fields. We foresee that many other useful
context dependent classification algorithms will be developed in text un-
derstanding. In context-dependent classification, feature vectors are often
referred to as observations. For instance, the feature vector xi occurs in a
sequence of observations X = (X x(( 1,…,xT)TT .

5.4 Hidden Markov Models 

In Chap. 2 we have seen that finite state automata quite successfully rec-
ognize a sequence of information units in a sentence or a text. In such a
model a text is considered as a sequence of symbols and not as an unor-
dered set. The task is to assign a class sequence Y= (y(( 1,…,yT)TT to the se-
quence of observations X = (X x(( 1,…,xT)TT . Research in information extraction
has recently investigated probabilistic sequence models, where the task is 
to assign the most probable sequence of classes to the chain of observa-
tions. Typically, the model of the content is implemented as a Markov

5.4 Hidden Markov Models                                                                                 107 
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chain of states, in which transition probabilities between states and the
probabilities of emissions of certain symbols of the alphabet are modeled.

 The states are shown as circles and the start state is indicated as start. 
Possible transitions are shown by edges that connect states, and an edge is 
labeled with the probability of this transition. Transitions with zero prob-
ability are omitted from the graph. Note that the probabilities of the edges 
that go out from each state sum to 1. From this representation, it should be
clear that a Markov model can be thought as a (non-deterministic) finite
state automaton with probabilities attached to each edge.  

Fig. 5.3. An example Markov model that represents a Belgian criminal court 
decision. Some examples of emissions are shown without their probabilities.

court start victim accus ed

date
number 

date
letter 

offence

routine 
opinion 

opinion

routine
founda- 
tion 

founda- 
tion 

verdict

Nineteen
hundred  d

John Smith Transport 
law

1.0

0.86

0.144

1.0

1.0 

0.27 

0.73

0.62

0.38

0.30

0.50

0.200

0.37 0.3

0.7

0.25

0.25

0.2

0.3

0.5

0.5

1.01

0.133

0.50

conclusion
end

1.0 

as a Markov chain.
In Fig. 5.3 the content of a Belgian criminal court decision is modeled

 The probability of a sequence of states or classes Y = (Y y1,…,yT) is easily TT

calculated for a Markov chain: 

      P(y1,…,yT ) = T P(y1 )P(y2 y1) P(y3 y1, y2) … P (yT y1,…,yT-1)           (5.38)

A first order Markov model assumes that class dependence is limited only
within two successive classes yielding: 

P(y1,…,yT ) =T P(y1 )P(y2 y1) P(y3 y2)…P (yT  yT-1)         (5.39)
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= P(y) P(yi yi − 1)
i= 2

T∏                 (5.40) 

In Fig. 5.3 only some of the emission symbols are shown. The models that 
we consider in the context of information extraction have a discrete output, 
i.e., an observation outputs discrete values.  

A first order Markov model is composed of a set of states Y with speci-Y
fied initial and final states y1 and yT,TT  a set of transitions between states, and 
a discrete vocabulary of output symbols  = {σ1σ , σ2σσ ,…,σkσσ }. In information
extraction the emission symbols are usually words. The model generates 
an observation X = (X x(( 1,…,xT) by beginning in the initial state, transitioningTT

to a new state, emitting an output symbol, transitioning to another state, 
emitting another symbol, and so on, until a transition is made into the final 
state. The parameters of the model are the transition probabilities P(yi yi-1)
that one state follows another and the emission probabilities P(x(( i yi) that a 
state emits a particular output symbol.6

Classification regards the recognition of the most probable path in the
model. For the task of information extraction this translates into the fol-
lowing procedure. Having observed the following sequence of feature vec-
tors X = (x(( 1,…,xT), we have to find the respective sequence of classes or TT

states Y = (Y y1,…,yT) that is most probably followed in the model. We com-TT

pute Y* for which

Y*= argmax
Y

P(Y X) (5.41)

P(Y X) =P(y1)P(x1 y1) P(yi yi − 1)P(xi

i= 2

T

∏ yi) (5.42)

In order to compute the most probable path the Viterbi algorithm is used. 
Instead of a brute-force computation, by which all possible paths are com-
puted, the Viterbi algorithm efficiently computes a subset of these paths. It 
is based on the observation that, if you look at the best path that goes
through a given state yi at a given time ti, the path is the concatenation of 
the best path that goes from state y1 to yi (while emitting symbols corre-
sponding to the feature vectors x1 to xi respectively at times t1 to ti) with the 
best path from state yi to the final state yT (while emitting symbols corre-
sponding to the feature vectors xi + 1 to xT respectively at times ti+1 to tT).TT

This is because the probability of a path going through state yi is simply 
the product of the probabilities of the two parts (before and after yi), so that 

6 We mean here the discrete symbol that is represented by the feature vector x.

5.4 Hidden Markov Models
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the maximum probability of the global path is obtained when each part has 
a maximum probability.

When we want to train a Markov model based on labeled sequences Xall XX
there are usually two steps. First, one has to define the model of states or 
classes, which is called the topology of the model. Secondly, one has to 
learn the emission and transition probabilities of the model. The first step 
is usually drafted by hand when training an information extraction system 
(although at the end of this section we will mention some attempts to learn
a state model). In the second step, the probabilities of the model are 
learned based on the classified training examples. The task is learning the 
probabilities of the initial state, the state transitions and the emissions of a 
model µ.

In a visible Markov model (Fig. 5.4), the state sequence that actuallyl
generated an example is known, i.e., we can directly observe the states and 
the emitted symbols. If we can identify the path that was taken inside the
model to produce each training sequence, we are able to estimate the prob-
abilities by the relative frequency of each transition from each state and of 
emitting each symbol. The labeling is used to directly compute the prob-
abilities of the parameters of the Markov model by means of maximum 
likelihood estimates in the training set XallXX . The transition probabilities 
P(y’ y) and the emission probabilities P(x(( y) are based on the counts of re-
spectively the class transitions ξ(ξξ y->y’) or ξ(ξξ y,y’) and of the emissions oc-
curring in a classγ (y) where y↑x↑↑ i  considered at the different times t:

P(y' y) =
ξtξξ (y,y )

t=1

T−1

γ tγ (y)
t=1

T−1 (5.43)

                 P(x y) =
γ tγ (y)

t=1 and y↑x

T

γ tγ (y)
t=1

T                      (5.44)

state sequence that the model passed through when generating the training 
examples. The states of the training examples are not fully observable. 
This is often the case in an information extraction task from a sequence of 

’

In a hidden Markov modell (Rabiner, 1989) (Fig. 5.5) you do not know the 
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words. Each state (e.g., word) is associated with a class that we want to ex-
tract. Some states are just background states, when they represent informa-
tion not to be extracted or semantically labeled. As a result some of the
words are observed as emission symbols and have an unknown class or 
state. 

In this case the transition and emission probabilities are inferred from a 
sequence of observations via some optimization function that is iteratively 
computed. The training of parameters is usually performed via the Baum-
Welch algorithm, which is a special case of the Expectation-Maximization 

Fig. 5.4. Example of a visible Markov Model for a named entity recognition task. 

and the emissions of the model µ. The Baum-Welch approach is character-µ
ized by the following steps:

1. Start with initial estimates for the probabilities chosen randomly or 
according to some prior knowledge.  

2. Apply the model on the training data: 
Expectation step (E): Use the current model and observations to
calculate the expected number of traversals across each arc and the
expected number of traversals across each arc while producing a 
given output.

5.4 Hidden Markov Models

Title

First name

Verbal
process Last name

said

John

Callender

Mr.

0.30

0.70

1.00

1.00
0.80

0.37

0.06

0.83

The task is learning the probabilities of the initial state, the state transitions 
algorithm (EM) (Dempster et al., 1977).  

into a  model that most likely produces these ratios.
Maximization step (M): Use these calculations to update the model 
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Fig. 5.5. Example of a hidden Markov model for a named entity recognition task. 

3. Iterate step 2 until a convergence criterion is satisfied (e.g., when the
differences of the values with the values of a previous step are
smaller than a threshold value ε).εε

Expectation step (E)
We consider the number of times that a path passes through state y at time
t and through statet y’ at the next time t + 1 and the number of times thist
state transition occurs while generating the training sequences XallXX given l

the parameters of the current model µ. We then can define: µ

ξtξξ (y,y’) ≡ ξtξξ (y,y’ XallXX ,µ) = µµ
ξtξξ (y, y , XallXX µ)µµ

P(XallXX µ)µµ
(5.45)

=
α(α yt = y)P(y y)P(xt + 1 y )β(β yt + 1= y )

P(XallXX µ)µ
(5.46)

where )( yyt =α  represents the path history terminating at time t and statet
y (i.e., the probability of being at state y at time t and outputting the first t
symbols) and β(β yt + 1 = y ) represents the future of the path, which at time
t + 1 is at state y’ and then evolves unconstrained until the end (i.e., the 

?
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process

Last name 

smart

Callender

grammarian

?

?

?

?

?

?

0.34 0.04

’

’

’’’



 113 

probability of being at the remaining states and outputting the remaining 
symbols). We define also the probability of being at time t at statet y:

γ tγγ (y) ≡γ tγγ (y XallXX ,µ)µµ = α(yt = y)β(yt = y)
P(XallXX µ)µµ

       (5.47)

γ t(y)
t=1

T−1

 can be regarded as the expected number of transitions from state y

given the model µ and the observation sequencesµ XallXX .

−

=

1

1

),(
T

t

t yyξ  can be regarded as the expected number of transitions from 

state y to state y’, given the model µ and the observation sequences XallXX .

Maximization step (M) 
During the M-step the following formulas compute reasonable estimates of 
the unknown model parameters: 

−

=
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T
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y

yy
yyP

γ

ξ
         (5.48) 

P(x y) =
γ tγγ (y)

t=1 and y↑x

T

γ tγγ (y)
t=1

T          (5.49) 

P (y) =γ 1(y)          (5.50) 

Practical implementations of the HMM have to cope with problems of zero
probabilities as the values of α (yt) and β(β y(( t) are smaller than one and when
used in products tend to go to zero, which demands for an appropriate scal-
ing of these values. 
 A hidden Markov model is a popular technique to detect and classify a 

5.4 Hidden Markov Models

’

’

linear sequence of information in text. The first information extraction

’
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fixed or partially fixed order, such as the title, author, and journal from 
both the headers and reference sections of papers. Ray and Craven (2001) 
apply HMMs to Medline texts to extract the proteins, locations, genes and 
disorders and their relationships. Zhang et al. (2004) use also HMMs for 
the recognition of biomedical named entities. 
  The disadvantage of using HMM for information extraction is that we 
need large amounts of training data for guaranteeing that all state transi-
tions will appear a sufficient number of times in order to learn the prob-
abilities in a satisfactory way. Content can be expressed in many linguistic
variant forms, not at least if one just considers the words of a text. In addi-
tion there is the need for an a priori notion of the model’s topology (the 
possible sequences of states) or that this topology should automatically be
learned. Existing work has generally used a handcrafted topology, in 
which states are connected manually in a reasonable way after evaluating
the training corpus. There have been several attempts to automatically 
learn an appropriate topology for information extraction tasks. Examples 
can be found in Seymore et al. (1999) and McCallum et al. (1999). 

5.5 Conditional Random Fields 

Conditional random fields (CRF) regard a statistical method based on un-
directed graphical models. The method exhibits a number of properties that 
makes it very well suited for information extraction tasks. Like the dis-
criminative learning models it can accommodate many statistically corre-
lated features of the input example. This contrasts with generative models,
which often require conditional independent assumptions in order to make
the computations tractable. Nonetheless, the discriminative methods seen
so far do not incorporate context dependency of classes unless they resort 
to some heuristics to find an acceptable combination of classes. Condi-
tional random fields incorporate both the possibility of incorporating de-
pendent features and the possibility of context-dependent learning, making
the technique as one of the best current approaches to information extrac-

thought of a generalization of both the maximum entropy model and the 
hidden Markov model. 

systems that used HMM technology were developed by Leek (1997),
whose system extracted gene names and locations from scientific abstracts, 
and by Bikel et al. (1997) who used this technology for named entity recog-
nition. McCallum et al. (1999) extracted document segments that occur in a 

tion in empirical evaluations (Lafferty et al., 2001). This method can be 



Let X be a random variable over data sequences to be labeled andX Y a Y
random variable over corresponding label sequences. All components YiYY of
Y are assumed to range over a finite label alphabet . For example, in an
information extraction task, X might range over the sentences of a text,X
while Y ranges over the semantic classes to be recognized in these sen-
tences.  A conditional random field is viewed as an undirected graphical

element YvYY of Y. If each random variable YvYY obeys the Markov property 
with respect to G (e.g., in a first order model the transition probability de-
pends only on the neighboring state), then the model (Y,YY X) is a conditionalXX
random field. In theory the structure of graph G may be arbitrary, however,G
when modeling sequences, the simplest and most common graph structure
encountered is that in which the nodes corresponding to elements of Y
form a simple first-order Markov chain. In this case the conditional ran-
dom field forms a probabilistic finite state automaton.

In information extraction conditional random fields are often used to la-
bel sequential data, although the method can also be used in other settings.
We focus here on a conditional random field that represents a sequence of 
extraction classes. Such a CRF defines a conditional probability distribu-
tion p(Y X) of label sequences given input sequences. We assume that the XX
random variable sequences X and Y have the same length and useY x =
(x1,…,xT) andT y = (y1,…,yT) for an input sequence and label sequence 
respectively.7 Instead of defining a joint distribution over both label and 
observation sequences, the model defines a conditional probability over 
labeled sequences. A novel observation sequence x is labeled with y, so
that the conditional probability p(y x) is maximized.

Comparable to the maximum entropy model, we define a set of k bi-k
nary-valued8 features or feature functions that each express some charac-
teristic of the empirical distribution of the training data that should also
hold in the model distribution. Each local feature is either a state feature
s(yi, x, i) or a transition feature t(y(( i-1, yi, x, i), where yi-1 and yi are class la-
bels, x an input sequence, and i an input position. When i is 1 (start state of 
the sequence), t(yi-1, yi , x, i) = 0.  Examples of such features are: 

7 Note that we represent here an instantiation of an observation sequence as x in
contrast with the rest of this book where we use x as an instantiation of a feature 
vector. Analogically, we use y for the representation of a label sequence. 
8 See footnote 3.
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model or Markov random field, conditioned on XX (Jordan, 1999, Wallach, 

node v ∈ V corresponding to each of the random variables representing an 
2004). We define G = (V, E) to be an undirected graph such that there is a 
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sjs (yi, x, i) =
1 if the observation at position i is the word say

0 otherwise
       (5.51)

tjt (yi − 1, yi, x, i) =
 and yi has POS tag NNP

0 otherwise

                          (5.52)
Feature functions thus depend on the current state (in case of a state feature 
function) or on the previous and current states (in the case of a transition 
feature function). We can use a more global notation fjff for a feature func-
tion where fjff (yi-1, yi, x, i) is either a state function sjs (yi, x, i) = sjs (yi-1, yi, x, i)
or a transition function tjt (y(( i-1,yi, x, i).
 The CRF’s global feature vector FjFF (x(( ,y) for the input sequence x and la-
bel sequence y is given by:  

FjFF (x, y) = fjff (yi − 1,yi, x, i)
i=1

T

        (5.53) 

where i ranges over input positions (such as a sequence of words in a 
document) or in terms of the graphical model over the values on T input T
nodes. Considering k feature functions, the conditional probability distri-
bution defined by the CRF is then: 

p(y x) = 1

Z
exp( λ jλ FjF (x, y))

j=1

k

   p(y x ) = 1

Z
exp( λ jλ fλ jj jff (yi − 1,yi , x, i)

i=1

T

)
j=1

k

 (5.54) 

where λjλ = parameter adjusted to model the observed statistics
  Z = normalizing constant computed as:

Z = exp( λ jλ Fjj jF (x, y))
j=1

k

y∈Y

Z is a normalization factor for observation sequence x computed over dif-
j

“ ”

“ “ ”

or

ferent possible state sequences and fff  ranges over all k feature functions.  

1 if yi - 1 has tag title



The most probable label sequence y* for input sequence x is:  

y*= argmax
y

p(y x)         (5.55) 

For a chain-structured conditional random field, the probability p(y|x) of 
label sequence y given an observation sequence x can be easily computed 
by using matrices and relying on algorithms for solving path problems in 
graphs. To simplify the expressions we add a start andt end state, respec-d
tively represented by yo and yT+1. Let be de alphabet from which labels
are drawn and y and y’ be labels drawn from this alphabet, we define a set 

i i x

MiMM (y ,y x) = exp( λjλ fλjjλλ jff (y , y, x, i))
j =1

k

      (5.56)

The conditional probability of a label sequence y given observation se-
quence x can be written as:

p(y x) = 1

Z
MiMM

i = 1

T +1

∏ (yi − 1,yi x)         (5.57)

The normalization factor Z for observation sequence x, may be computed 
from the set of MiM (x(( ) matrices. Z is given by the (Z start, end) entry of thedd
product of all T + 1 MiM (x) matrices. 

Z = MiMM (x )

i =1

T +1

∏
start , end

                                  (5.58) 

The conditional random field as defined by Eq. (5.54) is heavily motivated
by the principle of maximum entropy. As seen earlier in this chapter the
entropy of a probability distribution is a measure of uncertainty and is
maximized when the distribution in question is as uniform as possible, 
subject to the constraints set by the training examples. The distribution that 
is as uniform as possible while ensuring that the expectation of each fea-
ture function with respect to the empirical distribution of the training data 
equals the expected value of the feature function with respect to the model
distribution.  

As for the maximum entropy model, we need numerical methods in or-
der to derive λjλ given the set of constraints. The problem can be considered λj
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, ,

matrix with elements of the form: 
of TT + 1 matrices {MM (((x) | i = 1, …, T + 1},  where each MM (((x) is a
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as a constrained optimization problem, where we have to find a set of pa-
rameters of an exponential model, which maximizes its log likelihood. We 
refer here to the references given above on numerical methods for deter-
mining the model parameters for the maximum entropy model. Here also,
we are confronted with the problem of efficiently calculating the expecta-
tion of each feature function with respect to the CRF model distribution for 
every observation sequence x in the training data. Fortunately, dynamic
programming techniques that are similar to the Baum-Welch algorithm 
that is commonly used for estimating the parameters of a hidden Markov
model, can be used here for parameter estimation (Lafferty et al., 2001). 

Conditional random fields have been implemented for named entity rec-

(Ahn et al., 2005). They allow representing dependencies on previous clas-
sifications in a discourse. While adhering to the maximum entity principle,
they offer a valid solution when learning from incomplete information. 
Given that in information extraction tasks, we often lack an annotated 
training set that covers all extraction patterns, this is a valuable asset. 

 Conditional random fields are a restricted class of undirected graphical 

model many characteristics of the texts not only with regard to an input 
sequence, its terms and their characteristics, but they can also take into ac-
count other discourse features that occur in previous sentences. Condi-
tional random fields have here been illustrated with the case of a linear 
sequence of observations. Other graph models can be valuable for infor-
mation extraction tasks.  

For instance, a relational Markov network can represent arbitrary de-k
pendencies between extractions (e.g., Taskar et al., 2004). This model al-
lows for a collective classification of a set of related entities by integrating 
information from features of individual entities as well as the relations 
between them. For example, in a protein named entity recognition task,
repeated references to the same protein are common. If the context sur-
rounding one occurrence of a name offers good evidence that the name is a 
protein, then this should influence the tagging of another occurrence of the
same name in a different ambiguous context, if we assume the one sense 

5.6 Decision Rules and Trees

Learning of rules and trees aims at inducing classifying expressions in the
form of decision rules and trees from example cases. These are one of the 

ognition (McCallum and Li, 2003) and timex recognition and normalization 

per discourse heuristic (Bunescu and Mooney, 2004).  

models (Jordan, 1999). The advantage is that the feature functions can



oldest approaches to machine learning and were also part of one of the
oldest applications of machine learning in information extraction. Each de-
cision rule is associated with a particular class, and a rule that is satisfied, 
i.e., evaluated as true, is an indication of its class. Thus, classifying new
cases involves the application of the learned classifying expressions and 
assignment to the corresponding class upon positive evaluation.  

The rules are found by searching these combinations of features or of 
feature relations that are discriminative for each class. Given a set of posi-
tive examples and a set of negative examples (if available) of a class, the
training algorithms generate a rule that covers all (or most) of the positive 
examples and none (or fewest) of the negative examples. Having found 
this rule, it is added to the rule set, and the cases that satisfy the rule are 
removed from further consideration. The process is repeated until no more 
example cases remain to be covered. 

The paradigm of searching possible hypotheses also applies to tree and 
rule learning. There are two major ways for accessing this search space

most general towards the most specific hypothesis. One starts from the
most general rule possible (often an empty clause), which is specialized at 
the encounter of a negative example that is covered. The principle is to add 
features to the rule. Specific-to-general methods search the hypothesis
space from the most specific towards the most general hypothesis and will
progressively generalize examples. One starts with a positive example,
which forms the initial rule for the definition of the concept to be learned. 
This rule is generalized at the encounter of another positive example that is 
not covered. The principle is to drop features. The combination of the gen-
eral-to-specific and the specific-to-general methods is the so-called version

tive examples specify the most general hypothesis. Positive examples gen-
eralize the most specific hypothesis. The version spaces model suffers
from practical and computational limitations. To test all possible hypothe-
ses is most of the time impossible given the number of feature combina-
tions. 

The most widely used method is tree learning. The vectors of the train-
ing examples induce classification expressions in the form of a decision
tree. A decision tree can be translated in if-then rules to improve the read-
ability of the learned expressions. A decision tree consists of nodes and 
branches. Each node, except for terminal nodes or leaves, represents a test 
or decision and branches into subtrees for each possible outcome of the
test. The tree can be used to classify an object by starting at the root of the
tree and moving through it until a leaf (class of the object) is encountered. 
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(Mitchell, 1977). General-to-specific methods search the space from the 

spaces method, which starts from two hypotheses (Mitchell, 1977). Nega-
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top-down, greedy way by selecting the most discriminative feature and use
it as a test to the root node of the tree. A descendant node is then created 
for each possible value of this feature, and the training examples are sorted 
to the appropriate descendant node (i.e., down the branch corresponding to
the example’s value for this feature). The entire process is then repeated 
using the training examples associated with each descendant node to select 
the best feature to test at that point in the tree. This forms a greedy search 
for an acceptable decision tree, in which the algorithm never backtracks to
reconsider earlier choices. In this way not all the hypotheses of the search
space are tested. Additional mechanisms can be incorporated. For instance, 
by searching a rule or tree that covers most of the positive examples and 
removal of these examples from further training, the search space is di-
vided into subspaces, for each of which a covering rule is sought. Other 
ways for reducing the search space regard preferring simple rules above 
complex ones and by branching and bounding the search space when the
method will not consider a set of hypotheses if there is some criterion that 
allows assuming that they are inferior to the current best hypothesis. The 
selection of the most discriminative feature at each node except for a leave 
node, is often done by selecting the one with the largest information gain,
i.e., the feature that causes the largest reduction in entropy when the train-
ing examples are classified according to the outcome of the test at the
node. As seen above, entropy is a measure of uncertainty. 

More specifically, given a collection S of training examples, if the clas-
sification can take on k different values, then the entropy of S relative to 
the k classifications is defined as:  k

Entropy(S) ≡ −pi log 2

i = 1

k

p2 i         (5.59)

where pi is the proportion of S belonging to class k. The information gain 
of a feature f is the expected reduction in entropy caused by partitioning
the examples according to this feature.

Gain(S, f ) ≡ Entropy(S) −
Sv

S
v∈Values( f )

EntropyE (SvSS )   5.60)(

where    Values( f    =  set of all possible values of featuref ) f
     Sv =  subset of S for which feature f has valuef  v.

Basic algorithms (e.g., C4.5 of Quinlan, 1993) construct the trees in a 



Rule and tree learning algorithms were the first algorithms that have 
been used in information extraction, and they are still popular learning
techniques for information extraction. The factors that play a role in their 
popularity are their expressive power, which makes them compatible with
human-engineered knowledge rules and their easy interaction with other 
knowledge resources. Because of their greedy nature the algorithms usu-
ally perform better when the feature set is limited. Information extraction
tasks sometimes naturally can make use of a limited set of features that ex-
hibit some dependencies between the features (e.g., in coreference resolu-
tion).  

Induction of rules and trees was a very popular information extraction 
technique in the 1990s. It has been applied among others to information 

be a popular and successful technique in coreference resolution (McCarthy 

5.7 Relational Learning 

When the learned rules are written in a logical formalism, the learning is 

The most simple rules are expressed in propositional logic, but often the
learner will also acquire expressions in first-order predicate logic. The
classifier learns small programs containing predicates, constants and vari-
ables, which can be used to make inferences, hence the term inductive
logic programming. 

Inductive logic programming is a subcategory of relational learning. 
Unless rule representation is severely restricted, the learning is often 
intractable. In order to counter this problem for a specific extraction prob-
lem, domain-specific heuristics are implemented. However, we lack ge-
neric ILP methods that could be applicable to a variety of information
extraction problems. Relational learning refers to all techniques that learn 
structured concept definitions from structured examples. Relational learn-
ing is concerned with the classification of patterns whose presence signi-
fies that certain elements of a structure are in a particular relation to one 
another. The structure of the instances can have different formats (e.g.,
logical programs, Bayesian networks, graphs). The learning algorithm re-
ceives input examples of which the complete structure is classified.  

In information extraction relational learning that learns first-order predi-
cates has been implemented for extracting rather structured information
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extraction from semi-structured text (Soderland, 1999) and it continues to 

and Lehnert 1995; Soon et al., 2001; Ng and Cardie, 2002). 

often referred to as inductive logic programming (ILP) (Mooney, 1997).

such as information in job postings (Califf and Mooney, 1997) and in 
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tional models based on statistics. The kernel methods, the hidden Markov 
models and conditional random fields can be seen as relational learning 
models. In these cases, the relational model is chosen because the proposi-
tional, nominal or ordinal representations might become too large, or could 
loose much of the inherent domain structure. 

Many questions have still to be solved and appropriate algorithms for 
relational learning should be drafted. Relational learning could offer suit-
able solutions to recognize information in texts. 

5.8 Conclusions 

Supervised pattern recognition techniques are very useful in information 
extraction. Many useful approaches exist. As we will see in Chap. 9 they
currently constitute the most successful techniques. However, there is the
bottleneck of acquiring sufficient annotated examples. In the next chapter 
it is shown how unsupervised learning techniques aid in resolving this 
problem.  

Information extraction techniques recognize rather simple patterns that 
classify information in a particular semantic class. As we will discuss in 

where meaning is assigned based on a conglomerate of different concepts
and their relations found in the unstructured sources.  
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