apter 7 Constraints and Triggers
triggers

riggers. Motivation

Attribute- and tuple-based checks
have limited capabilities.

Assertions are sufficiently general

for most constraint applications, but
they are hard to implement efficiently.
— The DBMS must have real intelligence

to avoid checking assertions that
couldn’t possibly have been violated.

riggers: Solution

A trigger allows the user to specify
when the check occurs.

Like an assertion, a trigger has a
general-purpose condition and also
can perform any sequence of SQL
database modifications.

Triggers

Often called event-condition-action
rules

® Event=a class of changes in the DB,
e.g.: insert, delete

® Condition=atest as in a where-
clause for whether or not the trigger
applies.

® Action=one or more SQL statements

Triggers

Differ from checks, assertions:

® Triggers are invoked by certain events
specified by the database programmer.

® Once awakened, the trigger tests a
condition.

® Only the condition is satisfied, the
actions are performed. The action could
be any sequence of database operations.

xample: A Trigger

Instead of using a foreign-key
constraint and rejecting
Insertions into Sells(bar, beer,
price) with unknown beers, a
trigger can add that beer to
Beers, with a NULL manufacturer.

xample: Trigger Definition

EATE TRIGGER BeerTrig ~ The event

\FTER INSERT ON Sell

REFERENCING NEW ROW AS NewTuple

FOR EACH ROW

WHEN (NewTuple.beer NOT IN /T“e condition
(SELECT name FROM Beers))

INSERT INTO Beers(name)

VALUES(NewTuple.beer); — Theaction

N

ptions: CREATE TRIGGER

® CREATE TRIGGER <name>
® Or:

REPLACE TRIGGER <name>

— Useful if there is a trigger with that
name and you want to modify the
trigger.

ptions: The Condition

AFTER can be BEFORE.

— Also, INSTEAD OF, if the relation is a
view.

- A great way to execute view modifications:
have triggers translate them to appropriate
modifications on the base tables.

INSERT can be DELETE or UPDATE.

— And UPDATE can be UPDATE ... ON a
particular attribute.

ptions: FOR EACH ROW

riggers are either row-level or
tatement-level.

FOR EACH ROW indicates row-level:
Its absence indicates statement-level.

Row level triggers are executed once
or each modified tuple.

Statement-level triggers execute
once for an SQL statement,
regardless of how many tuples are
modified.

ptions: REFERENCING

INSERT statements imply a new tuple
(for row-level) or new set of tuples
(for statement-level).

DELETE implies an old tuple or table.
UPDATE implies both.

Refer to these by

INEW OLD][ROW TABLE] AS <name>

ptions: The Condition

Any boolean-valued condition is
appropriate.

It IS evaluated before or after the
triggering event, depending on
whether BEFORE or AFTER i1s used
INn the event.

Access the new/old tuple or set of
tuples through the names declared In
the REFERENCING clause.

Options: The Action

There can be more than one SQL
statement in the action.

— Surround by BEGIN ... END if there is
more than one.

Queries make no sense in an action,
so we are really limited to
modifications.

nother Example

Using Sells(bar, beer, price) and a
unary relation RipoffBars(bar)
created for the purpose, maintain a
list of bars that raise the price of any
beer by more than $1.

e Trigger

The event —
only changes

ATE TRIGGER PriceTrig fo prices
FTER UPDATE OF price ON Sells
REFERENCING Updates let us

OLD ROW as old —— ta”; abOUE O||d Condition:
and new tuples a raise in
NEW ROW as new We need to consider price > $1
OR EACH ROW — each price change
HEN(new.price > old.price + 1.00)
INSERT INTO RipoffBars When the price change

. [s great enough, add
VALUES(new.bar); the bar to RipoffBars

Event vs. Triggers

Event will come = wake the trigger

Steps for After trigger:

® Event happens - test the condition:
If true do action otherwise nothing.

Steps for before trigger:

® Test the condition: If true do action
otherwise nothing = event happens

Steps for instead of:

® Test the condition: iIf true do action
otherwise nothing

Example
create table R(x int,y int);
create table S(u int,v int);
Insert into R values(1,10);
Insert into S values(2,20);
Insert into S values(3,30);

After vs. Before Trigger
create trigger beforetrig

before insert on R

for each row

when (3 > (select count(*) from R))
begin

update R set y=y+New.y;

end;

Insert into R select * from S;

select * from R;

select * from R;

After vs. Before Trigger (cont.)
create trigger aftertrig

after inserton R

for each row

when (3 > (select count(*) from R))
begin

update R set y=y+New.y,

end,;

Insert into R select * from S;

Self Triggering

® create table T1(A int);
® pragma recursive_triggers =on;
® create trigger R1
after insert on T1
for each row
when (select count(*) from T1) <10
begin
Insert into T1 values (New.A+1);
end;
Insert into T1 values (1),
select * from T1;

Row-level Trigger

Create table T1 (a float);
create table T2 (a float);

insert into T1 values (1);
insert into T1 values (1);
insert into T1 values (1);
insert into T1 values (1);

create trigger R1

after insert on T1
for each row
begin
insert into T2 select avg(A) from T1;
end;

insert into T1 select A+1 from T1:
select * from T1;
select * from T2;

Classroom Exercises & Demo

Database schema:

Students(sid,name,dept,age)
Courses(cid,cname,spring,teacher)
SC(sid,cid,semester,cname,grade)

Use triggers to implement
Foreign key declaration

CREATE TABLE SC (

sid char(9) REFERENCES
students (sid) ON DELETE
CASCADE ON UPDATE
CASCADE,

er)
Cases to violate:
Delete, update(sid) on students
Insert, update(sid) on sc

create trigger R1
after delete on Students
for each row
begin
delete from sc where sid = Old.sID;
end;

Implement: sc(sid) references
students(sid)

needs four triggers (R1 ~ R4)
R1: Cascaded delete (students)

R2:Cascaded update when students (sid)
update
reate trigger R2
fter update of sid on students
or each row
egin
update sc
set sid = new.sid
where sid = old.sid,;
nd;

R3: Insert Into sc

eate trigger R3
fore insert on sc
r each row

en not exists (select * from students
ere sid=new.sid)

gin
lect raise (rollback, studentNotEXxIists);
d;

R4: update sc(sid)

eate trigger R4
fore update of sid on sc
r each row

hen not exists (select * from students
here sid=new.sid)

gin
elect raise (rollback,studentNotExists);
d;

Test

® Select * from students;

® Insert into sc(sid,cid) values(11,1);
® Select * from sc where sid=1;

® Delete from students where sid=1;
® Select * from sc where sid=1;

Trigger R5: New cs students will be
automatically chosen database courses.

create trigger R5
after insert on students
for each row
when new.dept='cs’
begin
Insert into sc(sid,cid,cname) values
(new.sid, 1,'database’);
end;
Insert into students(sid,name,dept)
values(11,’wangdong’,’cs’);
Select * from sc;

Trigger R6: when the no. of database
students Is great than 5, 1t is not allowed.
create trigger R6
after insert on sc
for each row
when new.cid=1 and 4 < (select
count(*) from sc where cid=1)
begin

select raise(rollback, greaterThanb);
end,

Insert into sc(sid,cid) values(5,1);

Summary

® Key constraints

® Referential Integrity Constraints

®Value-based ,Tuple-based Check
Constraints

® Assertions

® Triggers

® Invoking time

