
Chapter 7 Constraints and Triggers

 Keys and foreign keys

 Constraints on attributes and

tuples

 Modification of constraints

 Assertions

 triggers

Triggers: Motivation

Attribute- and tuple-based checks

have limited capabilities.

Assertions are sufficiently general

for most constraint applications, but

they are hard to implement efficiently.

– The DBMS must have real intelligence

to avoid checking assertions that

couldn’t possibly have been violated.

Triggers: Solution

A trigger allows the user to specify

when the check occurs.

Like an assertion, a trigger has a

general-purpose condition and also

can perform any sequence of SQL

database modifications.

Triggers

Often called event-condition-action

rules

Event= a class of changes in the DB,

e.g.: insert, delete

Condition= a test as in a where-

clause for whether or not the trigger

applies.

Action=one or more SQL statements

Triggers

Differ from checks, assertions:

 Triggers are invoked by certain events

specified by the database programmer.

Once awakened, the trigger tests a

condition.

Only the condition is satisfied, the

actions are performed. The action could

be any sequence of database operations.

Example: A Trigger

Instead of using a foreign-key

constraint and rejecting

insertions into Sells(bar, beer,

price) with unknown beers, a

trigger can add that beer to

Beers, with a NULL manufacturer.

Example: Trigger Definition

CREATE TRIGGER BeerTrig

 AFTER INSERT ON Sells

 REFERENCING NEW ROW AS NewTuple

 FOR EACH ROW

 WHEN (NewTuple.beer NOT IN

 (SELECT name FROM Beers))

 INSERT INTO Beers(name)

 VALUES(NewTuple.beer);

The event

The condition

The action

Options: CREATE TRIGGER

CREATE TRIGGER <name>

Or:

REPLACE TRIGGER <name>

– Useful if there is a trigger with that

name and you want to modify the

trigger.

Options: The Condition

AFTER can be BEFORE.

– Also, INSTEAD OF, if the relation is a

view.

• A great way to execute view modifications:

have triggers translate them to appropriate

modifications on the base tables.

 INSERT can be DELETE or UPDATE.

– And UPDATE can be UPDATE . . . ON a

particular attribute.

Options: FOR EACH ROW

Triggers are either row-level or
statement-level.

FOR EACH ROW indicates row-level;
its absence indicates statement-level.

Row level triggers are executed once
for each modified tuple.

Statement-level triggers execute
once for an SQL statement,
regardless of how many tuples are
modified.

Options: REFERENCING

 INSERT statements imply a new tuple

(for row-level) or new set of tuples

(for statement-level).

DELETE implies an old tuple or table.

UPDATE implies both.

Refer to these by

[NEW OLD][ROW TABLE] AS <name>

Options: The Condition

Any boolean-valued condition is

appropriate.

 It is evaluated before or after the

triggering event, depending on

whether BEFORE or AFTER is used

in the event.

Access the new/old tuple or set of

tuples through the names declared in

the REFERENCING clause.

Options: The Action

There can be more than one SQL

statement in the action.

– Surround by BEGIN . . . END if there is

more than one.

Queries make no sense in an action,

so we are really limited to

modifications.

Another Example

Using Sells(bar, beer, price) and a

unary relation RipoffBars(bar)

created for the purpose, maintain a

list of bars that raise the price of any

beer by more than $1.

The Trigger

CREATE TRIGGER PriceTrig

 AFTER UPDATE OF price ON Sells

 REFERENCING

 OLD ROW as old

 NEW ROW as new

 FOR EACH ROW

 WHEN(new.price > old.price + 1.00)

 INSERT INTO RipoffBars

 VALUES(new.bar);

The event –
only changes
to prices

Updates let us
talk about old
and new tuples

We need to consider
each price change

Condition:
a raise in
price > $1

When the price change
is great enough, add
the bar to RipoffBars

Event vs. Triggers

Event will come wake the trigger

Steps for After trigger:

Event happens test the condition:

if true do action otherwise nothing.

Steps for before trigger:

Test the condition: if true do action

otherwise nothing event happens

Steps for instead of:

Test the condition: if true do action

otherwise nothing

Example

create table R(x int,y int);

create table S(u int,v int);

 insert into R values(1,10);

 insert into S values(2,20);

 insert into S values(3,30);

After vs. Before Trigger

create trigger beforetrig

before insert on R

for each row

when (3 > (select count(*) from R))

begin

update R set y=y+New.y;

end;

insert into R select * from S;

select * from R;

After vs. Before Trigger (cont.)
create trigger aftertrig

after insert on R

for each row

when (3 > (select count(*) from R))

begin

update R set y=y+New.y;

end;

insert into R select * from S;

select * from R;

Self Triggering

 create table T1(A int);

 pragma recursive_triggers = on;

 create trigger R1

after insert on T1

for each row

when (select count(*) from T1) < 10

begin

 insert into T1 values (New.A+1);

end;

insert into T1 values (1);

select * from T1;

Row-level Trigger
 Create table T1 (a float);

 create table T2 (a float);

 insert into T1 values (1);

 insert into T1 values (1);

 insert into T1 values (1);

 insert into T1 values (1);

 create trigger R1

after insert on T1

for each row

begin

 insert into T2 select avg(A) from T1;

end;

 insert into T1 select A+1 from T1;

 select * from T1;

 select * from T2;

Classroom Exercises & Demo

Database schema:

Students(sid,name,dept,age)

Courses(cid,cname,spring,teacher)

SC(sid,cid,semester,cname,grade)

Use triggers to implement

Foreign key declaration

CREATE TABLE SC (

 sid char(9) REFERENCES

students (sid) ON DELETE

CASCADE ON UPDATE

CASCADE,

 …)

Cases to violate:

Delete, update(sid) on students

Insert, update(sid) on sc

Implement: sc(sid) references

students(sid)

needs four triggers (R1 ~ R4)

R1: Cascaded delete (students)

create trigger R1

after delete on Students

for each row

begin

 delete from sc where sid = Old.sID;

end;

R2:Cascaded update when students (sid)

update

create trigger R2

after update of sid on students

for each row

begin

 update sc

 set sid = new.sid

 where sid = old.sid;

end;

R3: insert into sc

Create trigger R3

Before insert on sc

For each row

When not exists (select * from students

where sid=new.sid)

Begin

 select raise (rollback, studentNotExists);

End;

R4: update sc(sid)

create trigger R4

before update of sid on sc

for each row

when not exists (select * from students

where sid=new.sid)

begin

 select raise (rollback,studentNotExists);

end;

Test

Select * from students;

 Insert into sc(sid,cid) values(11,1);

Select * from sc where sid=1;

Delete from students where sid=1;

Select * from sc where sid=1;

Trigger R5: New cs students will be

automatically chosen database courses.

create trigger R5

after insert on students

for each row

when new.dept='cs'

begin

 insert into sc(sid,cid,cname) values

(new.sid, 1,'database');

end;

Insert into students(sid,name,dept)

values(11,’wangdong’,’cs’);

Select * from sc;

Trigger R6: when the no. of database

students is great than 5, it is not allowed.

create trigger R6

after insert on sc

for each row

when new.cid=1 and 4 < (select

count(*) from sc where cid=1)

begin

 select raise(rollback, greaterThan5);

end;

Insert into sc(sid,cid) values(5,1);

Summary

Key constraints

Referential Integrity Constraints

Value-based ,Tuple-based Check

Constraints

Assertions

Triggers

 Invoking time

