
Chapter 7 Constraints and Triggers

 Keys and foreign keys

 Constraints on attributes and

tuples

 Modification of constraints

 Assertions

 triggers

Why use integrity constraints?

To catch data-entry errors.

 As correctness criteria when

writing database updates.

To enforce consistency across data

in the database.

To tell the system about the data - it

may choose to store the data or

process a queries accordingly.

Constraints and Triggers

A constraint is a relationship among

data elements that the DBMS is

required to enforce.

– Example: key constraints.

Triggers are only executed when a

specified condition occurs, e.g.,

insertion of a tuple.

– Easier to implement than many

constraints.

Types of Constraints

(1) Non-null, unique

(2) Key

(3) Referential integrity (Foreign-keys)

(4) Attribute-based Check

(5) Tuple-based Check

(6) General assertions = global

constraints

Constraints with key, not null

and unique
key constraints: not null, unique.

Not null constraints: not null.

Unique constraints : can be null,
but unique.

Many unique constraints in a table,
but only one key constraints.

Key constraint forbids null’s in the
attributes of the key, but unique
permits them.

Foreign Keys

In relation R a clause that “attribute A
references S(B)” says that whatever non-
null values appear in the A column of R
must also appear in the B column of
relation S. B must be declared the
primary key for S.

Example:

CREATE TABLE Beers (name CHAR(20) PRIMARY
KEY, manf CHAR(20));

CREATE TABLE Sells (bar CHAR (20), beer
CHAR(20) REFERENCES Beers(name), price
REAL) ;

We expect a beer value is a real

beer --- something appearing in
Beers.name

Expressing Foreign Keys

 Use the keyword REFERENCES, either:

1. Within the declaration of an attribute, when
only one attribute is involved.

2. As an element of the schema, as:

 FOREIGN KEY (<list of attributes>)

 REFERENCES <relation>
(<attributes>)

 Referenced attributes must be declared
PRIMARY KEY or UNIQUE.

Example: With Attribute

CREATE TABLE Beers (

 name CHAR(20) PRIMARY KEY,

 manf CHAR(20));

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20) REFERENCES

Beers(name),

 price REAL);

Example: As Element

CREATE TABLE Beers (

 name CHAR(20) PRIMARY KEY,

 manf CHAR(20));

CREATE TABLE Sells (

 bar CHAR(20),

 beer CHAR(20),

 price REAL,

 FOREIGN KEY(beer) REFERENCES

 Beers(name));

What happens when a foreign key

Constraint is violated ?

Two ways:

1. Insert or update a Sells tuple so it refers

to a nonexistent beer  always rejected.

2. Delete or update a Beers tuple that has

a beer value some Sells tuples refer to

a) Default: reject

b) Cascade: Ripple changes to referring

Sells tuple

c) Set null

What happens when a foreign key

Constraint is violated ? (Cascade)

Example:

Delete “Bud” Cascade deletes all

Sells tuples that mention Bud.

Update “Bud”  “Budweiser”

change all Sells tuples with “Bud”in

beer column to be “Budweiser.”

What happens when a foreign key

Constraint is violated ? (cont.)

Set null: Change referring tuples to

have null in referring components.

Example:

 Delete “Bud.” Set-null makes all

Sells tuples with “Bud” in the beer

component have Null there.

 Update “Bud” “ Budweiser”

same change

Selecting a Policy: “Correct” policy

is a design decision
Add ON [DELETE, UPDATE]

[CASCADE, SET NULL] to
declaration of foreign key.

Example

CREATE TABLE Sells (

 bar CHAR (20), beer CHAR (20),

 price REAL,

 FOREIGN KEY beer REFERENCES

 Beers (name) ON DELETE SET NULLL
ON UPDATE CASCADE);

Otherwise, the default (reject) is used

Attribute-based Checks

Follow an attribute by a condition that must
hold for that attribute in each tuple of
its relation.

 Form: CHECK (condition)

1) Condition may involve the checked
attribute.

2) Other attributes and relations may be
involved, but only in subqueries.

 Condition is checked only when the
associated attribute changes (i.e., an
insert or update occurs)

Example

CREATE TABLE Sells

 (bar CHAR (20),

 beer CHAR(20) CHECK (beer IN

SELECT name FROM Beers)),

 price REAL CHECK (price <= 5.00));

Attribute-based Check

Effect when a value for that attribute

is inserted or updated.

– Example: CHECK (price <= 5.00) checks

every new price and rejects it if it is

more than $5.

– Example: CHECK (beer IN (SELECT

name FROM Beers)) not checked if a

beer is deleted from Beers (unlike

foreign-keys).

Tuple- Based Checks

Separate element of table declaration.

 Form: like attribute-based check.

 Condition can refer to any attribute of the
relation. Other relations/attributes
require a subquery.

 Checked whenever a tuple is inserted or
updated.

Example

Only Joe’s Bar can sell beer for more
than $5.

CREATE TABLE Sells (

 bar CHAR (20),

 beer CHAR (20),

 price REAL,

 CHECK (bar= ‘Joe’’s Bar’ OR price
<=5.00));

CHECK with and without

subquery

CREATE TABLE Sells (

 bar CHAR (20),

 beer CHAR(20) CHECK (beer IN

SELECT name FROM Beers)),

 price REAL CHECK (price <= 5.00))

Insert or update on Sells invoke checks.

Changes on Beers: nothing happen.

SQL Assertions

Database-schema constraint.

Condition may refer to any relation
or attribute in the database schema.
(Not present in Oracle).

Checked whenever a mentioned
relation changes.

Syntax:

 CREATE ASSERTION <name>

 CHECK (< condition>);

Example: No bar may charge an

average of more than $5 for beer
Sells (bar, beer, price)

CREATE ASSERTION NoRipoffbars

CHECK (NOT EXISTS (

 SELECT bar

 FROM Sells

 GROUP BY bar

 HAVING 5.0 < AVG(price));

Checked whenever Sells changes

Bars with an
average price
above $5

Example

There cannot be more bars than drinkers.

Bar (name, addr, license)

Drinkers (name, addr, phone)

CREATE ASSERTION FewBar

CHECK((SELECT COUNT(*) FROM Bars)

<=(SELECT COUNT(*) FROM Drinkers));

 Checked whenever Bars or Drinkers

changes.

Timing of Assertion Checks

 In principle, assertion checked every

time after every modification.

A clever system can observe that

only certain changes could cause a

given assertion to be violated.

– Example: No change to Beers can

affect FewBar. Neither can an insertion

to Drinkers.

Comparison of Constraints
Type of

constraints

Where

Declared

When

Activated

Guarranteed

to Hold?

Attribute-

based

Check

With

attribute

On insertion

to relation or

attribute

update

Not if

subqueries

Tuple-based

Check

Element

of

relation

schema

On insertion

to relation or

tuple update

Not if

subqueries

Assertion Element

of

database

schema

On change

to any

mentioned

relation

Yes

Modification of Constraints

 Name your Constraints

Example,

1) Gender Char(1) CONSTRAINT

NoAndro CHECK (gender in

(‘F’,’M’)),

2) Name Char(30) CONSTRAINT

NameIsKey PRIMARY KEY,

Modification of

Constraints(cont.)
 Altering Constraints on Tables

Examples,

1) ALTER TABLE Student DROP

CONSTRAINT NoAndro;

2) ALTER TABLE Student ADD

CONSTRAINT NameIskey

PRIMARY KEY(name);

DEMO

ABOUT KINDS OF CONSTRAINTS

create table students(sid int primary key, name

char[10] not null, dept char[2],age int default 20);

create table courses(cid int primary key, cname

char[40], spring boolean, teacher char[10]);

create table sc (sid int references students(sid),ON

DELETE CASCADE ON UPDATE CASCADE,

cid int check (cid in(1,2,3,4,5,6,7,8,9)), semester

int, cname char[40], grade int);

 insert into students(sid) values (11);

/* rejected: name NOT NULL */

 insert into students(sid,name) values(11,'Dan');

/* default value */

 select cid, cname from courses;

 insert into sc(sid,cid) values (11,11);

 /* rejected: check clause */

 Delete from courses where cid=1; /* problems */

 select sid, cid from sc where sid=1;

 delete from students where sid=1;

/* to see all the courses sid=1 chosen has been

deleted 级联删除 */

 select sid,cid from sc;

