apter 7 Constraints and Triggers

Keys and foreign keys

Constraints on attributes and
tuples

Modification of constraints
Assertions

INn the database.

® 7o tell the system about the data - it
may choose to store the data or
process a queries accordingly.

Why use Integrity constraints?

® To catch data-entry errors.

® As correctness criteria when
writing database updates.

® To enforce consistency across data

onstraints and Triggers

A constraint Is arelationship among
data elements that the DBMS Is
required to enforce.

— Example: key constraints.
Triggers are only executed when a

specified condition occurs, e.g.,
Insertion of a tuple.

— Easier to implement than many
constraints.

constraints

Types of Constraints

1) Non-null, unique

2) Key

3) Referential integrity (Foreign-keys)
4) Attribute-based Check

5) Tuple-based Check

6) General assertions = global

but only one key constraints.

® Key constraint forbids null’s in the
attributes of the key, but unique
permits them.

Constraints with key, not null

and unique

® key constraints: not null, unique.

® Not null constraints: not null.

® Unigue constraints : can be null,
but unique.

® Many unigque constraints in a table,

KEY, manf CHAR(20));

REATE TABLE Sells (bar CHAR (20), beer
CHAR(20) REFERENCES Beers(name), price

REAL) ; 7

We expect a beer value is a real
beer --- something appearing in
Beers.name

Foreign Keys

n relation R a clause that “attribute A
references S(B)” says that whatever non-
null values appear in the A column of R
must also appear in the B column of
relation S. B must be declared the
primary key for S.

xample:

REATE TABLE Beers (name CHAR(20) PRIMARY

Xpressing Foreign Keys

se the keyword REFERENCES, either:

Within the declaration of an attribute, when
only one attribute is involved.

As an element of the schema, as:
OREIGN KEY (<list of attributes>)

REFERENCES <relation>
<attributes>)

eferenced attributes must be declared
RIMARY KEY or UNIQUE.

Example: With Attribute

REATE TABLE Beers (

name CHAR(20) PRIMARY KEY,
manf CHAR (20)) ;

REATE TABLE Sells (

bar CHAR (20) ,

beer CHAR(20) REFERENCES
Beers (name) ,

price REAL);

xample: As Element

ATE TABLE Beers (

name CHAR(20) PRIMARY KEY,
manf CHAR (20)) ;

ATE TABLE Sells (

bar CHAR (20) ,

beer CHAR (20) ,

price REAL,

FOREIGN KEY (beer) REFERENCES
Beers (name)) ;

What happens when a foreign key
Constraint is violated ?

Two ways:

1. Insert or update a Sells tuple so it refers
to a nonexistent beer = always rejected.

2. Delete or update a Beers tuple that has
a beer value some Sells tuples refer to

a) Default: reject

0) Cascade: Ripple changes to referring
Sells tuple

c) Set null

What happens when a foreign key
Constraint is violated ? (Cascade)

Example:

® Delete “Bud” Cascade deletes all
Sells tuples that mention Bud.

® Update “Bud” =2 “Budweiser”
change all Sells tuples with “Bud”in
beer column to be “Budweiser.”

What happens when a foreign key
Constraint is violated ? (cont.)

Set null: Change referring tuples to
have null in referring components.

Example:

® Delete “Bud.” Set-null makes all
Sells tuples with “Bud” in the beer
component have Null there.

® Update “Bud”-> “ Budweiser”
same change

Selecting a Policy: “Correct” policy

IS a design decisior

Add ON [DELETE, UPDATE]
[CASCADE, SET NULL] to
declaration of foreign key.

Example

CREATE TABLE Sells (

har CHAR (20), beer CHAR (20),
orice REAL,

FOREIGN KEY beer REFERENCES

Beers (name) ON DELETE SET NULLL
ON UPDATE CASCADE);

Otherwise, the default (reject) is used

Attribute-based Checks

Follow an attribute by a condition that must
hold for that attribute in each tuple of
Its relation.

® Form: CHECK (condition)

1) Condition may involve the checked
attribute.

2) Other attributes and relations may be
Involved, but only in subqueries.

® Condition is checked only when the
assoclated attribute changes (i.e., an
Insert or update occurs)

Example
REATE TABLE Sells
(bar CHAR (20),
beer CHAR(20) CHECK (beer IN
SELECT name FROM Beers)),
price REAL CHECK (price <= 5.00));

more than $5.

— Example: CHECK (beer IN (SELECT
name FROM Beers)) not checked if a
beer is deleted from Beers (unlike
foreign-keys).

ttribute-based Check

Effect when a value for that attribute

IS Inserted or updated.

— Example: CHECK (price <= 5.00) checks
every new price and rejects it if it is

Tuple- Based Checks

Separate element of table declaration.

® Form: like attribute-based check.

® Condition can refer to any attribute of the
relation. Other relations/attributes
require a subquery.

® Checked whenever a tuple is inserted or
updated.

Example

Only Joe’s Bar can sell beer for more
than $5.

CREATE TABLE Sells (
bar CHAR (20),
beer CHAR (20),
price REAL,
CHECK (bar= ‘doe’’s Bar’ OR price
<=5.00));

CHECK with and without
subquery

EATE TABLE Sells (
bar CHAR (20),

beer CHAR(20) CHECK (beer IN
ELECT name FROM Beers)),

price REAL CHECK (price <= 5.00))

ert or update on Sells invoke checks.
anges on Beers: nothing happen.

SQL Assertions

® Database-schema constraint.

® Condition may refer to any relation
or attribute in the database schema.
(Not present in Oracle).

® Checked whenever a mentioned
relation changes.

® Syntax:
CREATE ASSERTION <name>
CHECK (< condition>);

Example: No bar may charge an
average of more than $5 for beer
ells (bar, beer, price)

REATE ASSERTION NoRipoffbars
HECK (NOT EXISTS (

Bars with an SELECT bar
average price FROM Sells

bove $5
GROUP BY bar
HAVING 5.0 < AVG(price));
Checked whenever Sells changes

Q)

Example

There cannot be more bars than drinkers.

Bar (hame, addr, license)

Drinkers (name, addr, phone)

CREATE ASSERTION FewBar

CHECK((SELECT COUNT(*) FROM Bars)
<=(SELECT COUNT(*) FROM Drinkers));

® Checked whenever Bars or Drinkers
changes.

affect FewBar. Neither can an insertion
to Drinkers.

Iming of Assertion Checks

® |n principle, assertion checked every
time after every modification.

® A clever system can observe that
only certain changes could cause a
given assertion to be violated.
— Example: No change to Beers can

Comparison of Constraints

e of Where When Guarranteed
straints |Declared |Activated to Hold?
ribute- With On insertion |Not If
ed attribute |[to relation or [subqueries
ck attribute
update
le-based | Element |On insertion | Not if
ck of to relation or |subqueries
relation |tuple update
schema
ertion Element |On change |Yes
of to any
database |mentioned

schema

relation

Modification of Constraints

® Name your Constraints
Example,

1) Gender Char(1) CONSTRAINT
NoAndro CHECK (gender In
(‘F’,’M’)),

2) Name Char(30) CONSTRAINT
NamelsKey PRIMARY KEY,

Modification of

Constraints(cont.)
® Altering Constraints on Tables

Examples,

1) ALTER TABLE Student DROP
CONSTRAINT NoAndro;

2) ALTER TABLE Student ADD
CONSTRAINT Namelskey
PRIMARY KEY(name),

EMO
BOUT KINDS OF CONSTRAINTS

create table students(sid int primary key, name
char[10] not null, dept char[2],age int default 20);

create table courses(cid int primary key, cname
char[40], spring boolean, teacher char[10]);

create table sc (sid int references students(sid),ON
DELETE CASCADE ON UPDATE CASCADE,
cid int check (cid in(1,2,3,4,5,6,7,8,9)), semester
Int, cname char[40], grade int);

deleted ZRERMHIE */

® select sid,cid from sc;

® insert into students(sid) values (11);
*rejected: name NOT NULL */
® insert into students(sid,name) values(11,'Dan');
* default value */
® select cid, cname from courses;
® insert into sc(sid,cid) values (11,11);
[* rejected: check clause */
® Delete from courses where cid=1; /* problems */
® select sid, cid from sc where sid=1,
® delete from students where sid=1,;
* 1o see all the courses sid=1 chosen has been

