
Chapter 6 The database

Language SQL –as a tutorial
 About SQL

 SQL is a standard database language,
adopted by many commercial
systems.

 ANSI SQL, SQL-92 or SQL2, SQL99 or
SQL3 extends SQL2 with object-
relational features. SQL2003 is the
collection of extensions to SQL3.

 How to query the database

 How to make modifications on
database

 Transactions in SQL

Transactions

What is transactions?

Why do we need transactions?

How to set transaction with

different isolation level?

Why Transactions?

 Concurrent database access

 Execute sequence of SQL
statements so they appear to be
running in isolation

 Resilience to system failures

 Guarantee all-or-nothing
execution, regardless of failures

Concurrent Control

Accessed by many users or

processes at the same time.

– Both queries and modifications.

Serializability
Operations may be

interleaved, but execution

must be equivalent to some

sequential (serial) order

of all transactions

Resilience to system failures

Failures may happen at any time.

All or nothing done, never half done.

DBMS

Data

Lots of updates
buffered in memory

Transfer money from one

account into another account.

Update accounts set balance = balance -

1000 where accounts.number=123;

Update accounts set balance =balance

+1000 where account.number= 456;

Solution for both

concurrency and failures

A transaction is a sequence of one or
more SQL operations treated as a
unit
 Transactions appear to run in isolation

 If the system fails, each transaction’s
changes are reflected either entirely or
not at all.

Transactions

Example: Interacting Processes

Assume the usual Sells(bar,beer,price)

relation, and suppose that Joe’s Bar

sells only Bud for $2.50 and Miller for

$3.00.

Sally is querying Sells for the highest

and lowest price Joe charges.

Joe decides to stop selling Bud and

Miller, but to sell only Heineken at

$3.50.

Sally’s Program

Sally executes the following two SQL

statements called (min) and (max) to

help us remember what they do.

(max)SELECT MAX(price) FROM Sells

 WHERE bar = ’Joe’’s Bar’;

(min)SELECT MIN(price) FROM Sells

 WHERE bar = ’Joe’’s Bar’;

Joe’s Program

At about the same time, Joe executes

the following steps: (del) and (ins).

(del) DELETE FROM Sells

 WHERE bar = ’Joe’’s Bar’;

(ins) INSERT INTO Sells

 VALUES(’Joe’’s Bar’, ’Heineken’,
3.50);

Interleaving of Statements

Sally: (max) before (min)

Joes: (del) before (ins)

Concurrent running:

1. (max) (del) (min) (ins)

2. (max) (del) (ins) (min)

3. (del)(max)(ins)(min)

4. …

5. (max)(min)(del)(ins)

6. (del)(ins)(max)(min)

Example: Strange Interleaving

Suppose the steps execute in the

order (max)(del)(ins)(min).

Joe’s Prices:

Statement:

Result:

Sally sees MAX < MIN!

{2.50,3.00}

(del) (ins)

{3.50}

(min)

3.50

{2.50,3.00}

(max)

3.00

Another Problem: Rollback

Suppose Joe executes (del)(ins),

and then issues a ROLLBACK

statement.

 If Sally executes her statements

after (ins) but before the rollback,

she sees a value, 3.50, that never

existed in the database.

• Dirty read

Summarize of problems caused by multiple

users accessing (1)

T2

T1

Time
X=10

Read X
(25)

Read X
(10)

X=25

Write X

X=10

Rollback

Use value of
X that was never
committed to DB

Summarize of problems caused by

multiple users accessing (2)

Non-Repeatable Read

T2

T1

Time

Read X
(10)

Read X
(10)

Compute X+=15
(25)

X=25

Write X

Commit

Read X
(25)

X=10

Summarize of problems caused by

multiple users accessing (3)

The “Phantom” Problem

T2

T1

Time

Select count (*)
where rank > 3

2 rows returned

Insert

Jones,6

Smith,4

Brewer,7

Jones,6 Smith,4

Brewer,7

Select count (*)
where rank > 3

3 rows returned

Solutions: Transactions

 SQL standard: i.e.

 Transaction begins automatically on first SQL
statement

 On “commit” transaction ends and new one begins.

 Current transaction ends on session termination.

 “Autocommit” turns each statement into transaction.

 or explicit programmer control:

 Begin Transaction

 …

 End Transaction

Result of Transaction: COMMIT
The SQL statement COMMIT causes

a transaction to complete.

– It’s database modifications are now

permanent in the database.

DBMS

Data

Lots of updates
buffered in memory

Result of Transaction: ROLLBACK

The SQL statement ROLLBACK also
causes the transaction to end, but by
aborting.

– No effects on the database.

Application issued:
 Begin Transaction;
 <get input from user>
 SQL commands based on input
 <confirm results with user>
 If ans=‘ok’ Then Commit; Else Rollback;

System-generated rollbacks (e.g.
division by 0).

ACID Transactions

ACID transactions are:

– Atomic : Whole transaction or none is

done.

– Consistent : Database constraints

preserved.

– Isolated : It appears to the user as if only

one process executes at a time.

– Durable : Effects of a process survive a

crash.

Consistency and isolation

–Application defines

consistency.

–Application requires isolation

to achieve consistent results,

there are four isolation levels.

–Locking typically used to

achieve isolation.

Isolation Levels

SQL defines four isolation levels =

choices about what interactions are

allowed by transactions that execute

at about the same time.

Only one level (“serializable”) = ACID

transactions.

Each DBMS implements transactions

in its own way.

Choosing the Isolation Level

 Within a transaction, we can say:

SET TRANSACTION ISOLATION

LEVEL X

 where X =

1. SERIALIZABLE

2. REPEATABLE READ

3. READ COMMITTED

4. READ UNCOMMITTED

 Overhead

 Reduction in concurrency

 Overhead  Concurrency

 Consistency Guarantees

Serializable Transactions

Sally runs with isolation level

SERIALIZABLE, then she will see

the database either before or after

Joe runs, but not in the middle.

 Set transaction isolation level serializable (default)

 SELECT MAX(price) FROM Sells WHERE bar

= ’Joe’’s Bar’;

 SELECT MIN(price) FROM Sells WHERE bar

= ’Joe’’s Bar’;

Read-Commited Transactions

Sally runs with isolation level READ

COMMITTED, then she can see only

committed data, but not necessarily

the same data each time.

Example: Under READ COMMITTED,

the interleaving (max)(del)(ins)(min)

is allowed, as long as Joe commits.

– Sally sees MAX < MIN.

Repeatable-Read Transactions

Requirement is like read-committed,

plus: if data is read again, then

everything seen the first time will be

seen the second time.

– But the second and subsequent reads

may see more tuples as well.

Example: Repeatable Read

Suppose Sally runs under

REPEATABLE READ, and the order

of execution is (max)(del)(ins)(min).

– (max) sees prices 2.50 and 3.00.

– (min) can see 3.50, but must also see

2.50 and 3.00, because they were seen

on the earlier read by (max).

Example: Repeatable Read (cont.)

Sally:

Set transaction isolation level Repeatable read;

SELECT avg(price) FROM Sells;

SELECT avg(price) FROM Sells;

Joe:

Insert into Sells values [100 tuples];

What are the result of Sally’s query?

Read Uncommitted

A transaction running under READ

UNCOMMITTED can see data in the

database, even if it was written by a

transaction that has not committed

(and may never).

Example: If Sally runs under READ

UNCOMMITTED, she could see a

price 3.50 even if Joe later aborts.

isolation level dirty reads nonrepeatable reads phantoms

READ UNCOMMITTED Y Y Y

READ COMMITTED N Y Y

REPEATABLE READ N N Y

SERIALIZABLE N N N

From weakest to strongest and
the read behaviors they permit:

• True isolation is expensive in terms of concurrency

• Many systems allow application to choose the

phenomena they will live with

• Trade off between correctness and concurrency

Read only transactions

Help system optimize performance

 Independent of isolation level

Set transaction read only;

Set transaction isolation level

Repeatable read;

SELECT avg(price) FROM Sells;

SELECT avg(price) FROM Sells;

Homework

 Exercise 6.2.2 e)

 Exercise 6.3.1 c)

 Exercise 6.4.6 i)

 Exercise 6.6.4

Upload your homework until April.7

Summary

 SQL: The language is the principal query

language for relational database systems.

(SQL2, SQL3)

 Select-From-Where Queries

 Subqueries: The operators EXISTS,

IN,ALL and ANY may be used to express

boolean-valued conditions about the

relations that are the result of a subquery

 Set Operations on Relations: UNION,

INTERSECT, EXCEPT

Summary(cont.)

The bag model for SQL, DISTINCT

elimination of duplicate tuples; ALL

allows the result to be a bag.

Aggregations:

SUM,AVG,MIN,MAX,COUNT

GROUP BY, HAVING

Modification Statements: INSERT,

DELETE, UPDATE

SUMMARY(cont.)

 Transactions: ACID

 Isolation levels :

1. Serializable: the transaction must appear to
run either completely before or completely
after each other transaction

2. Repeatable read: every tuple read in response
to a query will reappear if the query is repeated.

3. read-committed: only tuples written by
transactions that have already committed may
be seen by the transaction.

4. Read-uncommitted: no constraint.

