
Chapter 6 The database

Language SQL –as a tutorial
About SQL

 SQL is a standard database language,
adopted by many commercial
systems.

 ANSI SQL, SQL-92 or SQL2, SQL99 or
SQL3 extends SQL2 with object-
relational features. SQL2003 is the
collection of extensions to SQL3.

How to query the database

How to make modifications on
database

 Transactions in SQL

Subqueries

Simplest Case：Returns a Single, Unary
Tuple

 Find bars that serve Miller at the same price Joe charges for
Bud.

Sells(bar, beer, price)

SELECT bar

FROM Sells

WHERE beer = 'Miller' AND price =

 (SELECT price

 FROM Sells

 WHERE bar = 'Joe''s Bar' AND

 beer = 'Bud');

 Notice the scoping rule: an attribute refers to the most
closely nested relation with that attribute.

 Parentheses around subquery are essential.

The IN Operator

“Tuple IN relation” is true iff the tuple is in
the relation.

Find the name and manufacturer of beers
that Fred likes.
Beers(name, manf)

Likes(drinker, beer)

SELECT *

FROM Beers

WHERE name IN

 (SELECT beer

 FROM Likes

 WHERE drinker = 'Fred’);

Also: NOT IN.

The Exists Operator

EXISTS(<relation>) is true if and

only if the <relation> is not empty.

Beers(name, manf),

Example: find those beers that are the

unique beer by their manufacturer.

Example Query with EXISTS

 SELECT name

 FROM Beers b1

 WHERE NOT EXISTS(

 SELECT *

 FROM Beers

 WHERE manf = b1.manf AND

 name <> b1.name);

Set of
beers
with the
same
manf as
b1, but
not the
same
beer

Notice scope rule: manf refers
to closest nested FROM with
a relation having that attribute.

Notice the
SQL “not
equals”
operator

A subquery that refers to values from a
surrounding query is called a correlated subquery.

The Operator ANY

x = ANY(<relation>) is a boolean

condition meaning that x equals at

least one tuple in the relation.

Example: x >= ANY(<relation>)

means x is not smaller than all

tuples in the relation.

– Note tuples must have one component

only.

The Operator ALL

Similarly, x <> ALL(<relation>) is
true if and only if for every tuple t in
the relation, x is not equal to t.

– That is, x is not a member of the relation.

Example: x >= ALL(<relation>)
means there is no tuple larger than x
in the relation.

Quantifiers
ANY and ALL behave as existential and universal

quantifiers, respectively.

Example
Find the beer(s) sold for the highest price.

Sells(bar, beer, price)

SELECT beer
FROM Sells
WHERE price >= ALL(
 SELECT price
 FROM Sells);

price from the outer

Sells must not be

less than any price.

Conditions Involving Relations

EXISTS R: true if and only if R is not
empty.

s IN R: true if and only if s is equal
to one of the values in R.

s > ALL R: true if and only if s is
greater than every value in unary R.

s > ANY R: true if and only if s is
greater than at least one value in
unary R

Classroom exercise

Q1: select a from R

 Where b>=

 ANY (select d from S where c>10);

Q2: select a from R

 Where b>=

 ALL (select d from S where c>10);
a) Q1 and Q2 produce the same answer.

b) The answer to Q1 is contained in the answer to Q2

c) The answer to Q2 is contained in the answer to Q1

d) Q1 and Q2 produce different answers.

Think about when the subquery is empty, what is the result?

Answer:

if the subquery is empty, Q1 is null,

Q2 is all the list of R.

Where b>= ANY (empty) is not true,

there does not exist an element than

which b are bigger.

Where b>=ALL (empty) is true

Aggregations
 Sum, avg, min, max, and count apply to

attributes/columns. Also, count(*) applies to
tuples.

 Use these in lists following SELECT.

Example
Find the average price of Bud.

Sells(bar, beer, price)

SELECT AVG(price)

FROM Sells

WHERE beer = 'Bud';

 Counts each tuple (presumably each bar that
sells Bud) once.

What would we do if Sells were a bag?

Eliminating Duplicates

Before Aggregation
Find the number of different prices at

which Bud is sold.

Sells (bar, beer, price)

SELECT COUNT(DISTINCT price)

FROM Sells

WHERE beer = 'Bud';

 DISTINCT may be used in any

aggregation, but typically only makes

sense with COUNT.

NULL’s Ignored in Aggregation

NULL never contributes to a sum,

average, or count and can never be

the minimum or maximum of a

column.

But if there are no non-NULL values

in a column, then the result of the

aggregation is NULL.
 Exception: COUNT of an empty set is 0.

Examples: About count()

Select count(*)

From Sells
 counts the number of tuples in Sells.

Select count(bar)

From Sells
 counts the number of values(non-NULL) in the bar column.

Duplicates values are not eliminated.

Select count (distinct bar)

From Sells
 counts the number of different values in the bar column, no

matter how many kinds of beers bars sold.

Example: count(*) vs. count(column)

SELECT count(*)

FROM Sells

WHERE beer = ‘Bud’;

SELECT count(price)

FROM Sells

WHERE beer = ‘Bud’;

The number of bars
that sell Bud.

The number of bars
that sell Bud at a
known price.

Grouping

Follow select-from-where by GROUP BY and
a list of attributes.

 The relation that is the result of the FROM
and WHERE clauses is grouped according
to the values of these attributes, and
aggregations take place only within a
group.

Example
Find the average sales price for each beer.

Sells (bar, beer, price)

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer;

Example
Find, for each drinker, the average price of

Bud at the bars they frequent.

Sells(bar, beer, price)

Frequents(drinker, bar)

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = 'Bud' AND

 Frequents.bar = Sells.bar

GROUP BY drinker;

Note: grouping occurs after the  and 

operations.

Compute
drinker-bar-
price of Bud
tuples first,
then group
by drinker

Restriction on SELECT Lists

With Aggregation

 If any aggregation is used, then

each element of the SELECT list

must be either:

1. Aggregated, or

2. An attribute on the GROUP BY list.

Illegal Query Example

Find the bar that sells Bud the

cheapest by:

 SELECT bar, MIN(price)
 FROM Sells
 WHERE beer = ‘Bud’;

But this query is illegal in SQL.

– Why? Note bar is neither aggregated

nor on the GROUP BY list.

HAVING Clauses

HAVING <condition> may follow a

GROUP BY clause.

 If so, the condition applies to each

group, and groups not satisfying

the condition are eliminated.

Requirements on HAVING

Conditions

 May refer to any relation or tuple-

variable in the FROM clause.

 May refer to attributes of those

relations, as long as the attribute

makes sense within a group; i.e., it is

either:
1. A grouping attribute, or

2. Aggregated.

Example
Find the average price of those beers that are either

served in at least 3 bars or manufactured by
Anheuser-Busch.

Beers(name, manf)

Sells(bar, beer, price)

Rules for having clause

•Anything goes in a

subquery.

•Outside subqueries, they

may refer to attributes only

if they are either:

A grouping attribute, or

Aggregated

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer

HAVING COUNT(*) >= 3 OR

 beer IN (

 SELECT name

 FROM Beers

 WHERE manf = 'Anheuser-Busch’
);

Grouping, Aggregation and Null

The value NULL is ignored in any
aggregation.

NULL is treated as an ordinary value
in a grouped attribute.

Select a, avg(b) from R

Group by a a avg(b)

Result will be: 2 4

R(a,b) 3 9

 null 4

Grouping, Aggregation and Null

(cont.)

R(a,b)=(null,null)

Select a, count(b) from R group by a

 ?

Select a, sum(b) from R group by a

?

Classroom Exercises

Use aggregation function, subqueries

to find:

the highest grade of each courses.

how many students failed for each

course

Subqueries in From and Where

clause.

Query：the highest grade of

each courses.
select cid, max(grade) from sc where

grade is not null group by cid;

select cid,grade

from sc C1

where C1.grade is not NULL and not

exists (select * from sc C2

 where C2.grade > C1.grade and

C2.cid= C1.cid);

How many students failed in the

examination?
select cid,count(*) as numberOffailed

from sc

where sc.grade <60

group by cid;

Subquery can be in a From

clause

 select *

 from (select cid,max(grade)
as X from sc group by cid) G

 where G.X>80;

Choose the highest grade of each courses, the

highest grade is greater than 80.

