
Chapter 6 The database

Language SQL –as a tutorial
About SQL

 SQL is a standard database language,
adopted by many commercial
systems.

 ANSI SQL, SQL-92 or SQL2, SQL99 or
SQL3 extends SQL2 with object-
relational features. SQL2003 is the
collection of extensions to SQL3.

How to query the database

How to make modifications on
database

 Transactions in SQL

Union, Intersection and Difference

Union, intersection, and difference of

relations are expressed by the

following forms, each involving

subqueries:

– (subquery) UNION (subquery)

– (subquery) INTERSECT (subquery)

– (subquery) EXCEPT (subquery)

Example

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

find the drinkers and beers such that:
1. The drinker likes the beer, and

2. The drinker frequents at least one bar

that sells the beer.

Solution

(SELECT * FROM Likes)

 INTERSECT

(SELECT drinker, beer

 FROM Sells, Frequents

 WHERE Frequents.bar = Sells.bar

);

The drinker frequents
a bar that sells the
beer.

Set Semantics

The default for union, intersection,

and difference is set semantics.

– That is, duplicates are eliminated as

the operation is applied.

Motivation: Efficiency

When doing intersection or
difference, it is most efficient to sort
the relations first.

– At that point you may as well eliminate
the duplicates anyway.

Bag Semantics

Bag model: Select –From-Where

Motivation:

 When doing projection, it is easier to
avoid eliminating duplicates.

– Just work tuple-at-a-time.

Controlling Duplicate Elimination

Force the result to be a set by

SELECT DISTINCT . . .

Force the result to be a bag (i.e.,

don’t eliminate duplicates) by ALL,

as in . . . UNION ALL . . .

Example: DISTINCT

 Sells(bar, beer, price)

find all the different prices charged

for beers:

 SELECT DISTINCT price

 FROM Sells;

Notice that without DISTINCT, each

price would be listed as many times

as there were bar/beer pairs at that

price.

Example: ALL
Force bag semantics with ALL

 Frequents(drinker, bar)

 Likes(drinker, beer)

 (SELECT drinker FROM Frequents)

 EXCEPT ALL

 (SELECT drinker FROM Likes);

 Lists drinkers who frequent more bars

than they like beers, and does so as many

times as the difference of those counts.

Classroom Exercise

Assume R and S have the same schema

Q1: (select * from R) INTERSECT ALL

(select * from S)

Q2: (select * from R) NATURAL JOIN (select

* from S)
a) Q1 and Q2 produce the same answer.

b) The answer to Q1 is contained in the answer to Q2

c) The answer to Q2 is contained in the answer to Q1

d) Q1 and Q2 produce different answers.

Answer (b)

As sets, both produce the intersection of R
and S. However, SQL is a bag language.
Suppose a tuple t appears m times in R
and n times in S. Then T appears min(m,n)
times in the answer to Q1. However, for the
join, we pair all tuples of R with all tuples
of S that agree in the common attributes
(i.e., all attributes in this case), and we
produce of copy for each successful
pairing. Thus, Q2 produces mn copies of t.
It is easy to verify that as long as m and n
are nonnegative integers, min(m,n) <= mn.

Join Expressions

SQL provides a number of

expression forms that act like

varieties of join in relational algebra.

– But using bag semantics, not set

semantics.

These expressions can be stand-

alone queries or used in place of

relations in a FROM clause.

Products and Natural Joins

Natural join is obtained by:

 R NATURAL JOIN S;

 Product is obtained by:

 R CROSS JOIN S;

 Example:

 Likes NATURAL JOIN Serves;

Relations can be parenthesized

subexpressions, as well.

Theta Join

 R JOIN S ON <condition> is a theta-join,

using <condition> for selection.

 Example:

Drinkers(name, addr),

Frequents(drinker, bar):

 Drinkers JOIN Frequents ON

 name = drinker;

Results: all (n, a, d, b) quadruples such that

drinker d lives at address a and frequents

bar b.

Outerjoins

 R OUTER JOIN S is the core of an
outerjoin expression. It is modified
by:

1. Optional NATURAL in front of OUTER.

2. Optional ON <condition> after JOIN.

3. Optional LEFT, RIGHT, or FULL before
OUTER.
 LEFT = pad dangling tuples of R only.

 RIGHT = pad dangling tuples of S only.

 FULL = pad both; this choice is the default.

Classroom Demo: Set operations

select sid from sc;

select sid from sc union select sid

from sc;

select sid from sc union all select

sid from sc;

who has not chosen any courses?

select sid from students except

select sid from sc;

Demo: Theta-Join expressions

select * from students, sc where

students.sid=sc.sid;

select * from students join sc on

students.sid=sc.sid;

select *from Students natural join

sc;

select * from students natural join

sc where grade is not null;

Demo: Self join expressions

pairs of students with the same

average grade:

select s1.sid, s2.sid

 from (select sid,avg(grade) as x from

sc group by sid) s1, (select sid,

avg(grade) as x from sc group by

sid) s2

 where s1.x=s2.x and s1.sid < s2.sid;

Database Modifications

 A modification command does not

return a result as a query does, but

it changes the database in some

way.

 There are three kinds of

modifications:

1. Insert a tuple or tuples.

2. Delete a tuple or tuples.

3. Update the value(s) of an existing

tuple or tuples.

Insertion

 INSERT INTO <relation>

 VALUES (<list of values>);

Example: add to Likes(drinker, beer)

the fact that Sally likes Bud.

 INSERT INTO Likes

 VALUES(‘Sally’, ‘Bud’);

Specifying Attributes in

INSERT
 Add to the relation name a list of

attributes.

 Reasons :

1. We forget the standard order of

attributes for the relation.

2. We don’t have values for all attributes,

and we want the system to fill in

missing components with NULL or a

default value.

Example: Specifying Attributes

Another way to add the fact that

Sally likes Bud to Likes(drinker,

beer):

INSERT INTO Likes(beer,

drinker)

VALUES(‘Bud’, ‘Sally’);

Inserting Many Tuples

 Insert the entire result of a query

into a relation, using the form:

 INSERT INTO <relation>

 (<subquery>);

Example: Insert a Subquery

Using Frequents(drinker, bar), enter

into the new relation

PotBuddies(name) all of Sally’s

“potential buddies,” i.e., those

drinkers who frequent at least one

bar that Sally also frequents.

Solution

INSERT INTO PotBuddies

(SELECT d2.drinker

 FROM Frequents d1, Frequents d2

 WHERE d1.drinker = ‘Sally’ AND

 d2.drinker <> ‘Sally’ AND

 d1.bar = d2.bar

);

Pairs of Drinker
tuples where the
first is for Sally,
the second is for
someone else,
and the bars are
the same.

The other
drinker

Deletion

To delete tuples satisfying a

condition from some relation:

DELETE FROM <relation>

WHERE <condition>;

Example: Deletion

Delete from Likes(drinker, beer) the

fact that Sally likes Bud:

 DELETE FROM Likes

 WHERE drinker = ‘Sally’ AND

 beer = ‘Bud’;

Example: Delete all Tuples

Make the relation Likes empty:

 DELETE FROM Likes;

Note no WHERE clause needed.

Example: Delete Many Tuples

Beers(name, manf)

Delete all beers for which there is
another beer by the same
manufacturer.

DELETE FROM Beers b

WHERE EXISTS (

 SELECT name FROM Beers

 WHERE manf = b.manf AND

 name <> b.name);

Beers with the same
manufacturer and
a different name
from the name of
the beer represented
by tuple b.

Semantics of Deletion -- 1

Suppose Anheuser-Busch makes

only Bud and Bud Lite.

Suppose we come to the tuple b for

Bud first.

The subquery is nonempty, because

of the Bud Lite tuple, so we delete

Bud.

Now, When b is the tuple for Bud Lite,

do we delete that tuple too?

Semantics of Deletion -- 2

 The answer is that we do delete

Bud Lite as well.

 The reason is that deletion

proceeds in two stages:

1. Mark all tuples for which the WHERE

condition is satisfied in the original

relation.

2. Delete the marked tuples.

Updates

To change certain attributes in

certain tuples of a relation:

 UPDATE <relation>

 SET <list of attribute

assignments>

 WHERE <condition on tuples>;

Updates many tuples at once.

Example: Update

Change drinker Fred’s phone number

to 555-1212:

 UPDATE Drinkers

 SET phone = ‘555-1212’

 WHERE name = ‘Fred’;

Example: Update Several Tuples

Make $4 the maximum price for beer:

 UPDATE Sells

 SET price = 4.00

 WHERE price > 4.00;

Adding Attributes

Change a relation schema by adding

a new attribute (“column”) by:

 ALTER TABLE <name> ADD

 <attribute declaration>;

Example:

ALTER TABLE Bars ADD

phone CHAR(16)DEFAULT

‘unlisted’;

Deleting Attributes

Remove an attribute from a relation

schema by:

 ALTER TABLE <name>

 DROP <attribute>;

Example: we don’t really need the

license attribute for bars:

 ALTER TABLE Bars DROP license;

Classroom Exercise

 let these students who have not

chosen any courses to choose

database course. (insert)

 update the corresponding

information (update)

 delete those students who has

taken more than 5 courses (delete)

Insert: these students who have not chosen any

courses to choose database course

select * from students where sid not

in (select sid from sc);

 insert into sc(sid) select sid from

students where sid not in (select sid

from sc);

update sc set cid=1,

cname='database' where cid is null;

delete those students who has taken more than 5

courses

delete from sc where sid in (select

sid from sc group by sid having

count(*) > 5);

select sid,count(*) from sc group by

sid;

