
Chapter 6 The database

Language SQL –as a tutorial
 About SQL

 SQL is a standard database language,
adopted by many commercial
systems.

 ANSI SQL, SQL-92 or SQL2, SQL99 or
SQL3 extends SQL2 with object-
relational features. SQL2003 is the
collection of extensions to SQL3.

 How to query the database

 How to make modifications on
database

 Transactions in SQL

Why SQL? Or sequel

SQL is a very-high-level language.

– Say “what to do” rather than “how to do

it.”

– Avoid a lot of data-manipulation details

needed in procedural languages like

C++ or Java.

Database management system

figures out “best” way to execute

query.

– Called “query optimization.”

SQL:structured query language

Components of language:

Schema definition, Data retrieval, Data

modification, Indexes, Constraints, Views,

Triggers, Transactions, authorization,etc

o DDL = data definition language

o DML = data Manipulation Language

 Two forms of usage:

o Interactive SQL (GUI, prompt)

o Embedded SQL (C, Java)

SQL:Structured Query Language
Form
SELECT <desired attributes>

FROM <tuple variables or relation name>

WHERE <conditions>

GROUP BY <attributes>

HAVING <conditions>

ORDER BY < list of attributes>

 Queries on one relation

 Queries on more than one relations

 Subqueries and correlated subqueries

 Full-relation operations

Questions 1:

Explain the difference between:

SELECT b

FROM R

WHERE a<10 OR a>=10;

and

SELECT b

FROM R;

Question 2: explain the

difference between:

SELECT a

FROM R, S

WHERE R.b = S.b;

SELECT a

FROM R

WHERE b IN (SELECT b FROM S)

SQL Queries

 Principal form:
SELECT desired attributes

FROM tuple variables –– range over relations

WHERE condition about tuple variables;

 Running example relation schema:
Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

Example: Query on one relation

What beers are made by Anheuser-Busch?
Beers(name, manf)

SELECT name

FROM Beers

WHERE manf = 'Anheuser-Busch';

 Note: single quotes for strings.

 name

 Bud

 Bud Lite

 Michelob

The answer is a

relation with a single

attribute

Formal Semantics

of Single-Relation SQL Query
1. Start with the relation in the FROM clause.

2. Apply (bag) , using condition in WHERE
clause.

3. Apply (extended, bag) using attributes
in SELECT clause.

Equivalent Operational
Semantics

Imagine a tuple variable ranging over all
tuples of the relation. For each tuple:

 Check if it satisfies the WHERE clause.

 Print the values of terms in SELECT, if so.

Star as List of All Attributes

Beers(name, manf)

SELECT *

FROM Beers

WHERE manf = 'Anheuser-Busch';

 name manf

 Bud Anheuser-Busch

 Bud Lite Anheuser-Busch

 Michelob Anheuser-Busch

Renaming columns

Beers(name, manf)

SELECT name AS beer

FROM Beers

WHERE manf = 'Anheuser-Busch';

 beer

 Bud

 Bud Lite

 Michelob

If you want the result to have different

attribute names, use “AS <new name>” to

rename an attribute. For example:

Expressions as Values in Columns

Sells(bar, beer, price)

SELECT bar, beer,

 price*6.5 AS priceInRMB

FROM Sells;

 bar beer priceInRMB

 Joe’s Bud 19

 Sue’s Miller 20
 … … …

 Note: no WHERE clause is OK.

• If you want an answer with a particular string in
each row, use that constant as an expression.

Likes(drinker, beer)

SELECT drinker,

 'likes Bud' AS whoLikesBud

FROM Likes

WHERE beer = 'Bud';

 drinker whoLikesBud

 Sally likes Bud

 Fred likes Bud

 … …

Example
 Find the price Joe's Bar charges for Bud.

Sells(bar, beer, price)

SELECT price

FROM Sells

WHERE bar = 'Joe''s Bar' AND

 beer = 'Bud';

 Note: two single-quotes in a character string
represent one single quote.

 Conditions in WHERE clause can use logical
operators AND, OR, NOT and parentheses in
the usual way.

 Remember: SQL is case insensitive.
Keywords like SELECT or AND can be written
upper/lower case as you like.
– Only inside quoted strings does case matter.

Patterns

• WHERE clauses can have conditions in

which a string is compared with a

pattern, to see if it matches.

General form:

 <Attribute> LIKE <pattern> or

 <Attribute> NOT LIKE <pattern>

Pattern is a quoted string with % = “any

string”; _ = “any character.”

Pattern Example

 Find drinkers whose phone has

exchange 555.

Drinkers(name, addr, phone)

SELECT name

FROM Drinkers

WHERE phone LIKE '%555-_ _ _ _’;

Escape Characters in Like

expressions
 SQL allows to specify any one

character we like as the escape

character for a single pattern.

Example

s LIKE ‘x%%x%’ ESCAPE ‘x’

x: escape character in the pattern.

s matches %asd% or %y%;

Nulls

• Tuples in SQL relations can have NULL

as a value for one or more components.

• Meaning depends on context. Two

common cases:

• Missing value : e.g., we know Joe’s Bar

has some address, but we don’t know

what it is.

• Inapplicable : e.g., the value of

attribute spouse for an unmarried

person.

Comparing NULL’s to Values

The logic of conditions in SQL is

really 3-valued logic: TRUE, FALSE,

UNKNOWN.

Comparing any value (including

NULL itself) with NULL yields

UNKNOWN.

A tuple is in a result iff the WHERE clause

is TRUE (not FALSE or UNKNOWN).

Operation upon on NULL value

Operate on a NULL and any value,

including another NULL, using an

arithmetic operator like * or +, the

result is NULL.

a b

1 2

null 3

2 null

2 5

Select a, b*6.0 as priceInRMB

From R

Where a >1

a priceInRMB

2 null

2 30

Question: what is the result?

Where clause:

Where a > 1 AND b< 3

If a=2, a>1 is true

If a=1, a>1 is false

If a is null, a >1 is unknown

Generally,

TRUE AND (FALSE OR NOT(UNKNOWN)) = ?

Three-Valued Logic (See fig6.2)

Think of TRUE = 1, FALSE = 0, and

UNKNOWN = ½ .

AND = MIN; OR = MAX, NOT(x) = 1-x.

Example:

TRUE AND (FALSE OR NOT(UNKNOWN)) =

MIN(1, MAX(0, (1 - ½))) =

MIN(1, MAX(0, ½)) =

MIN(1, ½) = ½ .

Example

 bar beer price

 Joe's bar Bud NULL

SELECT bar

FROM Sells

WHERE price < 2.00 OR price >= 2.00;

 UNKNOWN UNKNOWN

 UNKNOWN

 Joe's Bar is not produced.

Reason: 2-Valued Laws !=

3-Valued Laws

Some common laws, like

commutativity of AND, hold in 3-

valued logic.

But not others, e.g., the law of the

excluded middle : p OR NOT p =

TRUE.

– When p = UNKNOWN, the left side is

MAX(½ , (1 – ½)) = ½ != 1.

Testing for NULL

 Use value IS NULL or value IS NOT

NULL.

 Select * from Sells where price is NULL;

 bar beer price

 Joe's bar Bud NULL

 Null is a special value, while unknown

is a truth-value, like true or false, is a

result of the comparison, or evaluation

on a condition.

For example: find an

equivalent query

Select *

From Sells

Where price <=12 or price >12;

Select *

From Sells

Where price is not null;

Multi-relation Queries

 Interesting queries often combine data from more than

one relation.

 List of relations in FROM clause.

 Relation-dot-attribute disambiguates attributes
from several relations.

Example: Find the beers that the frequenters
of Joe's Bar like.
Likes(drinker, beer)

Frequents(drinker, bar)

SELECT beer

FROM Frequents, Likes

WHERE bar = 'Joe''s Bar' AND

 Frequents.drinker = Likes.drinker;

Formal Semantics

 Almost the same as for single-

relation queries:

1. Start with the product of all the

relations in the FROM clause.

2. Apply the selection condition from

the WHERE clause.

3. Project onto the list of attributes

and expressions in the SELECT

clause.

Operational Semantics

 Imagine one tuple-variable for each

relation in the FROM clause.

– These tuple-variables visit each

combination of tuples, one from each

relation.

 If the tuple-variables are pointing to

tuples that satisfy the WHERE

clause, send these tuples to the

SELECT clause.

Example

 drinker bar drinker beer

tv1 tv2
 Sally Bud
 Sally Joe’s

 Likes
 Frequents

 to output check these

are equal

check
for Joe

Explicit Tuple-Variables

Sometimes, a query needs to use two

copies of the same relation.

Distinguish copies by following the

relation name by the name of a tuple-

variable, in the FROM clause.

 It’s always an option to rename

relations this way, even when not

essential.

Example: Self-Join

From Beers(name, manf), find all
pairs of beers by the same
manufacturer.

– Do not produce pairs like (Bud, Bud).

– Produce pairs in alphabetic order, e.g.
(Bud, Miller), not (Miller, Bud).

 SELECT b1.name, b2.name

 FROM Beers b1, Beers b2

 WHERE b1.manf = b2.manf AND

 b1.name < b2.name;

Computer: R intersection (S

union T) when T is empty
R(a)={100,1}

S(a)={100};

T(a) is empty;

Select R.a from R,S,T

where R.a=S.a or R.a =T.a;

What is the result?

Summary

 SQL basic queries

 Semantics of SQL queries.

SELECT <desired attributes>

FROM <tuple variables or relation name>

WHERE <conditions>

GROUP BY <attributes>

HAVING <conditions>

ORDER BY < list of attributes>

What is the difference?

SELECT a

FROM R, S

WHERE R.b = S.b;

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

We suppose:

R (a,b)

S (b,c)

IN is a Predicate About R’s Tuples

SELECT a

FROM R

WHERE b IN (SELECT b FROM S);

One loop, over
the tuples of R

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) satisfies
the condition;
1 is output once.

Two 2’s

This Query Pairs Tuples from R, S

SELECT a

FROM R, S

WHERE R.b = S.b;

Double loop, over
the tuples of R and S

a b
1 2
3 4
 R

b c
2 5
2 6
 S

(1,2) with (2,5)
and (1,2) with
(2,6) both satisfy
the condition;
1 is output twice.

About the SQLlite

SQLite is a software library that

implements a self-contained,

serverless, zero-configuration,

transactional SQL database

engine. SQLite is the most widely

deployed SQL database engine in

the world. The source code for

SQLite is in the public domain.

http://www.sqlite.org/selfcontained.html
http://www.sqlite.org/selfcontained.html
http://www.sqlite.org/selfcontained.html
http://www.sqlite.org/serverless.html
http://www.sqlite.org/zeroconf.html
http://www.sqlite.org/zeroconf.html
http://www.sqlite.org/zeroconf.html
http://www.sqlite.org/transactional.html
http://www.sqlite.org/mostdeployed.html
http://www.sqlite.org/mostdeployed.html
http://www.sqlite.org/copyright.html

Classroom exercises

Download sqllite and dbdata in the

web site:

http://www.cs.sjtu.edu.cn/~li-

fang/DB.htm

 .read mydb.sql

http://www.cs.sjtu.edu.cn/~li-fang/DB.htm
http://www.cs.sjtu.edu.cn/~li-fang/DB.htm
http://www.cs.sjtu.edu.cn/~li-fang/DB.htm

Classroom Exercises: to create a

student course database system.

create table students(sid int primary

key,name char[10],dept char[2],age

int default 20);

create table courses (cid int primary

key, cname char[10], spring boolean,

teacher char[10]);

create table sc (sid int, cid

int,semester int,cname

varchar[20],grade int);

Classroom Exercises:

Know all the courses in the spring

semester.

Search any ‘data’ courses, such as

database, data mining and so on.

 Is there a course named “100%

success”?

Find those students who have chosen

some courses already.

Know all the courses in the spring

semester.

Select cid, cname, ‘springOpened’ as

spring, teacher

 from courses

 where spring=1;

Search any courses related with

‘data’.

select * from courses

where cname like '%data%';

Whether there is a course named

“100% success”?

select * from courses

where cname like '%X%%' ESCAPE 'X';

Find those students who have chosen

some courses already.

Q1: select name from students,sc

where students.sid = sc.sid;

Q2: select name from students

where sid in (select sid from sc);

