
I   Relational Database 
Modeling– how to define 

   Relational Model  

• data structure, operations, constraints 

• Design theory for relational database 

High-level Models 

• E/R model,  UML model,  ODL 



II Relational Database Programming 

– how to operate 

 Chapter 5： From an abstract point of view 
to study the question of database queries 
and modifications.  

• Relational Algebra  

• A Logic for Relation 

 

 Chapter 6~10： From a practical point to 
learn the operations on Database 

• The Database Language SQL  



Chapter 5 Algebraic and Logic Query 
languages 

 Relational operations (chapter 2) 

 Extended operators 

 Datalog: a logic for relations 

 Relational algebra vs. Datalog 



Review 1: what is  
Relational Algebra? 

 An algebra whose operands are 
relations or variables that represent 
relations. 

 Operators are designed to do the 
most common things that we need to 
do with relations in a database. 

 The result is an algebra that can be used 
as a query language  for relations. 



Review 2:  
“Core” of Relational Algebra 

 Set operations: Union, intersection and 
difference (the relation schemas must be 
the same) 

 Selection: Picking certain rows from a 
relation. 

 Projection: picking certain columns. 

 Products and joins: composing relations in 
a useful ways. 

 Renaming of relations and their attributes.  



Review 3: Bags Model 

 SQL, the most important query 
language for relational databases is 
actually a bag language. 

 SQL will eliminate duplicates, but 
usually only if you ask it to do so 
explicitly. 

 Some operations, like projection, are 
much more efficient on bags than 
sets. 



Extended (“Nonclassical”) 

Relational Algebra 

Add features needed for SQL bags. 

1. Duplicate-elimination operator  

2. Extended projection. 

3. Sorting operator  

4. Grouping-and-aggregation operator 
 

5. Outerjoin operator   



Duplicate Elimination 

 (R ) = relation with one copy of each 
tuple that appears one or more times in R. 

Example  R =   A    B 

                       1    2 

                       3    4 

                       1    2 

 (R ) =            A    B 

                       1    2 

                       3    4 

 



Sorting 

L(R) = list of tuples of R, ordered according 
to attributes on list L 

  Note that result type is outside the normal 
types (set or bag) for relational algebra. 
Consequence,  cannot be followed by 
other relational operators. 

R =   A    B         B(R ) = [(1,2), (5,2), (3,4)] 

        1     2 

        3     4 

        5     2  



Extended Projection 

  Allow the columns in the  projection to 
be functions of one or more columns in 
the argument relation. 

Example:  

 R = A     B  A+B,A,A (R)=  A+B  A1  A2 

       1     2                        3     1    1 

       3     4                        7     3    3 

 •Arithmetic on attributes 

•Duplicate occurrences of the same attribute 



Aggregation Operators 

 Aggregation operators apply to 
entire columns of a table and 
produce a single result. 

 The most important examples: SUM, 
AVG, COUNT, MIN, and MAX. 



Example: Aggregation 

R = A B 
 1 3 
 3 4 
 3 2 

SUM(A) = 7 
COUNT(A) = 3 
MAX(B) = 4 
AVG(B) = 3 



Grouping Operator 

L(R ) where L is a list of elements that are 
either 

1. Individual (grouping) attributes or 

2. Of the form (A), where  is an 
aggregation operator and A the attribute 
to which it is applied, computed by: 

 Grouping R according to all the grouping 
attributes on list L. 

 Within each group, compute (A), for each 
element (A) on list L 

 Result is the relation whose column consist of 
one tuple for each group. The components of 
that tuple are the values associated with each 
element of L for that group. 



Example:  
compute beer, AVG(price)(R ) 

R=   Bar     Beer    price  

       Joe’s    Bud     2.00 

       Joe’s    Miller   2.75 

       Sue’s   Bud      2.5 

       Sue’s   Coors   3.00 

       Mel’s    Miller   3.25 

1.  Group by the grouping attributes, beer in this case: 

        Bar     Beer    price 

       Joe’s    Bud     2.00 

       Sue’s   Bud      2.5 

       Joe’s    Miller   2.75 

       Mel’s    Miller   3.25 

       Sue’s   Coors   3.00 



Example  (cont.) 

2. Computer average of price with 
groups: 

  

   Beer     AVG (price) 

    Bud      2.25 

    Miller    3.00 

    Coors    3.00 

beer, 

AVG(price)(R ) 



Example: 
Grouping/Aggregation 

R = A B C 
 1 2 3 
 4 5 6 
 1 2 5 
 

  A,B,AVG(C) (R) = ?? 
First, group R : 
 A B C 
 1 2 3 
 1 2 5 
 4 5 6 

Then, average C within 
groups: 
 
A B AVG(C) 
1 2   4 
4 5   6 



Outjoin 

 The normal join can “lose” information, the 
(4,5) and (4,6) (dangles) has no vestige in 
the join result. 

 

 Outerjoin operator         : the null value 
can be used to “pad” dangling tuples. 

 

 Variations: theta-outjoin, left- and right-
outjoin (pad only dangling tuples from the 
left (resp., right). 

A B 

1 2 

4 5 

B C 

2 3 

4 6 

A B C 

1 2 3 



Example: Outerjoin 

R =  A B  S = B C 
 1 2   2 3 
 4 5   6 7 
 
(1,2) joins with (2,3), but the other two tuples 
are dangling. 

R OUTERJOIN S = A B C 
   1 2 3 
   4 5 NULL 
   NULL 6 7 



Example (cont.) 

R   L S =    A    B     C 
              1      2 3 
        4      5   NULL 

 

R    RS =   A    B     C 

                 1     2     3 

               null    6     7 



Classroom Exercises 

 R(A,B): {(0,1),(2,3),(0,1),(2,4),(3,4)} 

 S(B,C):{(0,1),(2,4),(2,5),(3,4),(0,2),(
3,4) 

 

Computer:  

1)  B+1,C-1 (S)  2)  b,a (R)  3) (R) 

4) a, sum(b) (R)  5) R outjoin S 



Logic As a Query Language 

 If-then logical rules have been 
used in many systems. 

 Nonrecursive rules are equivalent 
to the core relational algebra. 

 Recursive rules extend relational 
algebra and appear in SQL-99. 



Logic As a Query Language 
(cont.) 

 A Query: to find a cheap beer whose 
price is less than 2 dollars 

 

 A Rule:  

if sells (bar,beer,price) and the price < 
2 then the beer is cheap.  

 



Predicates and atoms 

 A predicate followed by its arguments is 
called an atom. 

 Atom = predicate and arguments. 

 Predicate = relation name or arithmetic predicate, 
e.g. <. 

 Arguments are variables or constants. 

 Relations are represented in Datalog by 
predicates. 

 R(a1,a2,…an) has value TRUE if (a1,a2,…an) 

is a tuple of R, otherwise, it is false. 



A Logical Rule 

 Frequents(drinker, bar) 
Likes(drinker, beer) 

  Sells(bar, beer, price) 

 Define a rule called “happy drinkers” 
--- those that frequent a bar that 
serves a beer that they like. 



Anatomy of a Rule 

Happy(d) <- Frequents(d,bar) AND 

 Likes(d,beer) AND Sells(bar,beer,p) 

Body = antecedent = 
AND of subgoals. 

Head = consequent, 
a single subgoal 

Read this 
symbol “if” 



Subgoals Are Atoms 

 An atom  is a predicate, or relation 
name with variables or constants as 
arguments. 

 The head is an atom; the body is 
the AND of one or more atoms. 

 Convention: Predicates begin with a 
capital, variables begin with lower-
case. 



Example: Atom 

  Sells(bar, beer, p) 

The predicate 
= name of a 
relation 

Arguments are 
variables (or constants). 



Applying a Rule 

 Approach 1: consider all combinations 
of values of the variables. 

 If all subgoals are true, then evaluate 
the head. 

 The resulting head is a tuple in the 
result. 



Example: Rule Evaluation 

Happy(d) <- Frequents(d,bar) AND 

  Likes(d,beer) AND Sells(bar,beer,p) 

FOR (each d, bar, beer, p) 

 IF (Frequents(d,bar), Likes(d,beer), 
and Sells(bar,beer,p) are all true) 

  add Happy(d) to the result 

 Note: set semantics so add only once. 



Only assignments that make all subgoals true: 
 d  David, bar  Joe’sbar, BeerBud 
 d  David, bar  Joe’sbar, BeerMiller 
 d  Frank, bar  Sue’sbar, BeerBud 

  
In the above cases it makes subgoals all true. Thus, 
add (d) = (david, Frank) to happy (d). 
 
d Susan, bar Joe’sbar, beerCoors, however the 
third subgoal is not true, because (Joe’sbar, Coors,p) 

is not in Sells. 

    Bar  Beer  price 
  

Joe’s    Bud     2.00 
 Joe’s    Miller   2.75 
 Sue’s   Bud      2.5 

  Sue’s   Coors   3.00 

Drinker Beer 
 
David      Bud 
David      Miller 
Frank      Bud 
Susan     Coors 

Drinker  Bar 
 
David  Joe’sbar 
Frank Sue’s bar 
Susan Joe’s bar 



Applying a Rule 

 Approach 2: For each subgoal, 
consider all tuples that make the 
subgoal true. 

 If a selection of tuples define a 
single value for each variable, then 
add the head to the result. 



Example: Rule Evaluation – (2) 

Happy(d) <- Frequents(d,bar) AND 

  Likes(d,beer) AND Sells(bar,beer,p) 

  FOR (each f in Frequents, i in Likes, and 
s in Sells) 

 IF (f[1]=i[1] and f[2]=s[1] and   
     i[2]=s[2]) 

  add Happy(f[1]) to the result 



Three assignments of tuples to subgoals: 
 
f(david Joe’sbar) i(David Bud) s(Joe’s Bud  2.00) 
f(david Joe’sbar) i(David Miller) s(Joe’s Miller  2.75) 
f(frank,Sue’sbar) i(Frank Bud) s(Sue’s Bud 2.5) 

 
makes 
f[1]=i[1] and f[2]=s[1] and   i[2]=s[2])   true 

 
Thus, (david,frank) is the only tuples for the head. 

Drinker  Bar 
 
David  Joe’sbar 
Frank Sue’s bar 
Susan Joe’s bar 

Drinker Beer 
 
David      Bud 
David      Miller 
Frank      Bud 
Susan     Coors 

    Bar  Beer  price 
  

Joe’s    Bud     2.00 
 Joe’s    Miller   2.75 
 Sue’s   Bud      2.5 

  Sue’s   Coors   3.00 



Arithmetic Subgoals 

 In addition to relations as predicates, 
a predicate for a subgoal of the body 
can be an arithmetic comparison. 

 We write arithmetic subgoals in the 
usual way, e.g., x < y. 



Example: Arithmetic 

 A beer is “cheap” if there are at least 
two bars that sell it for under $2. 

 

Cheap(beer)  <-  Sells(bar1,beer,p1)  
AND Sells(bar2,beer,p2)  

  AND p1 < 2.00 

 AND p2 < 2.00  

  AND bar1 <> bar2 



Negated Subgoals 

 NOT in front of a subgoal negates 
its meaning. 

 Example: Think of Arc(a,b) as arcs 
in a graph. 
 S(x,y) says the graph is not transitive 

from x  to y ; i.e., there is a path of 
length 2 from x  to y, but no arc from 
x  to y. 

S(x,y) <- Arc(x,z) AND Arc(z,y) 

   AND NOT Arc(x,y) 



Safe Rules 

 A rule is safe  if: 

1. Each variable in head, 

2. Each variable in an arithmetic 
subgoal, and 

3. Each variable in a negated subgoal, 

 also appears in a nonnegated, 

 relational subgoal. 

 Safe rules prevent infinite results. 



Example: Unsafe Rules 

 Each of the following is unsafe 
and not allowed: 

1. S(x) <- R(y) 

2. S(x) <- R(y) AND NOT R(x) 

3. S(x) <- R(y) AND x < y 

 In each case, an infinity of x ’s 
can satisfy the rule, even if R  is 
a finite relation. 

R 

7 

9 

0 

1 

S 

? 

? 

? 

? 



An Advantage of Safe Rules 

 Safe rule: S(x) <- R(x) AND x > 1 

 

 Where tuples(x) is from only the 
nonnegated, relational subgoals R. 

 The head, negated relational 
subgoals, and arithmetic subgoals 
thus have all their variables defined 
and can be evaluated. 

R 

7 

9 

0 

1 



Datalog Programs 

 Datalog program  = collection of 
rules. 

 In a program, predicates can be 
either 

1. EDB = Extensional Database  = stored 
table. 

2. IDB = Intensional Database  = relation 
defined by rules. 

 Never both!  No EDB in heads. 



For example 

 EDB:  

Sells(bar,beer,price) 

Beer(name,manf) 

 

 IDB: 
Cheap(beer)  <-  Sells(bar1,beer,p1)  AND Sells(bar2,beer,p2)  

  AND p1 < 2.00 AND p2 < 2.00   AND bar1 <> bar2 

 
Happy(drinker) <- Frequents(d,bar) AND Likes(d,beer) AND   

Sells(bar,beer,p) 

 

bar beer price 

Joe’s  Bud 3 

Joes’s  Miller 1 

Mary’s Bud 1 

Mary’s Miller 1.5 

David Bud 1.5 

cheapBeer 

Miller 

Bud 

Create table sells(bar string, beer string, 
Price float); 



Evaluating Datalog 
Programs  

 Pick an order to evaluate the IDB 
predicates, all the predicates in the 
body of its rules needs to be 
evaluated. 

 If an IDB predicate has more than 
one rule, each rule contributes tuples 
to its relation.  



Example: Datalog Program 

 EDB Sells(bar, beer, price) and 
Beers(name, manf)  

 Query: to find the manufacturers of 
beers Joe doesn’t sell. 

 

JoeSells(b) <- Sells(’Joe’’s Bar’, b, p) 

Answer(m) <- Beers(b,m) 

    AND NOT JoeSells(b) 



Example: Evaluation 

 Step 1: Examine all Sells tuples with 
first component ’Joe’’s Bar’. 

  Add the second component to JoeSells. 

 Step 2: Examine all Beers tuples 
(b,m). 

 If b  is not in JoeSells, add m  to 
Answer. 



Relational Algebra & Datalog 

 Both are query languages for 
relational database  (abstractly) 

 Algebra: use algebra expression. 

 Datalog: use logic expressions. 

 

Core of algebra = Datalog rules (no 
recursive) 



From Relational Algebra to 
Datalog 

RS        I(x)  R(x) AND S(x) 

RS        I(x)  R(x) 

              I(x)  S(x) 

RS         I(x)  R(x) AND NOT S(x) 

A(R)       I(a)  R(a,b) 

F(R)       I(x)  R(x) AND F 

 



From Relational Algebra to 
Datalog (cont.) 

A(R)                I(a)  R(a,b) 

C1 AND C2(R)      I(x)  R(x) AND C1                                                                                
x                               AND C2 

C1 OR C2(R)       I(x)  R(x) AND C1 

                       I(x)  R(x) AND C2 

RS                 I(x,y)  R(x) AND S(y) 

R     S              I(x,y,z)  R(x,y) AND    
x                                   S(y,z) 



Example: 

 U (a,b,c) and V (b,c,d) have theta join 

 

Relational algebra: 

     U             V 

        a<d or U.b<>V.b  

Relational datalog: 
X(a,ub,uc,vb,vc,d)<- U(a,ub,uc) and V(vb,vc,d) and a<d 

X(a,ub,uc,vb,vc,d) <- U(a,ub,uc) and V(vb,vc,d) and ub <>vb 

⋈ 



Expressive Power of 
Datalog 

 Without recursion, Datalog can 
express all and only the queries of 
core relational algebra. 

 The same as SQL select-from-where, 
without aggregation and grouping. 

 But with recursion, Datalog can 
express more than these 
languages. 



Recursive Rule example 

Path(X,Y)   Edge (X,Y) 

Path (X,Y)  Edge (X,Z) AND Path(Z,Y) 

 

More will be on chapter 6 

 

 



Summary of Chapter 5 

 Extensions to relational algebra 

 Datalog: This form of logic allows us to 
write queries in the relational model. 

 Rule: head  subgoals, they are atoms, 

and an atom consists of an predicate 
applied to some number of arguments. 

 IDB and EDB 

 Relational algebra vs. datalog 



HomeWork 

 Exercise 5.3.1  (2.4.1) a), f), h) 

  Exercise 5.4.1 g) 

 

 Upload your homework until next 
Thursday 

 


