#### I Relational Database Modeling- how to define

#### Relational Model

- data structure, operations, constraints
- Design theory for relational database
- High-level Models
- E/R model, UML model, ODL

#### II Relational Database Programming – how to operate

- Chapter 5: From an abstract point of view to study the question of database queries and modifications.
- Relational Algebra
- A Logic for Relation
- Chapter 6~10: From a practical point to learn the operations on Database
- The Database Language SQL

### Chapter 5 Algebraic and Logic Query languages

- Relational operations (chapter 2)
- Extended operators
- Datalog: a logic for relations
- Relational algebra vs. Datalog

## Review 1: what is Relational Algebra?

- An algebra whose operands are relations or variables that represent relations.
- Operators are designed to do the most common things that we need to do with relations in a database.
  - The result is an algebra that can be used as a *query language* for relations.

#### Review 2: 'Core' of Relational Algebra

- Set operations: Union, intersection and difference (the relation schemas must be the same)
- Selection: Picking certain rows from a relation.
- Projection: picking certain columns.
- Products and joins: composing relations in a useful ways.
- Renaming of relations and their attributes.

#### Review 3: Bags Model

- SQL, the most important query language for relational databases is actually a bag language.
  - SQL will eliminate duplicates, but usually only if you ask it to do so explicitly.
- Some operations, like projection, are much more efficient on bags than sets.

#### Extended ("Nonclassical") Relational Algebra

Add features needed for SQL bags.

- 1. Duplicate-elimination operator  $\delta$
- 2. Extended projection.
- 3. Sorting operator τ
- 4. Grouping-and-aggregation operator  $\gamma$
- 5. Outerjoin operator  $\infty^{\circ}$

#### **Duplicate Elimination**

 $\begin{array}{l} \delta & (R \ ) = relation \ with \ one \ copy \ of \ each \\ tuple \ that \ appears \ one \ or \ more \ times \ in \ R. \\ Example \ R = \ \underline{A} \quad \underline{B} \end{array}$ 

2

2

В

4

1

1

3

3 4

A

1 2

 $\delta$  (R ) =

#### Sorting

 $\tau_L(R) = list of tuples of R, ordered according to attributes on list L$ 

Note that result type is outside the normal types (set or bag) for relational algebra. Consequence, τ cannot be followed by other relational operators.

 $R = A B \tau_{B}(R) = [(1,2), (5,2), (3,4)]$   $1 2 \\ 3 4 \\ 5 2$ 

#### **Extended Projection**

Allow the columns in the projection to be functions of one or more columns in the argument relation.

Example:

- •Arithmetic on attributes
- Duplicate occurrences of the same attribute

#### **Aggregation Operators**

- Aggregation operators apply to entire columns of a table and produce a single result.
- The most important examples: SUM, AVG, COUNT, MIN, and MAX.

#### **Example: Aggregation**

$$\begin{array}{ccc} \mathsf{R} = & \mathsf{A} & \mathsf{B} \\ 1 & 3 \\ 3 & 4 \\ 3 & 2 \end{array}$$

SUM(A) = 7COUNT(A) = 3MAX(B) = 4AVG(B) = 3

#### **Grouping Operator**

- $\Upsilon_{\rm L}({\rm R}$  ) where L is a list of elements that are either
- 1. Individual (grouping) attributes or
- Of the form θ(A), where θ is an aggregation operator and A the attribute to which it is applied, computed by:
  - Grouping R according to all the grouping attributes on list L.
  - Within each group, compute  $\theta(A)$ , for each element  $\theta(A)$  on list L
  - Result is the relation whose column consist of one tuple for each group. The components of that tuple are the values associated with each element of L for that group.

#### Example: compute γ<sub>beer, AVG(price)</sub>(R)

- R= Bar Beer price
  - Joe's Bud 2.00 Joe's Miller 2.75
    - Sue's Bud 2.5
    - Sue's Coors 3.00
    - Mel's Miller 3.25
- 1. Group by the grouping attributes, beer in this case:

| Bar   | Beer   | price |
|-------|--------|-------|
| Joe's | Bud    | 2.00  |
| Sue's | Bud    | 2.5   |
| Joe's | Miller | 2.75  |
| Mel's | Miller | 3.25  |
| Sue's | Coors  | 3.00  |

#### Example (cont.)

2. Computer average of price with groups:



#### Example: Grouping/Aggregation



Then, average *C* within groups:

| Α | В | AVG(C) |
|---|---|--------|
| 1 | 2 | 4      |
| 4 | 5 | 6      |

| A, B, AVG(C) (R) = ??<br>First, group R : |   |   |   |  |  |  |
|-------------------------------------------|---|---|---|--|--|--|
|                                           | Α | В | C |  |  |  |
|                                           | 1 | 2 | 3 |  |  |  |
|                                           | 1 | 2 | 5 |  |  |  |
|                                           | 4 | 5 | 6 |  |  |  |

|         |   |   | В |   |          |          | -   |  |
|---------|---|---|---|---|----------|----------|-----|--|
| Outjoin | 1 | 2 | 2 | 3 | <b>A</b> | <b>B</b> | C 2 |  |
| Outjoin | 4 | 5 | 4 | 6 | T        | Z        | 5   |  |

- The normal join can "lose" information, the (4,5) and (4,6) (dangles) has no vestige in the join result.
- Outerjoin operator °▷ : the null value can be used to "pad" dangling tuples.
- Variations: theta-outjoin, left- and rightoutjoin (pad only dangling tuples from the left (resp., right).

#### Example: Outerjoin



(1,2) joins with (2,3), but the other two tuples are dangling.

#### Example (cont.)

| R⊳∽ <sub>L</sub> S =                         | A    | B | C    |  |
|----------------------------------------------|------|---|------|--|
|                                              | 1    | 2 | 3    |  |
|                                              | 4    | 5 | NULL |  |
| R <sup>°</sup> <sub>⊳</sub> <sub>R</sub> S = | A    | B | C    |  |
|                                              | 1    | 2 | 3    |  |
|                                              | null | 6 | 7    |  |

#### **Classroom Exercises**

# R(A,B): {(0,1),(2,3),(0,1),(2,4),(3,4)} S(B,C): {(0,1),(2,4),(2,5),(3,4),(0,2),(3,4)) 3,4)

Computer: 1) π B+1,C-1 (S) 2) τ b,a (R) 3)δ (R) 4) Υa, sum(b) (R) 5) R outjoin S

#### Logic As a Query Language

- If-then logical rules have been used in many systems.
- Nonrecursive rules are equivalent to the core relational algebra.
- Recursive rules extend relational algebra and appear in SQL-99.

Logic As a Query Language (cont.)

A Query: to find a cheap beer whose price is less than 2 dollars

- A Rule:
- if sells (bar,beer,price) and the price <
   2 then the beer is cheap.</pre>

#### Predicates and atoms

- A predicate followed by its arguments is called an atom.
  - Atom = predicate and arguments.
  - Predicate = relation name or arithmetic predicate, e.g. <.</p>
  - Arguments are variables or constants.
- Relations are represented in Datalog by predicates.
- R(a1,a2,...an) has value TRUE if (a1,a2,...an) is a tuple of R, otherwise, it is false.

#### A Logical Rule

Frequents(drinker, bar) Likes(drinker, beer) Sells(bar, beer, price)

Define a rule called "happy drinkers" --- those that frequent a bar that serves a beer that they like.

#### Anatomy of a Rule



Read this symbol "if"

#### Subgoals Are Atoms

- An atom is a predicate, or relation name with variables or constants as arguments.
- The head is an atom; the body is the AND of one or more atoms.
- Convention: Predicates begin with a capital, variables begin with lower-case.

#### Example: Atom



= name of a relation

Arguments are variables (or constants).

#### Applying a Rule

- Approach 1: consider all combinations of values of the variables.
- If all subgoals are true, then evaluate the head.
- The resulting head is a tuple in the result.

#### **Example:** Rule Evaluation

Happy(d) <- Frequents(d,bar) AND Likes(d,beer) AND Sells(bar,beer,p) FOR (each d, bar, beer, p) IF (Frequents(d,bar), Likes(d,beer), and Sells(bar,beer,p) are all true) add Happy(d) to the result Note: set semantics so add only once.

| Drinker Bar                                          | Drinke                           | er Beer                       | Bar            | Beer                          | price       |
|------------------------------------------------------|----------------------------------|-------------------------------|----------------|-------------------------------|-------------|
| David Joe'sbar<br>Frank Sue's bar<br>Susan Joe's bar | David<br>David<br>Frank<br>Susan | Bud<br>Miller<br>Bud<br>Coors | Joe's<br>Sue's | Bud<br>Miller<br>Bud<br>Coors | 2.75<br>2.5 |

Only assignments that make all subgoals true:  $d \rightarrow \text{David}$ , bar  $\rightarrow \text{Joe'sbar}$ , Beer $\rightarrow$ Bud  $d \rightarrow \text{David}$ , bar  $\rightarrow \text{Joe'sbar}$ , Beer $\rightarrow$ Miller  $d \rightarrow \text{Frank}$ , bar  $\rightarrow \text{Sue'sbar}$ , Beer $\rightarrow$ Bud

In the above cases it makes subgoals all true. Thus, add (d) = (david, Frank) to happy (d).

 $d \rightarrow$  Susan, bar $\rightarrow$  Joe'sbar, beer $\rightarrow$ Coors, however the third subgoal is not true, because (Joe'sbar, Coors,p) is not in Sells.

#### Applying a Rule

- Approach 2: For each subgoal, consider all tuples that make the subgoal true.
- If a selection of tuples define a single value for each variable, then add the head to the result.

#### Example: Rule Evaluation – (2)

Happy(d) <- Frequents(d,bar) AND
 Likes(d,beer) AND Sells(bar,beer,p)
FOR (each f in Frequents, i in Likes, and
 s in Sells)</pre>

*IF* (*f*[1]=*i*[1] and *f*[2]=*s*[1] and *i*[2]=*s*[2])

add Happy(f[1]) to the result

| Drinker Bar     | Drinke         | er Beer       | Bar   | Beer          | price |
|-----------------|----------------|---------------|-------|---------------|-------|
| I I             | David<br>David | Bud<br>Miller | Joe's | Bud<br>Miller | 2.75  |
| Susan Joe's bar | Frank          | Bud           | Sue's | Bud           | 2.5   |
|                 | Susan          | Coors         | Sue's | Coors         | 3.00  |

Three assignments of tuples to subgoals:

f(david Joe'sbar) i(David Bud) s(Joe's Bud 2.00) f(david Joe'sbar) i(David Miller) s(Joe's Miller 2.75) f(frank,Sue'sbar) i(Frank Bud) s(Sue's Bud 2.5)

makes f[1]=i[1] and f[2]=s[1] and i[2]=s[2]) true

Thus, (david, frank) is the only tuples for the head.

#### Arithmetic Subgoals

- In addition to relations as predicates, a predicate for a subgoal of the body can be an arithmetic comparison.
- We write arithmetic subgoals in the usual way, e.g., x < y.</p>

#### **Example:** Arithmetic

A beer is "cheap" if there are at least two bars that sell it for under \$2.

Cheap(beer) <- Sells(bar1,beer,p1) AND Sells(bar2,beer,p2) AND p1 < 2.00 AND p2 < 2.00 AND bar1 <> bar2

#### **Negated Subgoals**

- NOT in front of a subgoal negates its meaning.
- Example: Think of Arc(a,b) as arcs in a graph.
  - S(x,y) says the graph is not transitive from x to y; i.e., there is a path of length 2 from x to y, but no arc from x to y.
- S(x,y) <- Arc(x,z) AND Arc(z,y) AND NOT Arc(x,y)
#### Safe Rules

- A rule is *safe* if:
  - 1. Each variable in head,
  - Each variable in an arithmetic subgoal, and
  - 3. Each variable in a negated subgoal, also appears in a nonnegated, relational subgoal.
- Safe rules prevent infinite results.

#### Example: Unsafe Rules

- Each of the following is unsafe and not allowed:  $$\ensuremath{\mathbb{R}}$$
- 1. S(x) < -R(y)
- 2. S(x) < -R(y) AND NOT R(x)
- 3. S(x) < -R(y) AND x < y

? ? ? ?

7

9

0

1

S

In each case, an **infinity** of *x* 's can satisfy the rule, even if *R* is a finite relation.

### An Advantage of Safe Rules

R

7

9

0

1

- Safe rule: S(x) <- R(x) AND x > 1
- Where tuples(x) is from only the nonnegated, relational subgoals R.
- The head, negated relational subgoals, and arithmetic subgoals thus have all their variables defined and can be evaluated.

## **Datalog Programs**

- Datalog program = collection of rules.
- In a program, predicates can be either
  - 1. EDB = *Extensional Database* = stored table.
  - 2. IDB = *Intensional Database* = relation defined by rules.
- Never both! No EDB in heads.

### For example

Create table sells(bar string, beer string,

Price float);

EDB:
 Sells(bar,beer,price)
 Beer(name,manf)

Sells(bar,beer,p)

| bar    | eer    | price |
|--------|--------|-------|
| Joe's  | Bud    | 3     |
| Joes's | Miller | 1     |
| Mary's | Bud    | 1     |
| Mary's | Miller | 1.5   |
| David  | Bud    | 1.5   |

#### IDB: Cheap(beer) <- Sells(bar1,beer,p1) AND Sells(bar2,beer,p2) AND p1 < 2.00 AND p2 < 2.00 AND bar1 <> bar2 cheapBeer Miller Happy(drinker) <- Frequents(d,bar) AND Likes(d,beer) AND</pre> Bud

# Evaluating Datalog Programs

- Pick an order to evaluate the IDB predicates, all the predicates in the body of its rules needs to be evaluated.
- If an IDB predicate has more than one rule, each rule contributes tuples to its relation.

#### Example: Datalog Program

- EDB Sells(bar, beer, price) and Beers(name, manf)
- Query: to find the manufacturers of beers Joe doesn't sell.

JoeSells(b) <- Sells('Joe"s Bar', b, p) Answer(m) <- Beers(b,m) AND NOT JoeSells(b)

#### **Example:** Evaluation

- Step 1: Examine all Sells tuples with first component 'Joe''s Bar'.
  - Add the second component to JoeSells.
- Step 2: Examine all Beers tuples (b,m).
  - If b is not in JoeSells, add m to Answer.

#### **Relational Algebra & Datalog**

- Both are query languages for relational database (abstractly)
- Algebra: use algebra expression.
- Datalog: use logic expressions.

# Core of algebra = Datalog rules (no recursive)

# From Relational Algebra to Datalog

| R∩S                | $I(x) \leftarrow R(x) \text{ AND } S(x)$     |
|--------------------|----------------------------------------------|
| R∪S                | $I(x) \leftarrow R(x)$                       |
|                    | $I(x) \leftarrow S(x)$                       |
| R–S                | $I(x) \leftarrow R(x) \text{ AND NOT } S(x)$ |
| $\pi_A(R)$         | $I(a) \leftarrow R(a,b)$                     |
| σ <sub>F</sub> (R) | $I(x) \leftarrow R(x) \text{ AND } F$        |

# From Relational Algebra to Datalog (cont.)

- π<sub>A</sub>(R) σ<sub>C1 AND C2</sub>(R) σ<sub>C1 OR C2</sub>(R) R×S
- R ⋈ S

 $I(a) \leftarrow R(a,b)$  $I(x) \leftarrow R(x) \text{ AND } C1$ AND C2  $I(x) \leftarrow R(x) \text{ AND } C1$  $I(x) \leftarrow R(x) \text{ AND } C2$  $I(x,y) \leftarrow R(x) \text{ AND } S(y)$  $I(x,y,z) \leftarrow R(x,y) \text{ AND}$ S(y,z)

#### Example:

U (a,b,c) and V (b,c,d) have theta join

Relational algebra: U ⋈ V a<d or U.b<>V.b

**Relational datalog:** 

X(a,ub,uc,vb,vc,d)<- U(a,ub,uc) and V(vb,vc,d) and a<d X(a,ub,uc,vb,vc,d) <- U(a,ub,uc) and V(vb,vc,d) and ub <>vb

# Expressive Power of Datalog

- Without recursion, Datalog can express all and only the queries of core relational algebra.
  - The same as SQL select-from-where, without aggregation and grouping.
- But with recursion, Datalog can express more than these languages.

#### **Recursive Rule example**

#### Path(X,Y) $\leftarrow$ Edge (X,Y) Path (X,Y) $\leftarrow$ Edge (X,Z) AND Path(Z,Y)

More will be on chapter 6

# Summary of Chapter 5

- Extensions to relational algebra
- Datalog: This form of logic allows us to write queries in the relational model.
- Rule: head ← subgoals, they are atoms, and an atom consists of an predicate applied to some number of arguments.
- IDB and EDB
- Relational algebra vs. datalog

HomeWork

Exercise 5.3.1 (2.4.1) a), f), h)
Exercise 5.4.1 g)

Upload your homework until next Thursday