
I Relational Database
Modeling– how to define

 Relational Model

• data structure, operations, constraints

• Design theory for relational database

High-level Models

• E/R model, UML model, ODL

II Relational Database Programming

– how to operate

 Chapter 5： From an abstract point of view
to study the question of database queries
and modifications.

• Relational Algebra

• A Logic for Relation

 Chapter 6~10： From a practical point to
learn the operations on Database

• The Database Language SQL

Chapter 5 Algebraic and Logic Query
languages

 Relational operations (chapter 2)

 Extended operators

 Datalog: a logic for relations

 Relational algebra vs. Datalog

Review 1: what is
Relational Algebra?

 An algebra whose operands are
relations or variables that represent
relations.

 Operators are designed to do the
most common things that we need to
do with relations in a database.

 The result is an algebra that can be used
as a query language for relations.

Review 2:
“Core” of Relational Algebra

 Set operations: Union, intersection and
difference (the relation schemas must be
the same)

 Selection: Picking certain rows from a
relation.

 Projection: picking certain columns.

 Products and joins: composing relations in
a useful ways.

 Renaming of relations and their attributes.

Review 3: Bags Model

 SQL, the most important query
language for relational databases is
actually a bag language.

 SQL will eliminate duplicates, but
usually only if you ask it to do so
explicitly.

 Some operations, like projection, are
much more efficient on bags than
sets.

Extended (“Nonclassical”)

Relational Algebra

Add features needed for SQL bags.

1. Duplicate-elimination operator 

2. Extended projection.

3. Sorting operator 

4. Grouping-and-aggregation operator


5. Outerjoin operator 

Duplicate Elimination

 (R) = relation with one copy of each
tuple that appears one or more times in R.

Example R = A B

 1 2

 3 4

 1 2

 (R) = A B

 1 2

 3 4

Sorting

L(R) = list of tuples of R, ordered according
to attributes on list L

 Note that result type is outside the normal
types (set or bag) for relational algebra.
Consequence,  cannot be followed by
other relational operators.

R = A B  B(R) = [(1,2), (5,2), (3,4)]

 1 2

 3 4

 5 2

Extended Projection

 Allow the columns in the projection to
be functions of one or more columns in
the argument relation.

Example:

 R = A B  A+B,A,A (R)= A+B A1 A2

 1 2 3 1 1

 3 4 7 3 3

 •Arithmetic on attributes

•Duplicate occurrences of the same attribute

Aggregation Operators

 Aggregation operators apply to
entire columns of a table and
produce a single result.

 The most important examples: SUM,
AVG, COUNT, MIN, and MAX.

Example: Aggregation

R = A B
 1 3
 3 4
 3 2

SUM(A) = 7
COUNT(A) = 3
MAX(B) = 4
AVG(B) = 3

Grouping Operator

L(R) where L is a list of elements that are
either

1. Individual (grouping) attributes or

2. Of the form (A), where  is an
aggregation operator and A the attribute
to which it is applied, computed by:

 Grouping R according to all the grouping
attributes on list L.

 Within each group, compute (A), for each
element (A) on list L

 Result is the relation whose column consist of
one tuple for each group. The components of
that tuple are the values associated with each
element of L for that group.

Example:
compute beer, AVG(price)(R)

R= Bar Beer price

 Joe’s Bud 2.00

 Joe’s Miller 2.75

 Sue’s Bud 2.5

 Sue’s Coors 3.00

 Mel’s Miller 3.25

1. Group by the grouping attributes, beer in this case:

 Bar Beer price

 Joe’s Bud 2.00

 Sue’s Bud 2.5

 Joe’s Miller 2.75

 Mel’s Miller 3.25

 Sue’s Coors 3.00

Example (cont.)

2. Computer average of price with
groups:

 Beer AVG (price)

 Bud 2.25

 Miller 3.00

 Coors 3.00

beer,

AVG(price)(R)

Example:
Grouping/Aggregation

R = A B C
 1 2 3
 4 5 6
 1 2 5

  A,B,AVG(C) (R) = ??
First, group R :
 A B C
 1 2 3
 1 2 5
 4 5 6

Then, average C within
groups:

A B AVG(C)
1 2 4
4 5 6

Outjoin

 The normal join can “lose” information, the
(4,5) and (4,6) (dangles) has no vestige in
the join result.

 Outerjoin operator  : the null value
can be used to “pad” dangling tuples.

 Variations: theta-outjoin, left- and right-
outjoin (pad only dangling tuples from the
left (resp., right).

A B

1 2

4 5

B C

2 3

4 6

A B C

1 2 3

Example: Outerjoin

R = A B S = B C
 1 2 2 3
 4 5 6 7

(1,2) joins with (2,3), but the other two tuples
are dangling.

R OUTERJOIN S = A B C
 1 2 3
 4 5 NULL
 NULL 6 7

Example (cont.)

R L S = A B C
 1 2 3
 4 5 NULL

R  RS = A B C

 1 2 3

 null 6 7

Classroom Exercises

 R(A,B): {(0,1),(2,3),(0,1),(2,4),(3,4)}

 S(B,C):{(0,1),(2,4),(2,5),(3,4),(0,2),(
3,4)

Computer:

1)  B+1,C-1 (S) 2)  b,a (R) 3) (R)

4) a, sum(b) (R) 5) R outjoin S

Logic As a Query Language

 If-then logical rules have been
used in many systems.

 Nonrecursive rules are equivalent
to the core relational algebra.

 Recursive rules extend relational
algebra and appear in SQL-99.

Logic As a Query Language
(cont.)

 A Query: to find a cheap beer whose
price is less than 2 dollars

 A Rule:

if sells (bar,beer,price) and the price <
2 then the beer is cheap.

Predicates and atoms

 A predicate followed by its arguments is
called an atom.

 Atom = predicate and arguments.

 Predicate = relation name or arithmetic predicate,
e.g. <.

 Arguments are variables or constants.

 Relations are represented in Datalog by
predicates.

 R(a1,a2,…an) has value TRUE if (a1,a2,…an)

is a tuple of R, otherwise, it is false.

A Logical Rule

 Frequents(drinker, bar)
Likes(drinker, beer)

 Sells(bar, beer, price)

 Define a rule called “happy drinkers”
--- those that frequent a bar that
serves a beer that they like.

Anatomy of a Rule

Happy(d) <- Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

Body = antecedent =
AND of subgoals.

Head = consequent,
a single subgoal

Read this
symbol “if”

Subgoals Are Atoms

 An atom is a predicate, or relation
name with variables or constants as
arguments.

 The head is an atom; the body is
the AND of one or more atoms.

 Convention: Predicates begin with a
capital, variables begin with lower-
case.

Example: Atom

 Sells(bar, beer, p)

The predicate
= name of a
relation

Arguments are
variables (or constants).

Applying a Rule

 Approach 1: consider all combinations
of values of the variables.

 If all subgoals are true, then evaluate
the head.

 The resulting head is a tuple in the
result.

Example: Rule Evaluation

Happy(d) <- Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

FOR (each d, bar, beer, p)

 IF (Frequents(d,bar), Likes(d,beer),
and Sells(bar,beer,p) are all true)

 add Happy(d) to the result

 Note: set semantics so add only once.

Only assignments that make all subgoals true:
 d  David, bar  Joe’sbar, BeerBud
 d  David, bar  Joe’sbar, BeerMiller
 d  Frank, bar  Sue’sbar, BeerBud

In the above cases it makes subgoals all true. Thus,
add (d) = (david, Frank) to happy (d).

d Susan, bar Joe’sbar, beerCoors, however the
third subgoal is not true, because (Joe’sbar, Coors,p)

is not in Sells.

 Bar Beer price

Joe’s Bud 2.00
 Joe’s Miller 2.75
 Sue’s Bud 2.5

 Sue’s Coors 3.00

Drinker Beer

David Bud
David Miller
Frank Bud
Susan Coors

Drinker Bar

David Joe’sbar
Frank Sue’s bar
Susan Joe’s bar

Applying a Rule

 Approach 2: For each subgoal,
consider all tuples that make the
subgoal true.

 If a selection of tuples define a
single value for each variable, then
add the head to the result.

Example: Rule Evaluation – (2)

Happy(d) <- Frequents(d,bar) AND

 Likes(d,beer) AND Sells(bar,beer,p)

 FOR (each f in Frequents, i in Likes, and
s in Sells)

 IF (f[1]=i[1] and f[2]=s[1] and
 i[2]=s[2])

 add Happy(f[1]) to the result

Three assignments of tuples to subgoals:

f(david Joe’sbar) i(David Bud) s(Joe’s Bud 2.00)
f(david Joe’sbar) i(David Miller) s(Joe’s Miller 2.75)
f(frank,Sue’sbar) i(Frank Bud) s(Sue’s Bud 2.5)

makes
f[1]=i[1] and f[2]=s[1] and i[2]=s[2]) true

Thus, (david,frank) is the only tuples for the head.

Drinker Bar

David Joe’sbar
Frank Sue’s bar
Susan Joe’s bar

Drinker Beer

David Bud
David Miller
Frank Bud
Susan Coors

 Bar Beer price

Joe’s Bud 2.00
 Joe’s Miller 2.75
 Sue’s Bud 2.5

 Sue’s Coors 3.00

Arithmetic Subgoals

 In addition to relations as predicates,
a predicate for a subgoal of the body
can be an arithmetic comparison.

 We write arithmetic subgoals in the
usual way, e.g., x < y.

Example: Arithmetic

 A beer is “cheap” if there are at least
two bars that sell it for under $2.

Cheap(beer) <- Sells(bar1,beer,p1)
AND Sells(bar2,beer,p2)

 AND p1 < 2.00

 AND p2 < 2.00

 AND bar1 <> bar2

Negated Subgoals

 NOT in front of a subgoal negates
its meaning.

 Example: Think of Arc(a,b) as arcs
in a graph.
 S(x,y) says the graph is not transitive

from x to y ; i.e., there is a path of
length 2 from x to y, but no arc from
x to y.

S(x,y) <- Arc(x,z) AND Arc(z,y)

 AND NOT Arc(x,y)

Safe Rules

 A rule is safe if:

1. Each variable in head,

2. Each variable in an arithmetic
subgoal, and

3. Each variable in a negated subgoal,

 also appears in a nonnegated,

 relational subgoal.

 Safe rules prevent infinite results.

Example: Unsafe Rules

 Each of the following is unsafe
and not allowed:

1. S(x) <- R(y)

2. S(x) <- R(y) AND NOT R(x)

3. S(x) <- R(y) AND x < y

 In each case, an infinity of x ’s
can satisfy the rule, even if R is
a finite relation.

R

7

9

0

1

S

?

?

?

?

An Advantage of Safe Rules

 Safe rule: S(x) <- R(x) AND x > 1

 Where tuples(x) is from only the
nonnegated, relational subgoals R.

 The head, negated relational
subgoals, and arithmetic subgoals
thus have all their variables defined
and can be evaluated.

R

7

9

0

1

Datalog Programs

 Datalog program = collection of
rules.

 In a program, predicates can be
either

1. EDB = Extensional Database = stored
table.

2. IDB = Intensional Database = relation
defined by rules.

 Never both! No EDB in heads.

For example

 EDB:

Sells(bar,beer,price)

Beer(name,manf)

 IDB:
Cheap(beer) <- Sells(bar1,beer,p1) AND Sells(bar2,beer,p2)

 AND p1 < 2.00 AND p2 < 2.00 AND bar1 <> bar2

Happy(drinker) <- Frequents(d,bar) AND Likes(d,beer) AND

Sells(bar,beer,p)

bar beer price

Joe’s Bud 3

Joes’s Miller 1

Mary’s Bud 1

Mary’s Miller 1.5

David Bud 1.5

cheapBeer

Miller

Bud

Create table sells(bar string, beer string,
Price float);

Evaluating Datalog
Programs

 Pick an order to evaluate the IDB
predicates, all the predicates in the
body of its rules needs to be
evaluated.

 If an IDB predicate has more than
one rule, each rule contributes tuples
to its relation.

Example: Datalog Program

 EDB Sells(bar, beer, price) and
Beers(name, manf)

 Query: to find the manufacturers of
beers Joe doesn’t sell.

JoeSells(b) <- Sells(’Joe’’s Bar’, b, p)

Answer(m) <- Beers(b,m)

 AND NOT JoeSells(b)

Example: Evaluation

 Step 1: Examine all Sells tuples with
first component ’Joe’’s Bar’.

 Add the second component to JoeSells.

 Step 2: Examine all Beers tuples
(b,m).

 If b is not in JoeSells, add m to
Answer.

Relational Algebra & Datalog

 Both are query languages for
relational database (abstractly)

 Algebra: use algebra expression.

 Datalog: use logic expressions.

Core of algebra = Datalog rules (no
recursive)

From Relational Algebra to
Datalog

RS I(x)  R(x) AND S(x)

RS I(x)  R(x)

 I(x)  S(x)

RS I(x)  R(x) AND NOT S(x)

A(R) I(a)  R(a,b)

F(R) I(x)  R(x) AND F

From Relational Algebra to
Datalog (cont.)

A(R) I(a)  R(a,b)

C1 AND C2(R) I(x)  R(x) AND C1
x AND C2

C1 OR C2(R) I(x)  R(x) AND C1

 I(x)  R(x) AND C2

RS I(x,y)  R(x) AND S(y)

R S I(x,y,z)  R(x,y) AND
x S(y,z)

Example:

 U (a,b,c) and V (b,c,d) have theta join

Relational algebra:

 U V

 a<d or U.b<>V.b

Relational datalog:
X(a,ub,uc,vb,vc,d)<- U(a,ub,uc) and V(vb,vc,d) and a<d

X(a,ub,uc,vb,vc,d) <- U(a,ub,uc) and V(vb,vc,d) and ub <>vb

⋈

Expressive Power of
Datalog

 Without recursion, Datalog can
express all and only the queries of
core relational algebra.

 The same as SQL select-from-where,
without aggregation and grouping.

 But with recursion, Datalog can
express more than these
languages.

Recursive Rule example

Path(X,Y)  Edge (X,Y)

Path (X,Y)  Edge (X,Z) AND Path(Z,Y)

More will be on chapter 6

Summary of Chapter 5

 Extensions to relational algebra

 Datalog: This form of logic allows us to
write queries in the relational model.

 Rule: head  subgoals, they are atoms,

and an atom consists of an predicate
applied to some number of arguments.

 IDB and EDB

 Relational algebra vs. datalog

HomeWork

 Exercise 5.3.1 (2.4.1) a), f), h)

 Exercise 5.4.1 g)

 Upload your homework until next
Thursday

