
Chapter 2

The relational Model of data

1

Relational model introduction

Contents

 What is a data model?

 Basics of the relational model

Next :

 How to define?

 How to query?

 Constraints on relations

2

What is a Data Model?

 A data model is a notation for describing

data or information. It consists of three

parts:

 Structure of the data: mathematical

representation of data

 Operations on data.

 Constraints.

3

Two important data models

 The relational model (and object-relational

model):

 relational model = tables

 The semistructured-data model

semistructured model = trees/graphs

 XML and its related standards.

4

A relation is a Table

 name manf

 Winterbrew Pete’s

 Bud Lite Anheuser-busch

 Beers

5

Attributes
(column
headers)

Tuples
(rows)

Relation
 name

Each attribute has a domain,
an element type.

Schemas (模式)

 Relation schema = relation name and
attribute list.

 Optionally: types of attributes.

 Example: Beers(name, manf) or Beers(name:
string, manf: string)

 Database = collection of relations.

 Database schema = set of all relation
schemas in the database.

6

Relation Instances (关系实例)

 is current set of rows for a relation schema.

 Example: beer relation

Name Manf.

Winterblue Peters

Budlit A.B.

7

Dynamic

changing

Key of Relations

 There are many constraints on relations

 Key constraints is one of them

For example:

Beer(name, manf)

 If name is a key, do not allow two tuples to

have the same name.

 Each object should be distinguished in the world

8

Why Relations?

 Very simple model.

 Often matches how we think about data.

 Abstract model that underlies SQL, the most

important database language today.

9

a Running Example

 Beers(name, manf)

 Bars(name, addr, license)

 Drinkers(name, addr, phone)

 Likes(drinker, beer)

 Sells(bar, beer, price)

 Frequents(drinker, bar)

 Underline = key (tuples cannot have the
same value in all key attributes).

10

Database Schemas in SQL

 SQL is primarily a query language, for getting

information from a database.

 SQL also includes a data-definition

component for describing database

schemas.

11

Creating (Declaring) a Relation

 Simplest form is:

 CREATE TABLE <name> (

 <list of elements>

);

 To delete a relation:

 DROP TABLE <name>;

12

Creating (Declaring) a Relation (cont.)

 To modify schemas

 ALTER TABLE <name> ADD <new attribute>

 ALTER TABLE <name> DROP <attribute>

Three kinds of table

 Stored relations: tables, a relation that exists

in the database, can be modified or queried.

real, stored.

 Views: relations defined by a computation.

virutal, not really exists.

 Temporary tables: constructed by the SQL

processor when it performs. thrown away,

not stored.

Elements of Table Declarations

 Most basic element: an attribute and its

type.

 The most common types are:

 INT or INTEGER (synonyms).

 REAL or FLOAT (synonyms).

 CHAR(n) = fixed-length string of n characters.

 VARCHAR(n) = variable-length string of up to

n characters.

15

Example: Create Table

 CREATE TABLE Sells (

 bar CHAR(20),

 beer VARCHAR(20),

 price REAL

);

16

SQL Values

 Integers

 reals

 Strings requires single quotes.

 Two single quotes = real quote, e.g., ’Joe’’s Bar’.

 Bit strings of fixed or varying length, BIT(n) means bit
string of length n

 Any value can be NULL.

 Boolean: true, false, unknown

17

Dates and Times in SQL

 The form of a date value is:

 DATE ’yyyy-mm-dd’

Example: DATE ’2007-09-30’ for Sept. 30,

2007.

 The form of a time value is:

 TIME ’hh:mm:ss’

 Example: TIME ’15:30:02.5’ = two and a

half seconds after 3:30PM.

18

Declaring Keys

 An attribute or list of attributes may be

declared PRIMARY KEY or UNIQUE.

 Meaning: no two tuples of the relation may

agree in all the attribute(s) on the list.

 PRIMARY KEY or UNIQUE attributes can be

declared when creating a table.

19

Declaring Single-Attribute Keys

 Place PRIMARY KEY or UNIQUE after the

type in the declaration of the attribute.

 Example:

 CREATE TABLE Beers (

 name CHAR(20) UNIQUE,

 manf CHAR(20)

);

20

Declaring Multiattribute Keys

 A key declaration can also be another

element in the list of elements of a CREATE

TABLE statement.

 This form is essential if the key consists of

more than one attribute.

 May be used even for one-attribute keys.

21

Example: Multiattribute Key

 The bar and beer together are the key for
Sells:

 CREATE TABLE Sells (

 bar CHAR(20),

 beer VARCHAR(20),

 price REAL,

 PRIMARY KEY (bar, beer)

);

22

PRIMARY KEY vs. UNIQUE

In a table declaration:

1. PRIMARY KEY : only one PRIMARY KEY , No

attribute of a PRIMARY KEY can ever be

NULL in any tuple.

2. UNIQUE: several UNIQUE attributes, may

have NULL’s values.

23

24 24

Other Attributes Properties

 NOT NULL = every tuple must
have a real value for this attribute.
i.e. the value for this attribute may
never be NULL.

 DEFAULT value = says that if there
is no specific value known for this
attribute’s component in some
tuple, use the stated <value>.

25

Example: Default Values

 CREATE TABLE Drinkers (

 name CHAR(30) PRIMARY KEY,

 addr CHAR(50)

 DEFAULT ‘123 Sesame St.’,

 phone CHAR(16)

);

26 26

Effect of Defaults

 insert the fact that Sally is a drinker, but

we know neither her address nor her

phone.

 INSERT INTO Drinkers(name)

 VALUES(‘Sally’);

27 27

Effect of Defaults (cont.)

What tuple appears in Drinkers?

 name addr phone

 ‘Sally’ ‘123 Sesame St’ NULL

 If we had declared phone NOT NULL,

this insertion would have been rejected.

Semistructured Data

Based on trees.

Motivation:

 flexible representation of data.

 sharing of documents among systems

and databases.

28

Graphs of Semistructured Data

 Nodes = objects.

 Labels on arcs (like attribute names).

 Atomic values at leaf nodes (nodes with no

arcs out).

 Flexibility: no restriction on

 Labels out of a node.

 Number of successors with a given label.

29

Example: Data Graph

30

Bud

A.B.

Gold 1995

Maple Joe’s

M’lob

beer beer
bar

manf manf

servedAt

name

name
name

addr

prize

year award

root

The bar object
for Joe’s Bar

The beer object
for Bud

Notice a
new kind
of data.

JavaScript Object Notation (JSON)

 Standard for “serializing” data objects

 Human-readable, useful for data

interchange

 Useful for representing and storing

semistructured data

31

JSON example

{“Beers”:

 [{“name”: “Bud”,

 “manf”: “A.B.”,

 “price”: 13},

 {“name”: “Mobel”,

 “manf”: “A.B.”,

 “Prize”: {“year”: 1995,

 “award”:”gold”}

] }

32

Basic constructs
(recursive)
• Base values
number, string,
boolean, …
• Objects { }
sets of label-value
pairs
• Arrays []
lists of values

Relational Model versus JSON

Relational JSON

Structure Tables Nested sets, array

schema Fixed in advance Flexible, self descripting

Queries Simple expressive

language

Not widely used

Ordering none arrays

Implementation Native system NOSQL system

33

XML versus JSON

XML JSON

Verbosity More Less

Complexity More Less

Validity DTD, XSD, widely

used

JSON scheme, not

widely used

Prog. Interface mismatch More direct

Querying Xpath,Xquery Json Path,

Json Query
34

Summarization

Relational model, XML model, JSON notations

A data model consists of three parts:

 Data structure√

 Operations on the data ?

 Constraints ?

Next:

 Relational algebra: operations & constraints.

 Relational algebra: the core of the SQL.

35

