Chapter 10 Advanced topics in
relational databases

o, SR

Recursion in SQL

" M = B §H N

i Examples

= EDB: Par(c,p) = p is a parent of c.
Queryl: Who is the parent of Sally?
Select p from Par where c="Sally’;
Query?2: find Sally’s brothers or sisters ?

Select p2.c

From Par P1,Par P2

Where P1.c='Sally’ and P1.p=P2.p and P2.c
<>'Sally’;

i Question?

= Query3: We want to find generalized
cousins: people with common
ancestors one or more generations

back.
= Find Sally’s generalized cousins?
= Find Sally’s ancestors?
= How ?

* Solutions: Recursive

Sib(x,y) <- Par(x,p) AND Par4y,p) AND x<>y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp) AND Par(y,yp)
AND Cousin(xp,yp)

= EDB: Par(x,p)

= IDB: Sib(x,y) , Cousin(Xx,y)

‘.L How to Evaluate?

= We'll proceed in rounds to infer Sib facts (red)
and Cousin facts (green).

= Remember the rules:
Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y
Cousin(x,y) <- Sib(x,y)
Cousin(x,y) <- Par(x,xp) AND Par(y,yp)
AND Cousin(xp,yp)
Value used : Round (i) € round (i-1)

At the beginning, sib(x,y) and cousin(x,y) are
empty.

Par Data: Parent Above Child

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y
Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x, xp) AND Par(y,yp) AND Cousin(xp,yp)

Round 1 / \ / .
o | \
" S\

i SQL-99 Recursion

= Datalog recursion has inspired the
addition of recursion to the SQL-99
standard.

= IBM DB2 does implement the SQL-99
proposal.

i Form of SQL Recursive Queries

WITH
'RECURSIVE

'RECURSIVE

R1 AS <Definition of R1>
R2 AS <Definition of R2>

<a SQL query about EDB,R1,R2,...>

R1,R2: temporary relations, they are
not available outside the query

i Example: SQL Recursion — (1)

= Find Sally’s cousins, using SQL like the
recursive Datalog example.

= Par(child,parent) is the EDB. L"Fjgrg'(ngl)\lg
WITH Sib(x,y) AS " Par(y,p) AND

X <>y

SELECT p1.child, p2.child
FROM Par p1, Par p2
WHERE pl.parent = p2.parent AND

. pl.child <> p2.child;

Example: SQL Recursion — (2)

Required — Cousin
WITH / IS recursive Reflects Cousin(x,y) <-

Sib(x,y) b
RECURSIVE|Cousin(x,y) ,A?/ Ib(x,y) base query

Reflects
Cousin(x,y) <-

(SELECT * FROM Sib)

UNION — Par(x,xp) AND
(SELECT p1.child, p2.child At
FROM Par p1, Par p2, Cousin Recursive quen

WHERE p1l.parent = Cousin.x AND
p2.parent = Cousin.y);

‘L Example: SQL Recursion — (3)

= With those definitions, the query to
Cousin(x,y):

SELECT vy
FROM Cousin
WHERE x = "Sally’;

‘L Legal SQL Recursion

= It is possible to define SQL
recursions that do not have a
meaning.

m The SQL standard restricts
recursion so there is a meaning.

* Non-linear Recursive

WITH
'RECURSIVE] R1 AS <Definition of R1>
'RECURSIVE] R2 AS <Definition of R2>

<a SQL query about EDB,R1,R2,...>

Non-linear Recursive
i (example)

= ParentOf(parent,child)
= With recursive

Ancestor(a,d) as (select parent as a,child as d
from ParentOf

Union

Select Al.a,A2.d from Ancestor al,Ancestor a2
where al.d=a2.a)

Select a from Ancestor where d="Sally’ ;

* Mutual Recursive

WITH
'RECURSIVE] R1 AS <Definition of R1>
'RECURSIVE] R2 AS <Definition of R2>

<a SQL query about EDB,R1,R2,...

‘_L Recursive with aggregation

With Recursive P(x) As
(select * from R) union
(select * from Q),

With Recursive Q(x) As
select sum(x) from P

Select * from P;

R is an EDB,
consists of
tuple 12
and 34

P(x),Q(x)

are empty.

Recursive with aggregation

* (cont.)

1 {(12),(34) } {null}
2 1(12),(34),(null) } 1(46)}
3 1(12),(34),(46)} {(46)}
4 1(12),(34),(46)} 1(92)}
> 1(12),(34),(92)} 1(138)}

Problem: Iterative calculation for aggregation, no
meaningful solution.

i Legal SQL recursion

= Linear recursion
= Mutual recursion with monotone.

~ A use of P is monotone if adding an
arbitrary tuple to P might add one or
more tuples to Q, or it might leave Q
unchanged, but it can never cause any
tuple to be deleted from Q.

i Illegal SQL: non-monotone

With Recursive P(x) As
(select * from R) union
(select * from Q),

With Recursive Q(x) As
select sum(x) from P

= Add tuples to P may delete tuples in Q

Classroom Exercises (1)
write a linear recursive SQL to find
the ancestor of Sally

= ParentOf(parent,child)
= With recursive

Ancestor(a,d) as (select parent as a,child as d
from ParentOf

Union

Select Al.a,A2.d from Ancestor al,Ancestor
a2 where al.d=a2.a)

Select a from Ancestor where d="Sally’ ;

Solution:

With recursive

Ancestor(a,d) as (select parent as a, child as d
from Parentof

Union

Select ancestor.a, parentOf.child as d
From Ancestor, parentOf

Where ancestor.d=parentOf.parent)
Select a from Ancestor where d="Sally”;

i Classroom Exercise (2)

create table Employee(ID int, salary int);
create table Manager(mID int, eID int);

create table Project(name text, mgrID
int);

= Find total salary cost of project 'X'

. = Employee(ID , salary)
SOI UtIOn 1 o Manager(mID, eID)

Project(name,mgriD)

with recursive
' Manager
union

select S.mID, M.elID

from Superior S, Manager M
where S.eID = M.mID)

select sum(salary) “
from Employee

where ID in
(select mgrID from Project where name = X'
union
select eID from Project, Superior
where Project.name = X' AND Project.mgrID = Superior.mID);

2 . Employee(ID , salary)
SOI Utlon 2 o Manager(mID, eID)

Project(name,mgriD)
i wWith recursive

Xemps(ID) as (select mgrID as ID from
Project where name = 'X'

union
select eID as ID
from Manager M, Xemps X
where M.mID = X.ID)
select sum(salary)
from Employee
where ID in (select ID from Xemps);

i Summary

= SQL recursive query - for
some application, it is very
useful and powerful.

