
Chapter 10 Advanced topics in
relational databases

 Security and user authorization in SQL
 Recursion in SQL
 Object-relational model
1. User-defined types in SQL
2. Operations on object-relational data
 Online analytic processing & data cubes

Examples

 EDB: Par(c,p) = p is a parent of c.

Query1: Who is the parent of Sally?

Select p from Par where c=‘Sally’;

Query2: find Sally’s brothers or sisters ?

Select p2.c
From Par P1,Par P2
Where P1.c=‘Sally’ and P1.p=P2.p and P2.c
<>’Sally’;

Question?

 Query3: We want to find generalized
cousins: people with common
ancestors one or more generations
back.

 Find Sally’s generalized cousins?

 Find Sally’s ancestors?

 How ?

Solutions: Recursive

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

 AND Cousin(xp,yp)

 EDB: Par(x,p)

 IDB: Sib(x,y) , Cousin(x,y)

Base query

recursive
query

How to Evaluate?

 We’ll proceed in rounds to infer Sib facts (red)
and Cousin facts (green).

 Remember the rules:

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp) AND Par(y,yp)

 AND Cousin(xp,yp)

Value used : Round (i)  round (i-1)

At the beginning, sib(x,y) and cousin(x,y) are
empty.

Par Data: Parent Above Child

 a d

 b c e

 f g h

j k i

Round 1

Round 2

Round 4

Round 3

Sib(x,y) <- Par(x,p) AND Par(y,p) AND x<>y

Cousin(x,y) <- Sib(x,y)

Cousin(x,y) <- Par(x,xp) AND Par(y,yp) AND Cousin(xp,yp)

SQL-99 Recursion

 Datalog recursion has inspired the
addition of recursion to the SQL-99
standard.

 IBM DB2 does implement the SQL-99
proposal.

Form of SQL Recursive Queries

WITH

 [RECURSIVE] R1 AS <Definition of R1>

 [RECURSIVE] R2 AS <Definition of R2>

 <a SQL query about EDB,R1,R2,…>

R1,R2: temporary relations, they are
not available outside the query

Example: SQL Recursion – (1)

 Find Sally’s cousins, using SQL like the
recursive Datalog example.

 Par(child,parent) is the EDB.

WITH Sib(x,y) AS

 SELECT p1.child, p2.child

 FROM Par p1, Par p2

 WHERE p1.parent = p2.parent AND

 p1.child <> p2.child;

Like Sib(x,y) <-
 Par(x,p) AND
 Par(y,p) AND
 x <> y

Example: SQL Recursion – (2)

WITH

RECURSIVE Cousin(x,y) AS

 (SELECT * FROM Sib)

 UNION

 (SELECT p1.child, p2.child

 FROM Par p1, Par p2, Cousin

 WHERE p1.parent = Cousin.x AND

 p2.parent = Cousin.y);

Reflects Cousin(x,y) <-
Sib(x,y) base query

Reflects
Cousin(x,y) <-
Par(x,xp) AND
Par(y,yp) AND
Cousin(xp,yp)
Recursive query

Required – Cousin
is recursive

Example: SQL Recursion – (3)

 With those definitions, the query to
Cousin(x,y):

SELECT y

FROM Cousin

WHERE x = ’Sally’;

Legal SQL Recursion

 It is possible to define SQL
recursions that do not have a
meaning.

 The SQL standard restricts
recursion so there is a meaning.

Non-linear Recursive

WITH

 [RECURSIVE] R1 AS <Definition of R1>

 [RECURSIVE] R2 AS <Definition of R2>

 <a SQL query about EDB,R1,R2,…>

Include
more R1
instead of
once

 Non-linear Recursive
(example)

 ParentOf(parent,child)

 With recursive

Ancestor(a,d) as (select parent as a,child as d
from ParentOf

Union

Select A1.a,A2.d from Ancestor a1,Ancestor a2
where a1.d=a2.a)

Select a from Ancestor where d=‘Sally’；

Mutual Recursive

WITH

 [RECURSIVE] R1 AS <Definition of R1>

 [RECURSIVE] R2 AS <Definition of R2>

 <a SQL query about EDB,R1,R2,…>

Include R2

Include R1

Recursive with aggregation

With Recursive P(x) As

 (select * from R) union

 (select * from Q),

With Recursive Q(x) As

 select sum(x) from P

Select * from P;

R is an EDB,
consists of
tuple 12
and 34

P(x),Q(x)
are empty.

Recursive with aggregation
(cont.)

Round P Q

1 {(12),(34) } {null}

2 {(12),(34),(null) } {(46)}

3 {(12),(34),(46)} {(46)}

4 {(12),(34),(46)} {(92)}

5 {(12),(34),(92)} {(138)}

…

Problem: Iterative calculation for aggregation, no
meaningful solution.

Legal SQL recursion

 Linear recursion

 Mutual recursion with monotone.

 A use of P is monotone if adding an
arbitrary tuple to P might add one or
more tuples to Q, or it might leave Q
unchanged, but it can never cause any
tuple to be deleted from Q.

Illegal SQL: non-monotone

With Recursive P(x) As

 (select * from R) union

 (select * from Q),

With Recursive Q(x) As

 select sum(x) from P

 Add tuples to P may delete tuples in Q

Classroom Exercises (1)
write a linear recursive SQL to find
the ancestor of Sally

 ParentOf(parent,child)

 With recursive

Ancestor(a,d) as (select parent as a,child as d
from ParentOf

Union

Select A1.a,A2.d from Ancestor a1,Ancestor
a2 where a1.d=a2.a)

Select a from Ancestor where d=‘Sally’；

Solution:

With recursive

Ancestor(a,d) as (select parent as a, child as d
from Parentof

Union

Select ancestor.a, parentOf.child as d

From Ancestor, parentOf

Where ancestor.d=parentOf.parent)

Select a from Ancestor where d=‘Sally”;

Classroom Exercise （2）

create table Employee(ID int, salary int);

create table Manager(mID int, eID int);

create table Project(name text, mgrID
int);

 Find total salary cost of project 'X'

Solution 1:
with recursive

 Superior as (select * from Manager

 union

 select S.mID, M.eID

 from Superior S, Manager M

 where S.eID = M.mID)

select sum(salary)

from Employee

where ID in

 (select mgrID from Project where name = 'X'

 union

 select eID from Project, Superior

 where Project.name = 'X' AND Project.mgrID = Superior.mID);

Employee(ID , salary)
Manager(mID, eID)
Project(name,mgrID)

Define one or
more recursive

rules

Make a query

Solution 2:

with recursive

 Xemps(ID) as (select mgrID as ID from
Project where name = 'X'

 union

 select eID as ID

 from Manager M, Xemps X

 where M.mID = X.ID)

select sum(salary)

from Employee

where ID in (select ID from Xemps);

Employee(ID , salary)
Manager(mID, eID)
Project(name,mgrID)

Summary

 SQL recursive query  for

some application, it is very
useful and powerful.

