
Chapter 10 Advanced topics in
relational databases

 Security and user authorization in SQL
 Recursion in SQL
 Object-relational model
1. User-defined types in SQL
2. Operations on object-relational data
 Online analytic processing & data cubes

Overview

 Traditional database systems are tuned to many,
small, simple queries.

Eg: Find the price of bud in Joe’s bar?
 Some new applications use fewer, more time-

consuming, analytic queries.
Eg: What are the average prices of each bar in the

last 3 months? To see how the price varies by
times.

 New architectures have been developed to handle
analytic queries efficiently.

OLTP

 Most database operations involve On-Line
Transaction Processing (OLTP).

 Short, simple, frequent queries and/or
modifications, each involving a small
number of tuples.

 Examples: Answering queries from a Web
interface, sales at cash registers, selling
airline tickets.

OLAP

 On-Line Application Processing (OLAP,or
“analytic”) queries are, typically:

 Few, but complex queries --- may run
for hours.

 Queries do not depend on having an
absolutely up-to-date database.

The Data Warehouse

 The most common form of data integration.

1. Copy sources into a single DB (warehouse)
and try to keep it up-to-date.

2. Usual method: periodic reconstruction of
the warehouse, perhaps overnight.

3. Complex Queries (touch large portion of
data for analytic queries.)

4. Infrequent updates.

Common Architecture

 Databases at store branches handle
OLTP.

 Local store databases copied to a central
warehouse overnight.

 Analysts use the warehouse for OLAP.

Star Schemas

 A star schema is a common organization for
data at a warehouse. It consists of:

1. Fact table : a very large accumulation of
facts such as sales.

 Often “insert-only.”

2. Dimension tables : smaller, generally static
information about the entities involved in the
facts.

Example: Star Schema

 Record in a warehouse information about
every beer sale: the bar, the brand of beer,
the drinker who bought the beer, the day,
the time, and the price charged.

 The fact table is a relation:

Sales(bar, beer, drinker, day, time, price)

Example -- Continued

 The dimension tables include
information about the bar, beer, and
drinker “dimensions”:

Bars(bar, addr, license)

Beers(beer, manf)

Drinkers(drinker, addr, phone)

Time dimension is very special
Days(day,week,month,year)

Dimensions and Dependent
Attributes

 Two classes of fact-table attributes:

1. Dimension attributes : the key of a
dimension table, such as bar.

2. Dependent attributes : a value
determined by the dimension attributes of
the tuple, such as price.

Dimensions Attributes
 Hierarchy on dimension attributes: lets dimensions to be viewed

at different levels of detail

 E.g. the dimension DateTime can be used to aggregate by hour of

day, date, day of week, month, quarter or year

Example: Dependent Attribute

 Price is the dependent attribute.

 It is determined by the combination of
dimension attributes: bar, beer, drinker,
and the time (combination of day and
time-of-day attributes).

Approaches to Building
Warehouses

1. ROLAP = “relational OLAP”: Tune a

relational DBMS to support star
schemas.

2. MOLAP = “multidimensional OLAP”:

Use a specialized DBMS with a model
such as the “data cube.”

ROLAP Techniques

1. Bitmap indexes : For each key value
of a dimension table (e.g., each beer
for relation Beers) create a bit-vector
telling which tuple of the fact table
have that value.

2. Materialized views : Store the answers
to several useful queries (views) in the
warehouse itself.

Bitmap Index

 Sales(bar, beer, drinker, day, time, price)

 Assume there are 4 kinds of beer, the
bitmap index on Beer is 4 columns.

Bud BUdlit Coor Qinda
o

1 0 0 0

0 1 0 0

bar beer drink
er

day time price

Bud

Budlit

…

Fact Table

Typical OLAP Queries

 OLAP queries begin with a “star join”: the
natural join of the fact table with all or most
of the dimension tables.

 Example:

SELECT *

FROM Sales, Bars, Beers, Drinkers

WHERE Sales.bar = Bars.bar AND

 Sales.beer = Beers.beer AND

 Sales.drinker = Drinkers.drinker;

Typical OLAP Queries (cont.)

 The typical OLAP query will:

1. Start with a star join.

2. Select for interesting tuples, based on
dimension data.

3. Group by one or more dimensions.

4. Aggregate certain attributes of the result.

Example: OLAP Query

For each bar in Palo Alto, find the total
sale of each beer manufactured by
Anheuser-Busch.

2. Filter: addr = “Palo Alto” and manf =
“Anheuser-Busch”.

3. Grouping: by bar and beer.

4. Aggregation: Sum of price.

Example: In SQL

SELECT bar, beer, SUM(price)

FROM Sales NATURAL JOIN Bars

 NATURAL JOIN Beers

WHERE addr = ’Palo Alto’ AND

 manf = ’Anheuser-Busch’

GROUP BY bar, beer;

Using Materialized Views

 A direct execution of this query from
Sales and the dimension tables could
take too long.

 If we create a materialized view that
contains enough information, we may
be able to answer our query much
faster.

Example: Materialized View

 Which views could help with our query?

 Key issues:

1. It must join Sales, Bars, and Beers, at least.

2. It must group by at least bar and beer.

3. It must not select out Palo-Alto bars or
Anheuser-Busch beers.

4. It must not project out addr or manf.

Example --- Continued

 Here is a materialized view that could help:

 CREATE VIEW BABMS(bar, addr,

 beer, manf, sales) AS

 (SELECT bar, addr, beer, manf,

 SUM(price) as sales

 FROM Sales NATURAL JOIN Bars

 NATURAL JOIN Beers

 GROUP BY bar, addr, beer, manf);

Since bar -> addr and beer -> manf, there is no real
grouping. We need addr and manf in the SELECT.

Example --- Concluded

 using the materialized view BABMS:

 SELECT bar, beer, sales

 FROM BABMS

 WHERE addr = ’Palo Alto’ AND

 manf = ’Anheuser-Busch’;

MOLAP and Data Cubes

 Keys of dimension tables are the
dimensions of a hypercube.

 Example: for the Sales data, the four
dimensions are bar, beer, drinker, and
time.

 Dependent attributes (e.g., price) appear
at the points of the cube.

Visualization – Data Cubes

• Dimension
data forms
axes of
“cube”

• Dependent
data in
cells.

Visualization --- Data Cube
w/Aggregation

Aggregated
data on
sides,
edges,
cornor.

Example: Data Cube

Data cube with multiple dimensions, for
example:

 4-dimensional Sales cube includes the
sum of price over each bar, each beer,
each drinker, and each time unit
(perhaps days).

 How to show it ?

 How to show those aggregated values?

Structure of the Cube

 Think of each dimension as a component of a
tuple

Sales(‘joe’sbar’,’Bud’,’Mary’,2013-05-27)
 Think of each dimension as having an additional

value *. A point with one or more *’s in its
coordinates aggregates over the dimensions with
the *’s.

Sales(”Joe’s Bar”, ”Bud”, *, *) holds the sum,
over all drinkers and all time, of the Bud
consumed at Joe’s.

Drill-Down

 Drill-down = “de-aggregate” = break an

aggregate into its constituents.

 Example: having determined that Joe’s

Bar sells very few Anheuser-Busch
beers, break down his sales by
particular A.-B. beer.

Roll-Up

 Roll-up = aggregate along one or more
dimensions.

 Example: given a table of how much
Bud each drinker consumes at each bar,
roll it up into a table giving total
amount of Bud consumed by each
drinker.

Example: Roll Up and Drill
Down

$ means the price charged.

Examples: Roll Up

Select manf, bar, drinker, sum(price)

From sales natural join beers

Group by manf, bar, drinker;

Select manf, drinker, sum(price)

From sales natural join beers

Group by manf, drinker;

Example: Drill Down (cont.)

Select manf, drinker, sum(price)

From sales natural join beers

Group by manf, drinker;

Select manf, beer, drinker, sum(price)

From sales natural join beers

Group by manf, beer, drinker;

The general form of
“slicing and dicing”

Slicing: focusing on particular one dimension with
fixed value.

Dicing: focusing on particular partitions along one or
more dimensions.

Select <grouping attributes and aggregations>
From <fact table joined with some dimension

tables>
Where<certain attributes are constant>
Group by<grouping attributes>;

Same example

Examples: Slicing

Select manf, bar, drinker, sum(price)

From sales natural join beers

Group by manf, bar, drinker;

Select bar, drinker, sum(price)

From sales natural join beers

Where manf=‘Anheuse-Busch’

Group by bar, drinker;

Example: Dicing

Find the sales of those bar located in Palo Alto
and sold beers from manufacture of “A-B”:

Select bar, drinker, sum(price)

From sales natural join beers natural join bars

Where manf=‘Anheuse-Busch’ and addr=‘Palo

Alto’

Group by bar, drinker;

The cube operator in SQL
--with cube

Select dimension-attributes

From tables

Where conditions

Group by dimension-attributes with cube

 Add to results: faces, edges and corner
of cube using null value.

The cube operator in SQL
 (examples)

 Construct a materialized view
that is data cube

Create materialized view
salesCube as

Select drink,bar,beer, sum(price)

From sales

Group by drink,bar,beer WITH
CUBE;

(Jim,Joe’sbar,Bud,10)

(Jim, null, Bud, 20)

(Jim, Joe’sbar, null, 45)

(null, Joesbar, Bud,55)

(Jim, null,null,133)

(null,Joesbar,null,80)

(nill,null,Bud,80)

(null, null, null,345)

…

Null is used to indicate a rolled-up dimension,
similar as *

SQL: Cube Operator

 The cube operation computes union of group by’s on

every subset of the specified attributes

 E.g. consider the query

 select drinker, bar, beer, sum(price)
 from sales
 group by drinker, bar, beer with cube

 This computes the union of eight different groupings of
the sales relation:

{ (drinker, bar, beer), (drinker, bar), (drinker, beer),
(bar, beer), (drinker), (bar), (beer), () }

 where () denotes an empty group by list.

 For each grouping, the result contains the null value
for attributes not present in the grouping.

The cube operator in SQL
--with rollup

Select dimension-attributes

From tables

Where conditions

Group by dimension-attributes with rollup

The cube operator in SQL
(example)

Create materialized view salesRollup as

Select drink,bar,beer, sum(price)

From sales

Group by drink,bar,beer WITH ROLLUP;

 Will contain tuples:
(Jim, Joe’sbar, Bud, 20)
(Jim, Joe’sbar, null, 45)

(Jim, null,null,133)
(null,null,null, 345)

Part of the
data cube

SQL : Cube operator with Rollup

 The rollup construct generates union on every prefix
of specified list of attributes

 E.g.

 select drinker, bar, beer, sum(price)
 from sales
 group by drinker, bar, beer with Rollup

 Generates union of four groupings:

 { (drinker, bar, beer), (drinker, bar), (drinker), () }

 Rollup can be used to generate aggregates at multiple
levels of a hierarchy.

Classroom Exercises
--mydbdata (online)

 create table students(sid int primary key,name
char[10],dept char[2],age int default 20);

 create table courses (cid int primary key,
cname text, spring boolean, teacher
char[10]);

 create table teachers(teacher char[10]
unique,dept char[2]);

 create table sc (sid int, cid int, teacher char
[10],grade int); --a fact table (three dimensions)

Classroom Exercises:

 Find students information who take a
course in autumn and the teacher from
‘cs’

 Find the average grade for each student’s
dept and each course

 Roll up to find the average grade for each
course

 Drill down to see each students

 Slice the average score for C++

Fact Table

Create view fact as

Select sid,cid,dept, grade

from sc natural join teachers

Group by sid,cid,dept;

--here dept is from the teacher

Find the average grade for each
dept according to their students
grade.

Select students.dept,avg(grade)

From fact, students

Where fact.sid=students.sid

Group by students.dept;

Find the average grade for each
dept according to the courses.

Select dept,avg(grade)

From fact

Group by dept;

With Cube

create view scube as

 select sid,cid,avg(grade) from fact group by
sid,cid

 union

 select sid,null,avg(grade) from fact group by sid

 union

 select null,cid,avg(grade) from fact group by cid

 union

 select null,null,avg(grade) from fact;

Select sid,cid,avg(grade)
from fact
group by sid,cid with cube

Queries to scube

sid cid Avg(grade)

Learn the average grade of each
students.

Learn the average grade of each
courses.

Learn the average grade of students of
all the courses taken.

With RollUp

create view srollup as

 select sid,cid,avg(grade) from fact group by
sid,cid

 union

 select sid,null,avg(grade) from fact group by sid

 union

 select null,null,avg(grade) from fact;

Select sid,cid,avg(grade)
from fact
group by sid,cid with RollUp

Number of tuples in scube and
srollup

 Select count(*) from fact;

 Select count(distinct sid) from fact;

 Select count(distinct cid) from fact;

 Select count(*) from scube;

 Select count(*) from srollup;

Create three dimensional data
cube

Select sid,cid,dept,avg(grade) from fact
group by sid,cid,dept with cube

Chapter Summary

 Privileges & Grant diagrams

 SQL Recursive Queries

 Object-relational model

 UDT

 OLAP:

star schemas, rollup, drill-down,
slicing, dicing and cube operator

