
Chapter 10 Advanced topics in
relational databases

 Security and user authorization in SQL
 Recursion in SQL
 Object-relational model
1. User-defined types in SQL
2. Operations on object-relational data
 Online analytic processing & data cubes

Merging Relational and Object
Models

 Object-oriented models support
interesting data types --- not just flat
files.

 Maps, multimedia, etc.

 The relational model supports very-high-
level queries.

 Object-relational databases are an
attempt to get the best of both.

Object-Relational Data Models

 Include object orientation and constructs to

deal with added data types.

 Allow attributes of tuples to have complex

types, including non-atomic values such as

nested relations.

 Preserve relational foundations, in

particular the declarative access to data,

while extending modeling power.

 Upward compatibility with existing

relational languages.

SQL-99

 SQL-99 includes many of the object-
relational features to be described.

 However, different DBMS’s use different
approaches.

User Defined Types

 A user-defined type, or UDT, is
essentially a class definition, with a
structure and methods.

 Two uses:

1. As the type of a relation (Rowtypes).

2. As the type of an attribute of a relation.

UDT Definition

CREATE TYPE <typename> AS (

 <list of attribute-type pairs>

);

Example: UDT Definition

CREATE TYPE BarType AS (

 name CHAR(20),

 addr CHAR(20)

);

CREATE TYPE BeerType AS (

 name CHAR(20),

 manf CHAR(20)

);

Method Declarations in UDTs

CREATE TYPE BarType AS (

 name CHAR(20),

 addr CHAR(20))

 METHOD Telnumber() returns CHAR(10);

CREATE METHOD Telnumber() returns
CHAR(10)

 FOR BarType

 Begin … End; // method body

References

 If T is a type, then REF T is the type
of a reference to T, that is, a pointer to
an object of type T.

 Often called an “object ID” in OO
systems.

 Unlike object ID’s, a REF is visible.

Example: REF

CREATE TYPE MenuType AS (

 bar REF BarType,

 beer REF BeerType,

 price FLOAT

);

 MenuType objects look like:

3.00

To a BarType
object To a BeerType

object

Example: REF (cont.)

 A REF(T) SCOPE R: A reference to tuples
in relation R, where R is a table whose type
is UDT T

CREATE TYPE MenuType AS (

 bar REF(BarType) Scope Bars,

 beer REF(BeerType) scope Beers,

 price FLOAT

);

UDT’s as Rowtypes

 A table may be defined to have a schema
that is a rowtype, rather than by listing its
elements.

 Syntax:

CREATE TABLE <table name> OF

 <type name>

 (<list of elements>);

Example: Creating a Relation

CREATE TABLE Bars OF BarType (

 PRIMARY KEY (name));

CREATE TABLE Beers OF BeerType (

 PRIMARY KEY (name));

CREATE TABLE Sells OF MenuType (

 PRIMARY KEY (bar, beer),

 FOREIGN KEY (. . .));

Constraints
are elements
of tables, not
types.

Values of Relations with a Rowtype

 a relation like Bars, declared to have a
rowtype BarType, is not a set of pairs --- it
is a unary relation, whose tuples are
objects with two components: name and
addr.

 Each UDT has a type constructor of the
same name, which wraps objects of that
type.

Example: Type Constructor

 The query

 SELECT * FROM Bars;

 Produces “tuples” such as:

 BarType(’Joe’’s Bar’, ’Maple St.’)

Creating Objects ID’s for Tables

REF IS <attribute name><how generated>

 SYSTEM GENERATED: DBMS is responsible
for maintaining a unique value in the
column.

 DERIVED: use primary key of the
relation to produce unique values for
the column.

For example:

CREATE TABLE Bars OF BarType (

 REF IS nameID SYSTEM GENERATED,

 primary key (name));

Accessing Values From a Rowtype

 In Oracle, the dot works as expected.

 Oracle: to use an alias for every relation, when
O-R features are used.

 Example:

 SELECT bb.name, bb.addr

 FROM Bars bb;

Accessing Values: SQL-99 Approach

 In SQL-99, each attribute of a UDT has
generator (get the value) and mutator
(change the value) methods of the same
name as the attribute.

 The generator for A takes no argument, as
A().

 The mutator for A takes a new value as
argument, as A(v).

Example: SQL-99 Value Access

 The same query in SQL-99 is

 SELECT bb.name(), bb.addr()

 FROM Bars bb;

 CREATE TABLE Bars OF BarType {

 PRIMARY KEY (name)};

Inserting Rowtype Values

 Oracle: use a standard INSERT statement.

 But remember that a relation with a rowtype is
really unary and needs that type constructor.

 Example:

 INSERT INTO Bars VALUES(

 BarType(’Joe’’s Bar’, ’Maple St.’)

);

Inserting Values: SQL-99 Style

1. Create a variable X of the suitable type,
using the constructor method for that
type.

2. Use the mutator methods for the
attributes to set the values of the fields
of X.

3. Insert X into the relation.

Example: SQL-99 Insert

 The following must be part of a procedure,
e.g., PSM, so we have a variable newBar.

 SET newBar = BarType();

 newBar.name(’Joe’’s Bar’);

 newBar.addr(’Maple St.’);

 INSERT INTO Bars VALUES(newBar);

Mutator methods
change newBar’s
name and addr
components.

UDT’s as Column Types

 A UDT can be the type of an attribute.

 In either another UDT declaration, or in
a CREATE TABLE statement, use the
name of the UDT as the type of the
attribute.

Example: Column Type

CREATE TYPE AddrType AS (

 street CHAR(30),

 city CHAR(20),

 zip INT

);

CREATE TABLE Drinkers (

 name CHAR(30),

 addr AddrType,

 favBeer BeerType

);

Values of addr and
favBeer components
are objects with 3 and
2 fields, respectively.

Following REF’s: SQL-99 Style

 A -> B makes sense if:

1. A is of type REF T.

2. B is an attribute (component) of objects of
type T.

 Denotes the value of the B component
of the object pointed to by A.

Example: Following REF’s

 Remember: Sells is a relation with
rowtype MenuType(bar, beer, price),
where bar and beer are REF’s to objects
of types BarType and BeerType.

 Find the beers served by Joe:

 SELECT ss.beer()->name

 FROM Sells ss

 WHERE ss.bar()->name = ’Joe’’s Bar’;

First, use generator methods to
access the bar and beer components

Then use the
arrow to get the
names of the bar
and beer referenced

Using DEREF

 DEREF Applies to a reference and produces the tuple referenced.

 CREATE TABLE Sells (
 bar REF BarType,

 beer REF BeerType,

 price FLOAT);

 To see the BeerType objects, use:
 SELECT DEREF(beer)

 FROM Sells

 WHERE barname = ’Joe’’s Bar’;

 Produces values like:
 BeerType(’Bud’, ’Anheuser-Busch’)

Instead of CREATE
TABLE Sells OF
MenuType

Order Methods: SQL-99

 Each UDT T may define two methods
called EQUAL and LESSTHAN.
 Each takes an argument of type T and is

applied to another object of type T.

 Returns TRUE if and only if the target object is
= (resp. <) the argument object.

 Allows objects of type T to be compared by
=, <, >=, etc. in WHERE clauses and for
sorting (ORDER BY).

Ordering Relationships on
UDT’s

To specify an ordering or comparison:

 CREATE ORDERING FOR T EQUALS ONLY BY
STATE;

 Two members of UDT T are considered equal if all
of their corresponding components are equal.

 CREATE ORDERING FOR T

 ORDERING FULL BY RELATIVE WITH F

 apply the function F to these objects to do 6
comparisons (< <= > >= = <>), so that F(x1,x2)
<0, means x1<x2, F(x1,x2)=0 means x1=x2, so
on

CREATE ORDERING FOR AddressType

ORDERING FULL BY RELATIVE WITH AddrLEG (example)

CREATE FUNCTION AddrLEG(

 x1 AddressType,

 x2 AddressType

) RETURNS INTEGER

IF x1.city() < x2.city() THEN RETURN(-1)

ELSEIF x1.city() > x2.city() THEN RETURN(1)

ELSEIF x1.street() < x2.street() THEN RETURN(-1)

ELSEIF x1.street() = x2.street() THEN RETURN(0)

ELSE RETURN(1)

END IF;

Summary

 UDT : User Defined Type

 as the type of a table

 as the type of an attribute

 Reference types: a type of an attribute
can be a reference to a UDT.

 A pointer to objects of that UDT.

