
Chapter 10 Advanced topics in
relational databases

 Security and user authorization in SQL
 Recursion in SQL
 Object-relational model
1. User-defined types in SQL
2. Operations on object-relational data
 Online analytic processing & data cubes

Security and user
authorization in SQL

Authorization

Aim:

 Make sure users only see the data they’re
suppose to

 Guard the database against updates by
malicious users

How SQL control it?
 Authorization ID

 Privileges

Authorization ID

 Authorization ID, typically their name.

 Authorization ID may be granted some
particular privileges on objects.

 PUBLIC: a special built-in authorization
ID

 Granting a privilege to PUBLIC makes it
available to any authorization ID.

Privileges in SQL

 File systems identify certain access
privileges on files, e.g.,
read,write,execute.

 SQL identifies nine types of privileges:

1. SELECT = the right to query the relation

Privileges in SQL (cont.)

2. INSERT = the right to insert tuples into the
relation, may refer to one attribute, in which
case the privilege is to specify only one column
of the inserted tuple.

3. DELETE = the right to delete tuples from the
relation.

4. UPDATE = the right to update tuples of the
relation, may refer to one attribute.

5. References = the right to refer to that relation
in an integrity constrain.

Privileges in SQL (cont.)

 Usage =the right to use that element in
one’s own declarations.

 Trigger = the right to define triggers on
that relations

 Execute = the right to execute a piece of
code, such as a PSM procedure or function.

 Under=the right to create subtypes of a
given type.

Example: What privileges are
needed for this statement?

 INSERT INTO Beers(name)

 SELECT beer FROM Sells

 WHERE NOT EXISTS

 (SELECT * FROM Beers

 WHERE name = beer);

beers that do
not appear in
Beers. We add
them to Beers
with a NULL
manufacturer.

We require privileges SELECT on Sells and
Beers, and INSERT on Beers or Beers.name.

Obtaining Privileges

 How to grant privilege?

 Owner vs. granted user

Owner has all privileges and

may GRANT them to others

Ownership

 Schema owner: who create the schema
and owns all tables, and other schema
elements.

 Session owner: who issued a Connect
statement.

 Module owner: who create a module.

Authorization-Checking

 Each module, schema, and session has an
associated authorization ID.

 A user’s privileges derive from the current
auth. ID that is either

 module auth. ID if there is one, or

 session auth. ID if not.

We may execute the SQL operation only if the
current auth. ID possesses all the privileges.

Privilege-Checking

The current authorization ID is:

 the owner of the data, or

 has been granted by the owner
or been granted to user PUBLIC.

 Executing a module.

Granting Privileges

 You have all possible privileges to the
relations you create. (owner)

 You may grant privileges to any user if
you have those privileges” with grant
option.” You have this option to your

own relations. (granted user)

Example

1) Sally can query Sells and can change prices, but
cannot pass on this power:

GRANT SELECT ON Sells, UPDATE (price) ON
Sells TO sally;

2) Sally can also pass these privileges to whom she
chooses;

GRANT SELECT ON Sells, UPDATE (price) ON
Sells TO sally WITH GRANT OPTION;

Grant diagrams

 An SQL system maintains a
representation of this diagram to keep
track of both privileges and their origins.

 The nodes of a grant diagram
correspond to a user and a privilege.

 A privilege with and without the grant
option must be represented by two
different nodes.

Grant Diagrams

 Node: user/privilege

 Arc: grants

 * = WITH GRANT OPTION

 ** = derived from ownership

U1

Q

**

U2

P

Q is more

general

than P

User U1 grants privilege P to user U2

For example:

Q: is UPDATE ON R

P: UPDATE(a) on R

Revoking Privileges

 Syntax

REVOKE privileges ON relation FROM users

[CASCADE | RESTRICT]

 CASCADE: transitively revoking.

 RESTRICT: Revoke not allowed if it would
cause any node unreachable from an
owner.

Revoking Privileges (cont.)

a) If you have been given a privilege by
several different people, then all of them
have to revoke in order for you to lose
the privilege.

b) Revocation is transitive （传递的）. If A
granted P to B, who granted P to C, and
then A revokes P from B, it is as if B also
revoked P from C.

Revoking Privileges (cont.)

c) Revoke with RESTRICT： the revoke
statement cannot be executed if the
cascading rule would result in the
revoking of any privileges due to the
revoked privileges having been passed
on to others.

Revoking GRANT OPTION

 Syntax

REVOKE GRANT OPTION FOR privilege

ON relation FROM users

[CASCADE | RESTRICT]

 Only revoking the grant option, not the
privilege itself.

Example: Grant Diagram

AP**

A owns the
object on
which P is
a privilege

BP*

A: GRANT P
TO B WITH
GRANT OPTION

CP*

B: GRANT P
TO C WITH
GRANT OPTION

CP

A: GRANT P
TO C

Example: Grant Diagram

AP** BP* CP*

CP

A executes
REVOKE P FROM B CASCADE;

However, C still
has P without grant
option because of
the direct grant.

Not only does B lose
P*, but C loses P*.
Delete BP* and CP*.

Even had
C passed P
to B, both
nodes are
still cut off.

If A executes

REVOKE P FROM B RESTRICT ??

Summary

 Privileges: select, update, grant
privilege, and so on.

 How to grant or revoke
privileges?

 Grant diagrams.

