Chapter 1 Introduction

Contents

The History of Database System

- Overview of a Database Management
 System (DBMS)
- Three aspects of database-system studies
- the state of the art

Introduction to Database Systems

- What is a Database System?
- Database (data , metadata)
- Hardware (disks)
- Software (DBMS)
 - People (users, database designers and database administrators DBA)

Introduction to Database Systems (cont.)

- Database Applications
- Database Management
 System (DBMS)
- Operating System (not in this course)

Database Application Systems

Databases touch all aspects of our lives

- Banking: all transactions
- Airlines: reservations, schedules
- Universities: COURSE registration, grades
- Sales: customers, products, purchases
- Manufacturing: production, inventory, orders, supply chain
- Human resources: employee records, salaries, tax deductions ...

The history of DBMS

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provided only sequential access
 - Punched cards for input
- Late 1960s and 1970s:
 - Hard disks allowed direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - he won the <u>ACM Turing Award</u> for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
 - High-performance (for the era) transaction processing

More detailed History (cont.)

- 1980s:
 - Research relational prototypes evolve into commercial systems
 - SQL becomes industrial standard
 - Parallel and distributed database systems
 - Object-oriented database systems
- 1990s:
 - Large decision support and data-mining applications
 - Large multi-terabyte data warehouses
 - Emergence of Web commerce
- Early 2000s:
 - XML and XQuery standards
 - Automated database administration
- Later 2000s:
 - Giant data storage systems, noSQL systems
 - stream data, uncertain data,

The state of the art from DTCC2014

大数据的宏观视图:行业与互联网<mark>大数据</mark>3

What is a DBMS (database management system) ?

From Commercial Market:

- Oracle, Sybase are among the largest software companies in the world.
- IBM offers its DB2 system
- Microsoft offers SQL-Server & Microsoft Access for DBMS on desktop
- MySQL

What do you think about DBMS?

From User's point of view:

Collection of interrelated data

Set of programs to access the data

DBMS contains information about a particular enterprise, *reliable* and *safe*.

DBMS provides an environment that is both *convenient* and *efficient* to use.

The DBMS is <u>expected</u> to:

- Allow users to create new database and specify their structure.
- Give users the ability to **query** the data.
- Support the storage of very large amounts of data.
- Enable durability, recovery of failures, errors of many kinds.
- Control access to data from many users at once.

DBMS (From its Functions)

Design the structure of their information (e.g. relational model)

Operate (query, modify) on the data

Manage huge amount of data and support efficient, concurrent, secure, atomic access to very large amounts of data

DBMS (from **implementation**, how to manage data)

Persistent storage: supports the storage of very large amounts of data:

- **1. Data**: the content of DB itself.
- 2. Metadata: describes the structure of, and constraints on, the database.
- **3.** Log records: recent change to the databases.
- 4. Statistics: about data property, such as the sizes of, values of,...
- 5. Indexes: support efficient access to the data

Programming interface: to access and modify data through a powerful query language.

DBMS: how to manage data (cont.)

Transaction management:

supports secure, atomic access to very large amounts of data.

<u>Concurrent control</u>:

supports concurrent access to data.

DBMS (three components)

Query processor:

The query compiler, execution engine

Transaction manager:

Logging, concurrency control, deadlock resolution

Storage manager:

Control the placement of data on disk, and its movement between disk and main memory

Many Users

Application programmers – interact with system through database manipulation language

Sophisticated users – form requests in a database query language

Specialized users – write specialized database applications that do not fit into the traditional data processing framework

■Naïve users – invoke one of the permanent application programs that have been written previously

E.g. people accessing database over the web, bank tellers, clerical staff

Database Administrator (DBA)

- Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise's information resources and needs.
- Database administrator's duties include:
 - Schema definition
 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Acting as liaison with users
 - Monitoring performance and responding to changes in requirements

Different Users with the System

Application Architectures

Two-tier architecture: E.g. client programs using **ODBC/JDBC** to communicate with a database

- Three-tier architecture: E.g. web-based applications, and applications built using "middleware"
- Multi-tier architecture.

Three Aspects of Studying DBMS's

Modeling and design of databases. (how is the information structured?)

Programming: queries and DB operations like update. (how does one express queries and other operations on the database)

DBMS implementation. (how to build a DBMS)

Summary of chapter 1

- Database System & Applications
- Database Management System (DBMS)
- features, functions, components (storage manager, the query processor, and the transaction manager)
- Database Language (DDL, DML)
- The development of DBMS

Past :	Now:
Network DBMS	Relational DBMS
Hierarchical DBMS	Object-Relational/oo DBMS
Relational DBMS	Web-based database,
	noSQL system

Homework

Read section 1.2