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Abstract

General-purpose pre-trained word embeddings have become a mainstay of natural language pro-
cessing, and more recently, methods have been proposed to encode external knowledge into word
embeddings to benefit specific downstream tasks. The goal of this paper is to encode sentiment
knowledge into pre-trained word vectors to improve the performance of sentiment analysis. Our
proposed method is based on a convolutional neural network and an external sentiment lexicon.
Experiments on four popular sentiment analysis datasets show that this method improves the
accuracy of sentiment analysis compared to a number of benchmark methods.

1 Introduction

Sentiment analysis plays an important role in many real-world applications. The objective of sentiment
classification is to classify a sentence, message or document according to sentiment, often in the form of
ordinal regression (e.g. positive vs. neutral vs. negative). In recent years, deep neural networks, such as
convolutional neural networks (“CNNs”), have been widely used for sentiment classification. A simple
CNN trained over pre-trained word vectors has been shown to achieve highly competitive results (Kim,
2014). Learning task-specific vectors through fine-tuning may offer further gains in performance, and
this is the primary focus of this paper.

Separately, there has been recent work on methods for learning word embeddings based not just on
textual contexts, but also external knowledge bases (Wieting et al., 2015; Yu and Dredze, 2014; Xu et al.,
2014; Bian et al., 2014; Faruqui et al., 2015; Mrkšić et al., 2016; Mrkšić et al., 2017; Vulić et al., 2017).
This has also been applied to sentiment classification (Rouvier and Favre, 2016; Yu et al., 2017), with
empirical results indicating that explicitly embedding sentiment resources can improve the performance
of sentiment analysis.

Existing methods for encoding external knowledge into word vectors are generally trained indepen-
dently of the downstream task. In order to leverage sentiment lexicons for sentiment analysis, we propose
a novel method to combine a feedforward neural network (denoted “SentiNet”) with a CNN classifier to
encode sentiment knowledge into word vectors during training. The method tunes word vectors through
the CNN and SentiNet, based on independent information from supervised training data and sentiment
lexicons. Our hypothesis is that joint training of sentiment-targeted word embeddings should improve
the overall accuracy of the resulting sentiment analyzer. We conduct several experiments to verify this
hypothesis, and compare our method with competitor methods that use antonymy/synonymy lexicons
and paraphrase databases.

The major contributions of this paper are as follows: (1) the sentiment lexicon is encoded into word
vectors by a feedforward neural network instead of an objective function based on a fixed metric such
as cosine similarity or Euclidean distance, and in doing so are able to dynamically learn how to encode
the lexicon; (2) word vectors are fine-tuned based on supervised training data and the sentiment lexicon
during the training of the CNN sentiment classifier; and (3) we achieve state-of-the-art accuracy over a
range of benchmark sentiment analysis datasets.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/



2 Related Work

2.1 Encoding External Knowledge into Word Vectors
Existing approaches to leveraging external knowledge for word embedding learning for natural language
processing fall into two categories: (1) encoding external knowledge during the word vector learning
stage; and (2) encoding external knowledge into pre-trained word vectors. Both styles of approach make
use of similar linguistic resources such as WordNet (Miller, 1995), FrameNet (Baker et al., 1998), the
Paraphrase Database (“PPDB”: Ganitkevitch et al. (2013)), or BabelNet (Navigli and Ponzetto, 2012).

Methods in the first category usually change the objective function of the language model or add reg-
ularization terms into the original objective function. Yu and Dredze (2014) combine CBOW (Mikolov
et al., 2013) with word relations extracted from WordNet and PPDB. Xu et al. (2014) regard relational
knowledge and categorical knowledge as learning regularizers, and combine them with the skip-gram
objective function. Bian et al. (2014) also combine the objective function of CBOW with external syn-
tactic and semantic knowledge to improve word vectors for extrinsic tasks. These methods all need large
unlabeled corpora to learn word vectors from scratch.

In contrast, methods in the second category are lightweight because they adapt pre-trained word vec-
tors via post-processing. This means these methods are compatible with different kinds of word vectors.
Wieting et al. (2015) learn PARAGRAM word vectors by fine-tuning over paraphrase data from PPDB.
The resultant embeddings outperform the baseline skip-gram embeddings over an extrinsic sentiment
analysis task for low-dimensionality word embeddings. Faruqui et al. (2015) use synonym relations
extracted from WordNet and other resources to construct an undirected graph. They then retrofit the
undirected graph to pre-trained word vectors to obtain new word vectors, under the constraint that the
resulting vectors should be close to the vectors of their neighbours in the semantic graph. Antonyms are
generally close in vector space, presenting a problem when learning general-purpose word vectors (as
in most scenarios, it is undesirable for antonyms to be closely related) (Mnih and Hinton, 2008; Col-
lobert et al., 2011; Mikolov et al., 2013; Levy and Goldberg, 2014; Pennington et al., 2014). In order
to solve this problem, antonym lexicons have been used to fine-tune pre-trained word vectors. Mrkšić
et al. (2016) present a method called counter-fitting to inject antonymy and synonymy constraints into
word vectors trained with GloVe (Pennington et al., 2014) and PARAGRAM (Wieting et al., 2015). The
adapted word vectors trained with PARAGRAM achieve the second-highest SimLex-999 (Hill et al.,
2015) score. Mrkšić et al. (2017) extend this previous work using negative sampling, to force synonym
pairs to be closer to each other than to their negative examples, and forcing antonyms pairs to be further
away from each other than from their negative examples.

Encoding external knowledge into word vectors has shown to be effective for improving pre-trained
word vectors for intrinsic evaluation such as WordSim-353 (Finkelstein et al., 2002) and SimLex-999.
It has also shown to be effective for improving extrinsic tasks such as dialogue state tracking (Mrkšić et
al., 2016; Mrkšić et al., 2017; Vulić et al., 2017), sentiment analysis (Faruqui et al., 2015; Wieting et al.,
2015; Yu et al., 2017), document classification (Kiela et al., 2015), and word sense disambiguation (Rothe
and Schütze, 2015).

The above two kinds of methods both encode external knowledge into word vector space before ap-
plying word vectors in downstream tasks. Our method encodes a sentiment lexicon into word vectors
when fine-tuning the word vectors in a downstream task.

2.2 Adapting Word Vectors for Sentiment Analysis
There are many methods of adapting word vectors for sentiment analysis. Maas et al. (2011) combine
two components — a probabilistic document model and a sentiment component — to jointly learn word
vectors. The probabilistic document model does not require labelled data. The sentiment component
uses document-level sentiment annotations to constrain words expressing similar sentiment to have simi-
lar representations. Tang et al. (2014) changed the objective function of the C&W (Collobert et al., 2011)
model to produce sentiment-specific word vectors for Twitter sentiment analysis, by leveraging large vol-
umes of distant-supervised tweets. In order to capture morphological and shape information from words,
dos Santos and Gatti (2014) concatenate character-level embeddings and word-level embeddings to form



a combined word representation for sentiment analysis. Severyn and Moschitti (2015) refine pre-trained
word vectors through a CNN based on distant-supervised data. Zhou et al. (2016) introduced three kinds
of word vectors as features into their sentiment classifier. One is general purpose, and the the other two
are trained by leveraging sentiment information. However, their feature selection experiments indicate
that the task-specific trained word vectors do not improve the performance of their system substantially.
Ren et al. (2016) use a recursive autoencoder to learn topic-enhanced word vectors, based on the assump-
tion that the same word can vary in sentiment according to topic. Rouvier and Favre (2016) proposed
three kinds of word embeddings — lexical embeddings, part-of-speech embeddings, and sentiment em-
beddings — in order to train three CNN-based sentiment classifiers. The three classifiers are combined
into a fusion model to make the final prediction.

Other methods regard sentiment information as a kind of external knowledge. They encode sentiment
information into word vectors by using customized objective functions or introducing regularization
terms into objective function of the language model. Yu et al. (2017) utilize a sentiment lexicon to re-
rank the nearest neighbors in order to capture sentiment information. The refinement model is based
on an objective function which calculates the distance among vectors, in order to adapt word vectors
for sentiment analysis. Tang et al. (2016) build on their earlier method (Tang et al., 2014) for Twitter
sentiment classification, by leveraging a sentiment lexicon instead of large volumes of distant-supervised
Twitter data. Our method also leverages a sentiment lexicon to encode sentiment information into word
vectors. The difference between our method and the methods proposed by Yu et al. (2017) and Tang
et al. (2014) is that our method applies to word vectors directly via the word embedding layer of the
neural network in the context of training a sentiment analyzer, rather than over pre-trained word vectors
without explicit task-based training. Our method uses a feedforward neural network to encode sentiment
information, as distinct from prior work, which has used cosine similarity or Euclidean distance in the
objective function to model word embedding (dis)similarity.

3 Methods

Sentiment lexicons are considered to be a critical component of sentiment analysis. Such external knowl-
edge resources — such as SentiWordNet (Baccianella et al., 2010) and the extended version of Affective
Norms of English Words (E-ANEW: Warriner et al. (2013)) — are often used to provide more accurate
information about the polarity of a word. Encoding sentiment knowledge into word vectors has been
proven to be an effective way to enhance the performance of sentiment analysis.

3.1 Encoding Method

A high-level overview of methods for encoding external knowledge into word vectors for CNN classifiers
is presented in Figure 1. Word vectors are used to initialize word embeddings in a CNN classifier.
The parameters of the CNN and components for fine-tuning the word embeddings are learned based
on supervised training data. The differences in approaches to encoding external knowledge into word
vectors are indicated with dotted rectangles in Figure 1. There are three rectangles, representing the two
categories of existing approaches described in Section 2.1, and our proposed method: (a) the first class
of approach, where word vectors are trained based on external knowledge and unsupervised corpora
from scratch; (b) the second class of approach, where pre-trained word vectors are fine-tuned based on
external knowledge, and the fine-tuned word vectors are then used to initialize the word embeddings
for a CNN classifier; and (c) our method, where we combine external knowledge with pre-trained word
vectors during joint parameter training. The parameters of the “Embedding” component are therefore
trained not only based on supervised training data, but also based on external knowledge.

Figure 2(a) illustrates the architecture of the CNN classifier proposed by Kim (2014). The input to the
Embedding component is a document.1 The Embedding component of the model outputs a real-valued
matrix consisting of the word vectors representing the document. The CNN takes the matrix as input and
predicts the sentiment class distribution of the document.

1In practice, a sentence in the original paper.
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Figure 1: High-level overview of existing methods and our method of encoding external knowledge into
word vectors.
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(b) Our framework with SentiNet based on CNN-non-static

Figure 2: The framework of CNN-non-static (Kim, 2014) vs. our method for encoding a sentiment
lexicon into word vectors by SentiNet.

Figure 2(b) shows the architecture of our method. The Embedding component is initialized with pre-
trained word vectors to train the CNN classifier, and a feedforward neural network called “SentiNet”
is used to encode sentiment information from SentiWordNet into the word vectors. In Figure 2(b),
the input to Embedding is a vector of words contained in the document, denoted by [w1, w2, . . . , wN ].
Embedding outputs a real-valued matrix, W = [w1;w2; . . . ;wN ]ᵀ, which consists of the word vectors
to represent the document. The CNN sentiment classifier takes the matrix as input and predicts the
sentiment distribution of the document. Let fh

m(W ) and fg
m(W ) be the prediction and gold-standard



distribution of the document. The loss function of the CNN is:

LCNN = CE(fh
m(W ),fg

m(W )) , (1)

where CE(·) is a scalar value representing the categorical cross-entropy between the prediction and the
gold-standard sentiment distribution. The parameters of the CNN will be updated according to LCNN.
M words are sampled from [w1, w2, . . . , wN ], denoted as [ws1 , ws2 , . . . , wsM ] where sk ∈ [1, N ] and
k ∈ [1,M ]. The word vectors of the sampled words are denoted as [ws1 ,ws2 , . . . ,wsM ]. SentiNet uses
the sampled word vectors to predict the word-level sentiment distribution based on SentiWordNet. Let
fh
w(wsk) and fg

w(wsk) be the prediction and gold-standard sentiment distribution of the word wsk . The
loss function for SentiNet is:

LSentiNet =
M∑
k=1

CE(fh
w(wsk),f

g
w(wsk)) . (2)

The parameters of SentiNet are updated according to LSentiNet, and the parameters of Embedding are
updated according to the combined loss L:

L = LCNN + LSentiNet (3)

Instead of encoding external knowledge into word vectors and training the CNN sentiment classifier
separately, the word vectors in our method are fine-tuned with not only the CNN, but also with Sen-
tiNet, where SentiNet is regarded as an indicator of word-level sentiment information. If the training of
SentiNet converges, the word vectors are considered to have sentiment information.

3.2 SentiNet

Our SentiNet method uses a feedforward neural network with one hidden layer, distinct from previous
work which has tended to use an objective function based on cosine similarity or Euclidean distance to
capture word embedding similarity. SentiNet takes a word vectorwsk as input, and outputs the sentiment
distribution of the word, denoted as fh

w(wsk). The calculation of the sentiment distribution of the word
is based on:

fh
w(wsk) = softmax(θ2(σ(θ1wsk + b1)) + b2) , (4)

where θ1, θ2, b1 and b2 are trainable parameters, and σ is the sigmoid function. The reason for using a
feedforward neural network is that it has the same structure as standard word embedding training models
such as CBOW, skip-gram and C&W (see Section 2.1).2

4 Experiments

4.1 Experimental Setup

Experiments are conducted over four popular, publicly-available sentence-level sentiment classification
datasets:

• SemEval2016: The dataset of the SemEval-2016 Message Polarity Classification task. The goal
is to classify a given Twitter message according to positive, negative or neutral sentiment (Nakov et
al., 2016).

• SemEval2017: The dataset of the SemEval-2017 Message Polarity Classification task. The task
formulation is exactly the same as SemEval2016 and the same training data is used, with new test
data (Rosenthal et al., 2017).

2When training SentiNet with a mini-batch sentences, the words of the mini-batch are classified into positive, neutral and
negative according to their sentiment score in the sentiment lexicon. It takes two uniform sample steps to sample a word. First,
the word kind (positive, neutral and negative) is sampled uniformly. Then a word is sampled uniformly from the words of the
sampled word kind.



Train Dev Test

Positive Neutral Negative Positive Neutral Negative Positive Neutral Negative

SemEval2016 9169 8098 4115 — — — 7059 10342 3231
SemEval2017 19902 22591 7840 — — — 2375 5937 3972

MR 5331 — 5331 — — — — — —
SST-2 3610 — 3310 444 — 428 909 — 912

Table 1: Statistical breakdown of the four sentiment classification datasets used in this research.

• MR: Single-sentence movie reviews, labeled as having positive or negative sentiment (Pang and
Lee, 2005).

• SST-2: A relabelled version of MR, where the overall review is labeled as having positive or nega-
tive sentiment (Socher et al., 2013).

Statistics for the four datasets are shown in Table 1. SemEval2016, SemEval2017 and SST-2 have
standard training–test splits. MR does not have such a standard split, so we use 10-fold cross validation,
consistent with other work on the dataset. We hold out 10% of the training data for SemEval2016,
SemEval2017 and MR for development purposes (e.g. for early stopping), whereas SST-2 has a stan-
dard development partition. Consistent with standard practice for the respectivce datasets, we evaluate
SemEval2016 and SemEval2017 based on macro-averaged F-score (“F1”), and MR and SST-2 based
on classification accuracy.

The CNN sentiment classifier is based on the model proposed by Kim (2014). The differences are that:
(1) the penultimate layer of our model is not regularized; and (2) we use the Adam optimizer (Kingma
and Ba, 2014), whereas Adadelta (Zeiler, 2012) was used in the original. Hyperparameter tuning was per-
formed over the SemEval2016 development data, based on which we use rectified linear units (ReLU),
and a dropout rate of 0.5 on the penultimate layer. Three filter window sizes of 3, 4 and 5 are used,
each of which contains 100 feature maps. These values are consistent with the hyperparameter settings
of Kim (2014).3

4.2 Training Variations
We propose three settings for learning the parameters of Embedding, CNN and SentiNet. Learning all
parameters together will lead to co-adaption of the parameters, degrading performance. The number of
epochs is set to 100. We use the test result of the epoch with highest performance in dev data. The
procedure for training the sentiment classifier is divided into two stages, each made up of 50 epochs.
There are three variations according to the training time of Embedding and CNN, named BEFORE,
DURING and AFTER, which are optionally integrated with the training of SentiNet:

• BEFORE: The parameters of Embedding are updated in the first stage (the first 50 epochs), and the
parameters of CNN are updated in the second stage (the second 50 epochs).

• BEFORE+SentiNet: The parameters of Embedding and SentiNet are updated in the first stage, and
the parameters of CNN are updated in the second stage.

• DURING: The parameters of Embedding and CNN are updated synchronously across both stages.

• DURING+SentiNet: The parameters of Embedding, SentiNet and CNN are updated synchronously
across both stages.

• AFTER: The parameters of Embedding are updated in the second stage and the parameters of CNN
are updated in the first stage.

• AFTER+SentiNet: The parameters of Embedding are updated in the second stage. The parameters
of CNN and SentiNet are updated in the first stage.

3Our code is available at https://github.com/yezhejack/SentiNet.



SemEval2016 SemEval2017 MR SST-2

Baseline (CNN + Embedding) 0.606 0.640 0.782 0.825
BEFORE 0.607 0.640 0.786 0.831

BEFORE+SentiNet 0.609 0.636 0.788 0.834
DURING 0.608 0.646 0.789 0.825

DURING+SentiNet 0.610 0.637 0.794 0.840
AFTER 0.614 0.650 0.787 0.834

AFTER+SentiNet 0.616 0.651 0.794 0.837

Table 2: Results of three variations with and without SentiNet. The evaluation metric in the second
and third columns is Macro-averaged F-score, while the measurement in the fourth and fifth columns is
accuracy. Above-baseline results are indicated in bold, and the best result over each dataset is underlined.

4.3 Results

Baseline system: The baseline system consists of Embedding and CNN. The parameters of Embedding
are static during training.

Experimental results on the four sentiment classification datasets are reported in Table 2.4 BE-
FORE+SentiNet performs better than BEFORE on SemEval2016, MR and SST-2 datasets. DUR-
ING+SentiNet performs better than DURING on SemEval2016, MR and SST-2 datasets. AF-
TER+SentiNet performs better than AFTER over all four datasets. These results show that SentiNet
improves the performance of the CNN sentiment classifier. AFTER+SentiNet achieves the best perfor-
mance on SemEval2016 and SemEval2017, while DURING+SentiNet achieves the best performance
on MR and SST-2. AFTER+SentiNet performs better than DURING+SentiNet, as fine-tuning Embed-
ding after CNN and SentiNet can avoid the co-adaption of parameters. BEFORE+SentiNet is the worst
because CNN has not been trained when Embedding is tuned, meaning Embedding does not benefit from
the task-specific supervised training data.

4.4 Comparison with Other Methods

Experimental setup: We compare our method with three existing methods for encoding external knowl-
edge resources into word embeddings: (1) attract-repel (Mrkšić et al., 2017); (2) PARAGRAM (Wieting
et al., 2015); and (3) counter-fitting (Mrkšić et al., 2016). We experiment with word embeddings gener-
ated by these three methods to initialize Embedding in our model. These embeddings encode different
external knowledges. Embedding and CNN are jointly trained over the supervised training data. For our
proposed method, we compare against AFTER+SentiNet and DURING+SentiNet, based on the results
from Section 4.3.

The benchmark methods we compare our method against are as follows:

• word2vec: The 300 dimensional pre-trained word vectors based on Google News data, and dis-
tributed by Google.5

• attract-repel-pos-neg: The attract-repel6 method of Mrkšić et al. (2017), which is used to encode
the sentiment lexicon into word2vec word embeddings. The sentiment lexicon is the same as the
one used in our method.

• attract-repel-ant-syn: The attract-repel method of Mrkšić et al. (2017) applied to word2vec word
embeddings, based on antonym/synonym lexicons.

4Based on McNemar’s test, the difference between AFTER-SentiNet and AFTER is significant for SemEval2016 (p < 0.05)
and SST-2 (p < 0.01), but not SemEval2017 or MR (p > 0.05).

5https://code.google.com/archive/p/word2vec/
6https://github.com/nmrksic/attract-repel



SemEval2016 SemEval2017 MR SST-2

word2vec (Mikolov et al., 2013) 0.608 0.647 0.792 0.837
attract-repel-pos-neg (Mrkšić et al., 2017) 0.608 0.641 0.792 0.836
attract-repel-ant-syn (Mrkšić et al., 2017) 0.608 0.626 0.785 0.817

PARAGRAM (Wieting et al., 2015) 0.599 0.632 0.781 0.839
counter-fitting (Mrkšić et al., 2016) 0.603 0.627 0.780 0.838

DURING+SentiNet 0.601 0.641 0.790 0.842
AFTER+SentiNet 0.613 0.648 0.796 0.844

SwissCheese (Deriu et al., 2016) 0.633 — — —
SENSEI-LIF (Rouvier and Favre, 2016) 0.630 — — —

UNIMELB (Xu et al., 2016) 0.617 — — —
BB twtr (Cliche, 2017) — 0.685 — —

CNN-non-static (Kim, 2014) — 0.685 — —
Re(word2vec) (Yu et al., 2017) — — — 0.879

Table 3: Experiment results of word vectors on the four Sentiment Classification Datasets. The measure-
ment of the second and third columns is Macro F1. The measurement of the fourth and fifth columns is
Accuracy.

• PARAGRAM: The word vectors of PARAGRAM, generated by encoding PPDB into word2vec
word embeddings, based on the pre-trained PARAGRAM word embedding set.7

• counter-fitting: The word vectors of counter-fitting, generated by encoding an antonym/synonym
lexicon into PARAGRAM word vectors, based on the pre-trained word embedding set.8

Experimental Analysis: The results of the experiment are shown in Table 3. DURING+SentiNet and
AFTER+SentiNet are the results of our method, run on the same sentiment lexicons as other methods.9

AFTER+SentiNet performs better than the other methods over all four datasets. The reason is that our
word vectors encode not only sentiment information through SentiNet, but also propagate supervision
signal from the sentiment analysis task. Comparing the same method with different external knowledge
sources, the sentiment lexicon has greater utility than the antonym/synonym lexicon for sentiment classi-
fication. Counter-fitting and PARAGRAM outperform word2vec only on SST-2, and not the other three
datasets.

The last 6 lines in Table 3 detail state-of-the-art results for the four datasets. SwissCheese (Deriu et
al., 2016) leverages large amounts of distant-supervised data to train an ensemble of CNNs. SENSEI-
LIF (Rouvier and Favre, 2016) trains three kinds of word embeddings: lexical embeddings, part-of-
speech embeddings and sentiment embeddings, in order to train three CNN sentiment classifiers. The
three classifiers are combined into a fusion model to make the final prediction. UNIMELB (Xu et al.,
2016) consists of a soft-voting ensemble of a language model adapted to classification, a CNN, and a
long-short term memory network (LSTM). BB twtr (Cliche, 2017) also uses a large amount of unlabelled
data to pre-train word vectors. It also ensembles CNNs and LSTMs to boost performance. All of these
methods are based on ensembling classifiers to improve results, while our method uses a single classifier.
Additionally, our CNN model is tuned based on the development data of SemEval2016, and not tuned
to the respective datasets. In that sense, the results are highly encouraging, and there is every expectation
that ensemble methods would benefit from the incorporation of the outputs of our model.

7https://github.com/nmrksic/counter-fitting/blob/master/word_vectors/paragram.txt.
zip

8https://github.com/nmrksic/counter-fitting/blob/master/word_vectors/
counter-fitted-vectors.txt.zip

9In Table 2, the whole vocabulary of pre-trained word2vec is used, whereas in Table 3, we use the intersection of the
vocabulary for word2vec, attract-repel-pos-neg, attract-repel-ant-syn, PARAGRAM and counter-fitting. As such, the results are
not directly comparable.



5 Conclusion

In this paper, we have proposed a novel method for encoding a sentiment lexicon into word embed-
dings for sentiment analysis, based on a method we call SentiNet. SentiNet uses a feedforward neural
network to lexically encode sentiment information, instead of using an objective function based on co-
sine similarity or Euclidean distance. Three variations — BEFORE+SentiNet, DURING+SentiNet and
AFTER+SentiNet — were proposed to combine SentiNet with Embedding and CNN. Experiments on
sentiment classification datasets show that DURING+SentiNet and AFTER+SentiNet are the most ef-
fective ways of combining the training of SentiNet with the training of Embedding and the CNN. Our
method can combine sentiment information from the training data and the sentiment lexicon to fine-tune
word vectors for sentiment classification. For sentiment classification, we have shown sentiment lexicons
to have greater utility than antonym/synonym lexicons and paraphrase databases.

In future work, we plan to experiment with encoding other external lexical knowledge beyond senti-
ment lexicons, and to explore frameworks for encoding external knowledge into deep neural networks.
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