Homework 4

Student Number: Name:

Problem 1. (20 points) Use variable byte codes to encode the posting list of the term COMPUTER in page 9 of the slides.

Problem 2. (20 points) From the following sequence of γ -coded gaps, reconstruct first the gap sequence and then the postings sequence: 11100011101011111011011111011.

Problem 3. (20 points) Consider the table of term frequencies for 3 documents denoted Doc1, Doc2, Doc3 in Table 1(a). Compute the tf-idf weights for the terms car, auto, insurance, best, for each document, using the idf values from Table 1.

Table	1:	Problem	1

(a) Term Frequency

(b) IDF

	Doc1	Doc2	Doc3		term	df_t	idf_t	
car	27	4	24		car	18165	1.65	
auto	3	33	0		auto	6723	2.08	
insurance	0	33	29		insurance	19241	1.62	
best	14	0	17		best	25235	1.5	

Problem 4. (20 points) Refer to the tf-idf weights computed in Problem 3. Compute the Euclidean normalized document vectors for each of the documents, where each vector has four components, one for each of the four terms.

Problem 5. (20 points) Refer to the vectors computed in Problem 4. Compute the consine similarity between any two of the documents.