INDEX COMPRESSION (II)

PREVIOUSLY...

- Heap's law
- Zipf law
- Dictionary-as-a-string
- Blocking

FRONT CODING

• <u>Front-coding</u>:

- Sorted words usually have long common prefix store differences only
- (for last *k*-1 in a block of *k*)

8 automata 8 automate 9 automatic 10 automation

Begins to resemble general string compression.

QUIZ (FRONT CODING)

• What does the following code decode into?

7liber*ty2\al3\ate5\alize

RCV1 DICTIONARY COMPRESSION SUMMARY

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

POSTINGS COMPRESSION

- The postings file is much larger than the dictionary, factor of at least 10.
- Key consideration: store each posting compactly.
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 20$ bits per docID.
- Our goal: use far fewer than 20 bits per docID.

POSTINGS: TWO CONFLICTING FORCES

- A term like *arachnocentric* occurs in maybe one doc out of a million – we would like to store this posting using $\log_2 1M \sim 20$ bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.
 - Prefer 0/1 bitmap vector in this case

POSTINGS FILE ENTRY

• We store the list of docs containing a term in *increasing* order of docID.

- *computer*: 33,47,154,159,202 ...
- <u>Consequence</u>: it suffices to store *gaps*.
 33,14,107,5,43 ...
- <u>Hope</u>: most gaps can be encoded/stored with far fewer than 20 bits.

THREE POSTINGS ENTRIES

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

VARIABLE LENGTH ENCODING

• Aim:

- For *arachnocentric*, we will use ~20 bits/gap entry.
- For *the*, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use $\sim \log_2 G$ bits/gap entry.
- <u>Key challenge</u>: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

VARIABLE BYTE (VB) CODES

- For a gap value *G*, we want to use close to the fewest bytes needed to hold $\log_2 G$ bits
- Begin with one byte to store *G* and dedicate 1 bit in it to be a <u>continuation</u> bit *c*
- If $G \leq 127$, binary-encode it in the 7 available bits and set c = 1 (indicating the last byte)
- Else encode *G*'s lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last (lowest) byte to 1 (*c* =1) and for the other bytes *c* = 0.

For a small gap (5), VB uses a whole byte.

OTHER VARIABLE UNIT CODES

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).
- There is also recent work on word-aligned codes that pack a variable number of gaps into one word

QUIZ: NIBBLES

• What is the disadvantage of using smaller alignment units such as nibbles (4 bits) in VB encoding?

UNARY CODE

- Represent n as n 1s with a final 0.
- Unary code for 3 is 1110.
- Unary code for 40 is
- Unary code for 80 is:
- This doesn't look promising, but....

GAMMA CODES

- We can compress better with <u>bit-level</u> codes
 - The Gamma code is the best known of these.
- Represent a gap G as a pair *length* and *offset*
- offset is G in binary, with the leading bit cut off
 - For example $13 \rightarrow 1101 \rightarrow 101$
- *length* is the length of offset
 - For 13 (offset 101), this is 3.
- We encode *length* with *unary code*: 1110.
- Gamma code of 13 is the concatenation of *length* and *offset*: 1110101

Sec. 5.3

GAMMA CODE EXAMPLES

number	length	offset	γ-code
0			none
1	0		0
2	10	0	10,0
3	10	1	10,1
4	110	00	110,00
9	1110	001	1110,001
13	1110	101	1110,101
24	11110	1000	11110,1000
511	11111110	11111111	11111110,1111111
1025	11111111110	000000001	1111111110,000000001

GAMMA CODE PROPERTIES

- *G* is encoded using $2 \lfloor \log G \rfloor + 1$ bits
 - Length of offset is $\lfloor \log G \rfloor$ bits
 - Length of length is $\lfloor \log G \rfloor + 1$ bits
- All gamma codes have an odd number of bits
- Almost within a factor of 2 of best possible, $\log_2 G$
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

GAMMA SELDOM USED IN PRACTICE

- Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slow
- Variable byte encoding is aligned and thus potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

RCV1 COMPRESSION

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, $k = 4$	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ–encoded	101.0

INDEX COMPRESSION SUMMARY

- We can now create an index for highly efficient Boolean retrieval that is very space efficient
- Only 4% of the total size of the collection
- Only 10-15% of the total size of the <u>text</u> in the collection
- However, we've ignored positional information
- Hence, space savings are less for indexes used in practice
 - But techniques substantially the same.

RESOURCES FOR TODAY'S LECTURE

o *IIR* 5

- MG 3.3, 3.4.
- F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes For Fast Query Evaluation. *Proc. ACM-SIGIR 2002*.
 - Variable byte codes
- V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-Aligned Binary Codes. *Information Retrieval* 8: 151–166.
 - Word aligned codes

MORE RESOURCES

- K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
- Dean, Jeffrey, and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters, OSDI (4) (2004).

SCORING, TERM WEIGHTING & VECTOR SPACE MODEL

RECAP OF LAST LECTURE

- Collection and vocabulary statistics: Heaps' and Zipf's laws
- Dictionary compression for Boolean indexes
 - Dictionary string, blocks, front coding
- Postings compression: Gap encoding, prefix-unique codes
 - Variable-Byte and Gamma codes

_			
	collection (text, xml markup etc)	3,600.0	MB
	collection (text)	960.0	
	Term-doc incidence matrix	40,000.0	
	postings, uncompressed (32-bit words)	400.0	
	postings, uncompressed (20 bits)	250.0	
	postings, variable byte encoded	116.0	
	postings, γ-encoded	101.0	
_			

OUTLINE

- Ranked retrieval
- Scoring documents
- Term frequency
- Collection statistics
- Weighting schemes
- Vector space scoring

RANKED RETRIEVAL

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

PROBLEM WITH BOOLEAN SEARCH: FEAST OR FAMINE

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

RANKED RETRIEVAL MODELS

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- In principle, these are two separate choices here, but in practice, ranked retrieval has normally been associated with free text queries and vice versa

FEAST OR FAMINE: NOT A PROBLEM IN RANKED RETRIEVAL

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (≈ 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

600	gie kesui	t impression	is Percentage
1		2,834,806	34-35%
2	2	1,399,502	16.96%
3		942,706	11.42%
4		638,106	7-73%
5	1st Pa	00'2721	6.19%
6	94%	416,887	5.95%
7		331,500	4.02%
8		286,118	3-47%
9		235,197	2.85%
10		223,320	2.71%
11		91,978	1.11%
12		69,778	0.85%
13	2nd	2766	0.70%
14	6%	46,822	0.57%
15	0.00	39,635	0.48%
16		32,168	0.39%
17		26,933	0.33%
18		23,131	0.28%
19		22,027	0.27%
20		23,953	0.29%

SCORING AS THE BASIS OF RANKED RETRIEVAL

- We wish to return the documents in an order most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

QUERY-DOCUMENT MATCHING SCORES

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

TAKE 1: JACCARD COEFFICIENT

- Recall from last lecture: A commonly used measure of overlap of two sets *A* and *B* jaccard(*A*,*B*) = |*A* ∩ *B*| / |*A* ∪ *B*|
 jaccard(*A*,*A*) = 1
 jaccard(*A*,*B*) = 0 if *A* □ *B* = 0
- A and B don't have to be the same size.
 Always assigns a number between 0 and 1.

QUIZ: JACCARD COEFFICIENT

• What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?

- <u>Query</u>: *ides of march*
- <u>Document</u> 1: caesar died in march
- <u>Document</u> 2: *the long march*

ISSUES WITH JACCARD FOR SCORING

- It doesn't consider *term frequency* (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we'll use $|A \cap B| / \sqrt{|A \cup B|}$
- . . . instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.

RECALL: BINARY TERM-DOCUMENT INCIDENCE MATRIX

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$
TERM-DOCUMENT COUNT MATRICES

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in N^v: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

BAG OF WORDS MODEL

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

TERM FREQUENCY TF

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing querydocument match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But *not* 10 times more relevant.
- Relevance does not increase proportionally with term frequency. NB: frequency = count in IR

39

LOG-FREQUENCY WEIGHTING

• The log frequency weight of term t in d is

• score =
$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

• The score is 0 if none of the query terms is present in the document.

Sec. 6.2.

DOCUMENT FREQUENCY

• Rare terms are more informative than frequent terms

- Recall stop words
- Consider a term in the query that is rare in the collection (e.g., *arachnocentric*)
- A document containing this term is very likely to be relevant to the query *arachnocentric*

 \rightarrow We want a high weight for rare terms like *arachnocentric*.

DOCUMENT FREQUENCY, CONTINUED

- Frequent terms are less informative than rare terms
- Consider a **query term** that is frequent in the collection (e.g., *high, increase, line*)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- In general, we want **high positive weights** for a term that appears many times in a doc
- But **lower weights** for a frequent term than for rare terms.
- We will use document frequency (df) to capture this.

IDF WEIGHT

• df_t is the <u>document</u> frequency of *t*: the number of documents that contain *t*

- df_t is an inverse measure of the informativeness of t
- $df_t \leq N$ (total number of docs)
- We define the idf (inverse document frequency) of tby idf - log (N/df)

$$\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df}_{t} \right)$$

We use log (*N*/df_t) instead of *N*/df_t to "dampen" the effect of idf.

It turns out the base of the log is insignificant.

IDF EXAMPLE, SUPPOSE N = 1 MILLION

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

 $\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df}_{t} \right)$

There is one idf value for each term t in a collection⁴⁴

QUIZ: IDF

• Why is the idf of a term *in a document* always finite?

$$\operatorname{idf}_{t} = \log_{10} \left(\frac{N}{df}_{t} \right)$$

EFFECT OF IDF ON RANKING

- Does idf have an effect on ranking for one-term queries, like
 - iPhone?
- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

COLLECTION VS. DOCUMENT FREQUENCY

• The collection frequency of *t* is the number of occurrences of *t* in the collection, counting multiple occurrences.

• Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

QUIZ: COLLECTION FREQUENCY

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

• Which word is a better search term (and should get a higher weight), and why?

TF-IDF WEIGHTING

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$W_{t,d} = (1 + \log_{10} tf_{t,d}) \times \log_{10}(N/df_t)$$

• Best known weighting scheme in information retrieval

- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

SCORE FOR A DOCUMENT GIVEN A QUERY

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- $\circ q$ is a multi-term query.
- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted

$BINARY \rightarrow COUNT \rightarrow WEIGHT MATRIX$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

DOCUMENTS AS VECTORS

- \circ So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Sec. 6.3

QUERIES AS VECTORS

- <u>Key idea 1:</u> Do the same for queries: represent them as vectors in the space
- <u>Key idea 2</u>: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity \approx inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

FORMALIZING VECTOR SPACE PROXIMITY

• First cut: distance between two points

- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

WHY DISTANCE IS A BAD IDEA

The Euclidean distance between \vec{q} \vec{q} and $\vec{d_2}$ is large even though the

distribution of terms in the query \vec{q} and the distribution of

terms in the document \vec{d}_2 are

very similar.

FROM EUCLIDEAN TO ANGLE DISTANCE

- Thought experiment: take a document *d* and append it to itself. Call this document *d'*.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

FROM ANGLES TO COSINES

• The following two notions are equivalent.

- Rank documents in <u>decreasing</u> order of the angle between query and document
- Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

FROM ANGLES TO COSINES

• But how – and why – should we be computing cosines?

58

LENGTH NORMALIZATION

- A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have the same unit vectors after length-normalization.
 - Long and short documents now have comparable weights

 q_i is the tf-idf weight of term *i* in the query d_i is the tf-idf weight of term *i* in the document

 $\cos(\vec{q},\vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and $\vec{d}^{(0)}_{12}$ The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle γ is a right angle (of measure 90° or $\frac{\pi}{2}$ radians), then $\cos \gamma = 0$, and thus the law of cosines reduces to the Pythagorean theorem:

$$c^2 = a^2 + b^2.$$

The law of cosines is useful for computing the third side of a triangle when two sides and their enclosed angle are known, and in computing the angles of a triangle if all three sides are known.

By changing which sides of the triangle play the roles of a, b, and c in the original formula, the following two formulas also state the law of cosines:

 $a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$ $b^{2} = a^{2} + c^{2} - 2ac\cos\beta.$

Though the notion of the cosine was not yet

sides a, b, and c.

61

COSINE FOR LENGTH-NORMALIZED VECTORS

• For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q},\vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

COSINE SIMILARITY ILLUSTRATED

63

COSINE SIMILARITY AMONGST 3 DOCUMENTS

• How similar are the novels?

- SaS: Sense and Sensibility
- PaP: Pride and Prejudice
- WH: Wuthering Heights

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 DOCUMENTS EXAMPLE CONTD.

Log frequency weighting

After length normalization

term	SaS	PaP	WH	term	SaS	PaP	WH
affection	3.06	2.76	2.30	affection	0.789	0.832	0.524
jealous	2.00	1.85	2.04	jealous	0.515	0.555	0.465
gossip	1.30	0	1.78	gossip	0.335	0	0.405
wuthering	0	0	2.58	wuthering	0	0	0.588

 $cos(SaS,PaP) \approx$ 0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 \approx 0.94 $cos(SaS,WH) \approx$ 0.79 $cos(PaP,WH) \approx$ 0.69

QUIZ: NOVELS

• We can see that $\cos(SaS,PaP) > \cos(SaS,WH)$ • Why?

COMPUTING COSINE SCORES COSINESCORE(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 for each query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** $pair(d, tf_{t,d})$ in postings list
- 6 **do** Scores[d] + = $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

TF-IDF WEIGHTING HAS MANY VARIANTS

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{\max_t(tf_{t,d})}$	p (prob idf)	$\max\{0, \log \frac{N - \mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/ <i>u</i>	
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^lpha$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(\mathrm{tf}_{t,d})}{1 + \log(\mathrm{ave}_{t \in d}(\mathrm{tf}_{t,d}))}$					

'n', 'l', 'a', 't', 'p', etc. are acronyms for weight schemes.

68

Quiz: Why is the base of the log in idf insignificant?

WEIGHTING MAY DIFFER IN QUERIES VS DOCUMENTS

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation *ddd.qqq*, using the acronyms from the previous table
- A very standard weighting scheme is: lnc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization A bad idea?
- Query: logarithmic tf (l in leftmost column), idf (t in second column), no normalization ...

TF-IDF EXAMPLE: LNC.LTC

Document: *car insurance auto insurance* Query: *best car insurance*

Term	Query						Document				Prod
	tf- raw	tf-wt	df	idf	tfidf wt	n'liz e	tf-raw	tf-wt	tfidf wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs? Doc vector length = $\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$ Score = 0+0+0.27+0.53 = 0.8

70

SUMMARY – VECTOR SPACE RANKING

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

RESOURCES FOR TODAY'S LECTURE

• IIR 6.2 − 6.4.3

- <u>http://www.miislita.com/information-retrieval-</u> <u>tutorial/cosine-similarity-tutorial.html</u>
 - Term weighting and cosine similarity tutorial for SEO folk!