
INDEX COMPRESSION (II)
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PREVIOUSLY…

 Heap’s law

 Zipf law

 Dictionary-as-a-string

 Blocking
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FRONT CODING

 Front-coding:

 Sorted words usually have long common prefix – store 

differences only

 (for last k-1 in a block of k)

8automata8automate9automatic10automation

→8automat*a1e2ic3ion

Encodes automat
Extra length

beyond automat.

Begins to resemble general string compression.

Sec. 5.2
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QUIZ (FRONT CODING)

 What does the following code decode into? 

7liber*ty2al3ate5alize
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RCV1 DICTIONARY COMPRESSION

SUMMARY

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2
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POSTINGS COMPRESSION

 The postings file is much larger than the 

dictionary, factor of at least 10.

 Key consideration: store each posting compactly.

 A posting for our purposes is a docID.

 For Reuters (800,000 documents), we would use 

32 bits per docID when using 4-byte integers.

 Alternatively, we can use log2 800,000 ≈ 20 bits 

per docID.

 Our goal: use far fewer than 20 bits per docID.

Sec. 5.3
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POSTINGS: TWO CONFLICTING FORCES

 A term like arachnocentric occurs in maybe 

one doc out of a million – we would like to store 

this posting using log2 1M ~ 20 bits.

 A term like the occurs in virtually every doc, so 

20 bits/posting is too expensive.

 Prefer 0/1 bitmap vector in this case 

Sec. 5.3
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POSTINGS FILE ENTRY

 We store the list of docs containing a term in 

increasing order of docID.

 computer: 33,47,154,159,202 …

 Consequence: it suffices to store gaps.

 33,14,107,5,43 …

 Hope: most gaps can be encoded/stored with far 

fewer than 20 bits.

Sec. 5.3
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THREE POSTINGS ENTRIES

Sec. 5.3
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VARIABLE LENGTH ENCODING

 Aim:

 For arachnocentric, we will use ~20 bits/gap entry.

 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use 

~log2G bits/gap entry.

 Key challenge: encode every integer (gap) with 

about as few bits as needed for that integer.

 This requires a variable length encoding

 Variable length codes achieve this by using short 

codes for small numbers

Sec. 5.3
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VARIABLE BYTE (VB) CODES

 For a gap value G, we want to use close to the 

fewest bytes needed to hold log2 G bits

 Begin with one byte to store G and dedicate 1 bit 

in it to be a continuation bit c

 If G ≤127, binary-encode it in the 7 available bits 

and set c =1 (indicating the last byte)

 Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits 

using the same algorithm

 At the end set the continuation bit of the last 

(lowest) byte to 1 (c =1) – and for the other bytes 

c = 0.

Sec. 5.3
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EXAMPLE

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 

10111000 

10000101 00001101 

00001100 

10110001

Postings stored as the byte concatenation

000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are

uniquely prefix-decodable.

For a small gap (5), VB

uses a whole byte.

Sec. 5.3
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OTHER VARIABLE UNIT CODES

 Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).

 Variable byte alignment wastes space if you have 

many small gaps – nibbles do better in such cases.

 Variable byte codes:

 Used by many commercial/research systems

 Good low-tech blend of variable-length coding and 

sensitivity to computer memory alignment matches (vs. 

bit-level codes, which we look at next).

 There is also recent work on word-aligned codes that 

pack a variable number of gaps into one word

Sec. 5.3
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QUIZ: NIBBLES

 What is the disadvantage of using smaller 

alignment units such as nibbles (4 bits) in VB 

encoding?
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UNARY CODE

 Represent n as n 1s with a final 0.

 Unary code for 3 is 1110.

 Unary code for 40 is

11111111111111111111111111111111111111110 .

 Unary code for 80 is:

111111111111111111111111111111111111111111

111111111111111111111111111111111111110

 This doesn’t look promising, but….
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GAMMA CODES

 We can compress better with bit-level codes

 The Gamma code is the best known of these.

 Represent a gap G as a pair length and offset

 offset is G in binary, with the leading bit cut off

 For example 13 → 1101 → 101

 length is the length of offset

 For 13 (offset 101), this is 3.

 We encode length with unary code: 1110.

 Gamma code of 13 is the concatenation of length

and offset: 1110101

Sec. 5.3
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GAMMA CODE EXAMPLES

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3
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GAMMA CODE PROPERTIES

 G is encoded using 2 log G + 1 bits

 Length of offset is log G bits

 Length of length is log G + 1 bits

 All gamma codes have an odd number of bits

 Almost within a factor of 2 of best possible, log2 G

 Gamma code is uniquely prefix-decodable, like 

VB

 Gamma code can be used for any distribution

 Gamma code is parameter-free

Sec. 5.3
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GAMMA SELDOM USED IN PRACTICE

 Machines have word boundaries – 8, 16, 32, 64 

bits

 Operations that cross word boundaries are slower

 Compressing and manipulating at the 

granularity of bits can be slow

 Variable byte encoding is aligned and thus 

potentially more efficient

 Regardless of efficiency, variable byte is 

conceptually simpler at little additional space 

cost

Sec. 5.3
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RCV1 COMPRESSION

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0

Sec. 5.3
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INDEX COMPRESSION SUMMARY

 We can now create an index for highly efficient 

Boolean retrieval that is very space efficient

 Only 4% of the total size of the collection

 Only 10-15% of the total size of the text in the 

collection

 However, we’ve ignored positional information

 Hence, space savings are less for indexes used in 

practice

 But techniques substantially the same.

Sec. 5.3
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RESOURCES FOR TODAY’S LECTURE

 IIR 5

 MG 3.3, 3.4.

 F. Scholer, H.E. Williams and J. Zobel. 2002. 

Compression of Inverted Indexes For Fast Query 

Evaluation. Proc. ACM-SIGIR 2002.

 Variable byte codes

 V. N. Anh and A. Moffat. 2005. Inverted Index 

Compression Using Word-Aligned Binary Codes. 

Information Retrieval 8: 151–166.  

 Word aligned codes

Ch. 5
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MORE RESOURCES

K. Kukich. Techniques for automatically 

correcting words in text. ACM Computing 

Surveys 24(4), Dec 1992.

Dean, Jeffrey, and Sanjay Ghemawat. 

MapReduce: simplified data processing on 

large clusters, OSDI (4) (2004).
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SCORING, TERM

WEIGHTING & VECTOR

SPACE MODEL



RECAP OF LAST LECTURE

 Collection and vocabulary statistics: Heaps’ and Zipf’s laws

 Dictionary compression for Boolean indexes

 Dictionary string, blocks, front coding

 Postings compression: Gap encoding, prefix-unique codes

 Variable-Byte and Gamma codes

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, γ-encoded 101.0

MB
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OUTLINE

 Ranked retrieval

 Scoring documents

 Term frequency

 Collection statistics

 Weighting schemes

 Vector space scoring
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RANKED RETRIEVAL

 Thus far, our queries have all been Boolean.

 Documents either match or don’t.

 Good for expert users with precise understanding 

of their needs and the collection.

 Also good for applications: Applications can easily 

consume 1000s of results.

 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or 

they are, but they think it’s too much work).

 Most users don’t want to wade through 1000s of 

results.

 This is particularly true of web search.

Ch. 6
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PROBLEM WITH BOOLEAN SEARCH:

FEAST OR FAMINE

 Boolean queries often result in either too few (=0) 

or too many (1000s) results.

 Query 1: “standard user dlink 650” → 200,000 

hits

 Query 2: “standard user dlink 650 no card 

found”: 0 hits

 It takes a lot of skill to come up with a query that 

produces a manageable number of hits.

 AND gives too few; OR gives too many

Ch. 6
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RANKED RETRIEVAL MODELS

 Rather than a set of documents satisfying a 

query expression, in ranked retrieval, the system 

returns an ordering over the (top) documents in 

the collection for a query

 Free text queries: Rather than a query language 

of operators and expressions, the user’s query is 

just one or more words in a human language

 In principle, these are two separate choices here, 

but in practice, ranked retrieval has normally 

been associated with free text queries and vice 

versa
29



FEAST OR FAMINE: NOT A PROBLEM IN

RANKED RETRIEVAL

 When a system produces a ranked 

result set, large result sets are not an 

issue

 Indeed, the size of the result set is not 

an issue

 We just show the top k ( ≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6
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SCORING AS THE BASIS OF RANKED

RETRIEVAL

 We wish to return the documents in an order 

most likely to be useful to the searcher

 How can we rank-order the documents in the 

collection with respect to a query?

 Assign a score – say in [0, 1] – to each document

 This score measures how well document and 

query “match”.

Ch. 6
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QUERY-DOCUMENT MATCHING SCORES

 We need a way of assigning a score to a 

query/document pair

 Let’s start with a one-term query

 If the query term does not occur in the document: 

score should be 0

 The more frequent the query term in the 

document, the higher the score (should be)

 We will look at a number of alternatives for this.

Ch. 6
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TAKE 1: JACCARD COEFFICIENT

 Recall from last lecture: A commonly used 

measure of overlap of two sets A and B

jaccard(A,B) = |A ∩ B| / |A ∪ B|

jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.

Ch. 6
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QUIZ: JACCARD COEFFICIENT

 What is the query-document match score that the 

Jaccard coefficient computes for each of the two 

documents below?

 Query: ides of march

 Document 1: caesar died in march

 Document 2: the long march

Ch. 6
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ISSUES WITH JACCARD FOR SCORING

 It doesn’t consider term frequency (how many 

times a term occurs in a document)

 Rare terms in a collection are more informative 

than frequent terms. Jaccard doesn’t consider 

this information

 We need a more sophisticated way of normalizing 

for length

 Later in this lecture, we’ll use 

 . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for 

length normalization.

| B A|/| B A| 

Ch. 6
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RECALL: BINARY TERM-DOCUMENT

INCIDENCE MATRIX

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈
{0,1}

|V|

Sec. 6.2
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TERM-DOCUMENT COUNT MATRICES

 Consider the number of occurrences of a term in 

a document: 

 Each document is a count vector in ℕv: a column 

below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2
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BAG OF WORDS MODEL

 Vector representation doesn’t consider the 

ordering of words in a document

 John is quicker than Mary and Mary is quicker 

than John have the same vectors

 This is called the bag of words model.

 In a sense, this is a step back: The positional 

index was able to distinguish these two 

documents.

 We will look at “recovering” positional 

information later in this course.

 For now: bag of words model 38



TERM FREQUENCY TF

 The term frequency tft,d of term t in document d is 

defined as the number of times that t occurs in d.

 We want to use tf when computing query-

document match scores. But how?

 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more 

relevant than a document with 1 occurrence of the 

term.

 But not 10 times more relevant.

 Relevance does not increase proportionally with 

term frequency.
NB: frequency = count in IR 39



LOG-FREQUENCY WEIGHTING

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Score for a document-query pair: sum over terms t

in both q and d:

 score

 The score is 0 if none of the query terms is present 

in the document.



 +

=
otherwise 0,

0   tfif, tflog  1
  

10 t,dt,d

t,dw

 
+=

dqt dt ) tflog  (1 ,

Sec. 6.2
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DOCUMENT FREQUENCY

 Rare terms are more informative than frequent terms

 Recall stop words

 Consider a term in the query that is rare in the 

collection (e.g., arachnocentric)

 A document containing this term is very likely to be 

relevant to the query arachnocentric

→ We want a high weight for rare terms like 

arachnocentric.

Sec. 6.2.1
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DOCUMENT FREQUENCY, CONTINUED

 Frequent terms are less informative than rare 
terms

 Consider a query term that is frequent in the 
collection (e.g., high, increase, line)

 A document containing such a term is more likely 
to be relevant than a document that doesn’t

 But it’s not a sure indicator of relevance.

 In general, we want high positive weights for a 
term that appears many times in a doc

 But lower weights for a frequent term than for 
rare terms.

 We will use document frequency (df) to capture 
this.

Sec. 6.2.1
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IDF WEIGHT

 dft is the document frequency of t: the number of 

documents that contain t

 dft is an inverse measure of the informativeness of t

 dft  N (total number of docs)

 We define the idf (inverse document frequency) of t

by

 We use log (N/dft) instead of N/dft to “dampen” the effect 

of idf.

)/df( log  idf 10 tt N=

It turns out the base of the log is insignificant.

Sec. 6.2.1
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IDF EXAMPLE, SUPPOSE N = 1 MILLION

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df( log  idf 10 tt N=
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QUIZ: IDF

 Why is the idf of a term in a document always 

finite?
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EFFECT OF IDF ON RANKING

 Does idf have an effect on ranking for one-term 

queries, like

 iPhone?

 idf has no effect on ranking one term queries

 idf affects the ranking of documents for queries with 

at least two terms

 For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the 

final document ranking than occurrences of person.

46



COLLECTION VS. DOCUMENT FREQUENCY

 The collection frequency of t is the number of 

occurrences of t in the collection, counting multiple 

occurrences.

 Example:

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1
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QUIZ: COLLECTION FREQUENCY

 Which word is a better search term (and should 

get a higher weight), and why?

48

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760



TF-IDF WEIGHTING

 The tf-idf weight of a term is the product of its tf weight 

and its idf weight.

 Best known weighting scheme in information retrieval

 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a 

document

 Increases with the rarity of the term in the collection

Sec. 6.2.2
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SCORE FOR A DOCUMENT GIVEN A QUERY

q is a multi-term query.

There are many variants

 How “tf” is computed (with/without logs)

 Whether the terms in the query are also 

weighted

 … 

 

Score(q,d) = tf.idft,d
t qd



Sec. 6.2.2
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BINARY → COUNT → WEIGHT MATRIX

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 

vector of tf-idf weights ∈ R|V|

Sec. 6.3
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DOCUMENTS AS VECTORS

 So we have a |V|-dimensional vector space

 Terms are axes of the space

 Documents are points or vectors in this space

 Very high-dimensional: tens of millions of 

dimensions when you apply this to a web search 

engine

 These are very sparse vectors - most entries are 

zero.

Sec. 6.3
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QUERIES AS VECTORS

 Key idea 1: Do the same for queries: represent 

them as vectors in the space

 Key idea 2: Rank documents according to their 

proximity to the query in this space

 proximity = similarity of vectors

 proximity ≈ inverse of distance

 Recall: We do this because we want to get away 

from the you’re-either-in-or-out Boolean model.

 Instead: rank more relevant documents higher 

than less relevant documents

Sec. 6.3
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FORMALIZING VECTOR SPACE PROXIMITY

 First cut: distance between two points

 ( = distance between the end points of the two 

vectors)

 Euclidean distance?

 Euclidean distance is a bad idea . . .

 . . . because Euclidean distance is large for 

vectors of different lengths.

Sec. 6.3
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WHY DISTANCE IS A BAD IDEA

The Euclidean 

distance between q

and d2 is large even 

though the

distribution of terms 

in the query q and the 

distribution of

terms in the 

document d2 are

very similar.

Sec. 6.3
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FROM EUCLIDEAN TO ANGLE DISTANCE

 Thought experiment: take a document d and 

append it to itself. Call this document d′.

 “Semantically” d and d′ have the same content

 The Euclidean distance between the two 

documents can be quite large

 The angle between the two documents is 0, 

corresponding to maximal similarity.

 Key idea: Rank documents according to angle 

with query.

Sec. 6.3
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FROM ANGLES TO COSINES

 The following two notions are equivalent.

 Rank documents in decreasing order of the angle 

between query and document

 Rank documents in increasing order  of 

cosine(query,document)

 Cosine is a monotonically decreasing function for 

the interval [0o, 180o]

Sec. 6.3
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FROM ANGLES TO COSINES

Sec. 6.3
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 But how – and why – should we be computing cosines?



LENGTH NORMALIZATION

 A vector can be (length-) normalized by dividing 

each of its components by its length – for this we 

use the L2 norm:

 Dividing a vector by its L2 norm makes it a unit 

(length) vector (on surface of unit hypersphere)

 Effect on the two documents d and d′ (d appended 

to itself) from earlier slide: they have the same 

unit vectors after length-normalization.

 Long and short documents now have comparable 

weights

=
i ixx 2

2



Sec. 6.3

59



COSINE(QUERY,DOCUMENT)
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Dot product Unit vectors

q
i
is the tf-idf weight of term i in the query

d
i
is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

Sec. 6.3
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COSINE FOR LENGTH-NORMALIZED

VECTORS

 For length-normalized vectors, cosine similarity is 

simply the dot product (or scalar product):

for q, d length-normalized.

 

cos(q ,d ) = q • d = qidi
i=1

V
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COSINE SIMILARITY ILLUSTRATED
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COSINE SIMILARITY AMONGST 3 DOCUMENTS

 How similar are 

the novels?

 SaS: Sense and 

Sensibility

 PaP: Pride and 

Prejudice

 WH: Wuthering 

Heights

64

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf

weighting.



3 DOCUMENTS EXAMPLE CONTD.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length 

normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈

0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 ≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Sec. 6.3
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QUIZ: NOVELS

We can see that

cos(SaS,PaP) > cos(SaS,WH)

Why?
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COMPUTING COSINE SCORES

Sec. 6.3
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TF-IDF WEIGHTING HAS MANY VARIANTS

‘n’, ‘l’, ‘a’, ‘t’, ‘p’, etc. are acronyms for weight schemes.

Quiz: Why is the base of the log in idf insignificant?

Sec. 6.4
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WEIGHTING MAY DIFFER IN QUERIES VS

DOCUMENTS

 Many search engines allow for different weightings 

for queries vs. documents

 SMART Notation: denotes the combination in use in 

an engine, with the notation ddd.qqq, using the 

acronyms from the previous table

 A very standard weighting scheme is: lnc.ltc

 Document: logarithmic tf (l as first character), no idf

and cosine normalization

 Query: logarithmic tf (l in leftmost column), idf (t in 

second column), no normalization …

A bad idea?

Sec. 6.4
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TF-IDF EXAMPLE: LNC.LTC

Term Query Document Prod

tf-

raw

tf-wt df idf tfidf

wt

n’liz

e

tf-raw tf-wt tfidf

wt

n’liz

e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc vector length =

 

12 + 02 +12 +1.32 1.92

Sec. 6.4
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SUMMARY – VECTOR SPACE RANKING

 Represent the query as a weighted tf-idf vector

 Represent each document as a weighted tf-idf vector

 Compute the cosine similarity score for the query 

vector and each document vector

 Rank documents with respect to the query by score

 Return the top K (e.g., K = 10) to the user
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RESOURCES FOR TODAY’S LECTURE

 IIR 6.2 – 6.4.3

 http://www.miislita.com/information-retrieval-

tutorial/cosine-similarity-tutorial.html

 Term weighting and cosine similarity tutorial for 

SEO folk!

Ch. 6
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