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ADMINISTRATIVE INFO (I)

 All-English Course: everything in English!

 Lecturer: 

 Kenny Zhu, SEIEE #03-407, kzhu@cs.sjtu.edu.cn

 Office hours: by appointment or after class

 Teaching Assistant:

 Apple Chen, SEIEE #03-329, chp33@126.com

 Xukai Wang, SEIEE #03-329, wangxukai@sjtu.edu.cn

 Office hours: Thursday 16:00 - 17:00 

 Course Web Page (definitive source!): 
http://www.cs.sjtu.edu.cn/~kzhu/wsm/
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ADMINISTRATIVE INFO (II)

 Format:

 Lectures on Friday (3 periods with 1-2 breaks) 

 Part of lectures may be tutorials – Led by TAs; Your 

participation is REQUIRED!

 Reference Texts: 

 Introduction to Information Retrieval, by Christopher 

D. Manning and Prabhakar Raghavan

 Modern Information Retrieval: The Concepts and 

Technology behind Search (2nd Edition), by Ricardo 

Baeza-Yates, Berthier Ribeiro-Neto

 Other research papers
 Web Data Mining: Exploring Hyperlinks, Contents, and Usage 

Data (Data-Centric Systems and Applications), by Bing Liu

 Lecture materials on course web page
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ADMINISTRATIVE INFO (III)

 2-credit course

 Modes of Assessment:

 In-class quizzes: 30%

 Assignments: 30%

 Programming Project: 40%

 Quizzes

 Given out at random times during class.

 Submit to me immediately after class.

 Tutorials (ad hoc)

 Discuss hard assignment questions and also issues in 
project.

 You may be asked to present your answers.

 Volunteer to win bonus points! 5



ADMINISTRATIVE INFO (IV)

 Assignments 

 Released (usually) on weekend

 Due date printed on assignment sheet

 Submit to OC by the due date

 Late submission: -30% of full score for each 
additional day

 Programming Project

 Group project (max 3 people)

 Implement a crawler to crawl large amount of data 
and then develop a search engine for the data

 Produce a report + code + data: due end of semester

 More details on the course website 7



WECHAT GROUP
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DISCLAIMER

 Part of the materials in this presentation were 

adapted from the slides created by Manning et al. 

of Stanford University and Schütze et al. of 

University of Stuttgart.
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BOOLEAN RETRIEVAL
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OUTLINE

• Introduction  

• Inverted index 

• Processing Boolean queries

• Query optimization
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Definition of information retrieval

Information retrieval (IR) is finding material (usually 

documents) of an unstructured nature (usually text) 

that satisfies an information need from within large 

collections (usually stored on computers).
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HOW GOOD ARE THE RETRIEVED DOCS?

▪ Precision : Fraction of retrieved docs that are 

relevant to the user’s information need

▪ Recall : Fraction of relevant docs in collection 

that are retrieved

▪ More precise definitions and measurements to follow 

later

Sec. 1.1
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AFTER 2006…
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Boolean retrieval

• The Boolean model is arguably the simplest model to base an 

information retrieval system on.

• Queries are Boolean expressions, e.g., CAESAR AND 

BRUTUS

• The search engine returns all documents that satisfy the Boolean 

expression.
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Does Google use the Boolean model? 

• On Google, the default interpretation of a query [w1

w2 . . .wn] is w1 AND w2 AND . . .AND wn

• Cases where you get hits that do not contain one of 

the wi :
• anchor text to the page contains wi

• page contains variant of wi (morphology, spelling 

correction, synonym)

• long queries (n large)

• boolean expression generates very few hits

• Simple Boolean vs. Ranking of result set
• Simple Boolean retrieval returns matching documents in 

no particular order.

• Google (and most well designed Boolean engines) rank the 

result set – they rank good hits (according to some 

estimator of relevance) higher than bad hits.
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QUIZ

Does Baidu use the simple Boolean model?

a) Yes

b) No
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OUTLINE

• Introduction  

• Inverted index 

• Processing Boolean queries

• Query optimization
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Unstructured data in 1650: 

Shakespeare
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Unstructured data in 1650

o Which plays of Shakespeare contain the words 

BRUTUS AND CAESAR, but not CALPURNIA?

o One could “grep” all of Shakespeare’s plays for 

BRUTUS and CAESAR, then strip out lines 

containing CALPURNIA 

o Why isn’t “grep” a good solution?

▪ Slow (for large collections)

▪ grep is line-oriented, IR is document-oriented

▪ “NOT CALPURNIA” is non-trivial

▪ Other operations (e.g., find where word ROMANS near 

COUNTRYMAN ) not feasible
22



Term-document incidence matrix

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius Caesar. Entry 

is 0 if term doesn’t occur. Example: CALPURNIA doesn’t occur in The tempest.
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Incidence vectors

▪So we have a 0/1 vector for each term.

▪To answer the query BRUTUS AND CAESAR AND NOT 

CALPURNIA:

▪Take the vectors for BRUTUS, CAESAR AND NOT 

CALPURNIA 

▪Complement the vector of CALPURNIA

▪Do a (bitwise) and on the three vectors

▪110100 AND 110111 AND 101111 = 100100
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0/1 vector for BRUTUS AND CAESAR 

AND NOT CALPURNIA:
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result: 1 0 0 1 0 0
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Answers to query

Anthony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Domitius Enobarbus]:  

Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii

Lord Polonius: I did enact 

Julius Caesar: I was killed i’ 

the Capitol; Brutus killed me.
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Bigger collections

• Consider N = 106 documents, each with about 1000 tokens

• ⇒ total of 109 (1 billion) tokens

• On average 6 bytes per token, including spaces and punctuation 

• ⇒ size of document collection is about 6 ・ 109 = 6 GB

• Assume there are M = 500,000 distinct terms in the collection

• (Notice that we are making a term/token distinction.)
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Can’t build the incidence matrix

• M = 500,000 ×106 = half a trillion 0s and 1s.

• But the matrix has no more than one billion 1s.

• Matrix is extremely sparse.

• What is a better representations?

• We only record the 1s.
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Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 29



Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 30



Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 31



INVERTED INDEX CONSTRUCTION

1. Collect the documents to be indexed: 

2. Tokenize the text, turning each document into a list of tokens:

3. Do linguistic preprocessing, producing a list of normalized tokens, 

which are the indexing terms:

4. Index the documents that each term occurs in by creating an 

inverted index, consisting of a dictionary and postings. 32



INITIAL STAGES OF TEXT PROCESSING

• Tokenization

– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization

– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming

– We may wish different forms of a root to match

• authorize, authorization

• Stop words

– We may omit very common words (or not)

• the, a, to, of 33



Tokenizing and preprocessing
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Generate posting
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Sort postings
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Create postings lists, determine document 

frequency

37



Split the result into dictionary and 

postings file

dictionary

postings 
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Later in this course

• Index construction: how can we create inverted 

indexes for large collections?

• How much space do we need for dictionary and 

index?

• Index compression: how can we efficiently store and 

process indexes for large collections?

• Ranked retrieval: what does the inverted index look 

like when we want the “best” answer?

39



OUTLINE

• Introduction  

• Inverted index 

• Processing Boolean queries

• Query optimization
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Simple conjunctive query (two terms)

• Consider the query: BRUTUS AND CALPURNIA

• To find all matching documents using inverted index:

1. Locate BRUTUS in the dictionary

2. Retrieve its postings list from the postings file

3. Locate CALPURNIA in the dictionary

4. Retrieve its postings list from the postings file

5. Intersect the two postings lists

6. Return intersection to user

41



Intersecting two posting lists

▪This is linear in the length of the postings lists.

▪Note: This only works if postings lists are sorted. 
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Intersecting two posting lists
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Quiz: Query processing

Compute matching docs for 

((paris AND NOT france) OR lear)

44



Boolean queries
▪The Boolean retrieval model can answer any query that is a 

Boolean expression.

▪Boolean queries are queries that use AND, OR and NOT to join query 

terms.

▪Views each document as a set of terms.

▪Is precise: Document matches condition or not.

▪Primary commercial retrieval tool for 3 decades

▪Many professional searchers (e.g., lawyers) still like Boolean 

queries.

▪You know exactly what you are getting.

▪Many search systems you use are also Boolean: spotlight, email, 

intranet etc.
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Commercially successful Boolean retrieval: 

Westlaw

• Largest commercial legal search service in terms of the number of

paying subscribers

• Over half a million subscribers performing millions of searches a 

day over tens of terabytes of text data

• The service was started in 1975.

• In 2005, Boolean search (called “Terms and Connectors” by 

Westlaw) was still the default, and used by a large percentage of

users . . .

• . . . although ranked retrieval has been available since 1992.

46



Westlaw: Example queries

Information need: Information on the legal theories involved 

in preventing the disclosure of trade secrets by employees 

formerly employed by a competing company 

Query: “trade secret” /s disclos! /s prevent /s employe! 

Information need: Requirements for disabled people to be able 

to access a workplace 

Query: disab! /p access! /s work-site work-place (employment 

/3 place)

Information need: Cases about a host’s responsibility for 

drunk guests 

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest
47



Westlaw: Comments

• Proximity operators: /3 = within 3 words, /s = within a 

sentence, /p = within a paragraph

• Space is disjunction, not conjunction! (This was the default in 

search pre-Google.)

• Long, precise queries: incrementally developed, not like web 

search

• Why professional searchers often like Boolean search: 

precision, transparency, control

• When are Boolean queries the best way of searching? Depends 

on: information need, searcher, document collection, . . .
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OUTLINE

• Introduction  

• Inverted index 

• Processing Boolean queries

• Query optimization
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Query optimization

• Consider a query that is an and of n terms, n > 2

• For each of the terms, get its postings list, then and them together

• Example query: BRUTUS AND CALPURNIA AND CAESAR

• What is the best order for processing this query?
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Query optimization

• Example query: BRUTUS AND CALPURNIA AND CAESAR

• Simple and effective optimization: Process in order of increasing frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first CAESAR, then CALPURNIA, then BRUTUS
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Optimized intersection algorithm for

conjunctive queries
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More general optimization

• Example query: (MADDING OR CROWD) and (IGNOBLE OR 

STRIFE)

• Get frequencies for all terms

• Estimate the size of each “or” by the sum of its frequencies (conservative)

• Process in increasing order of “or” sizes
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QUIZ: QUERY PROCESSING ORDER

 Recommend a query 

processing order for  Term Freq  

  eyes 213312

  kaleidoscope 87009

  marmalade 107913

  skies 271658

  tangerine 46653

  trees 316812

54

(tangerine OR skies) AND

(marmalade OR trees) AND

(kaleidoscope OR eyes)



TERM VOCABULARY & 

POSTING LISTS
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OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries
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Documents

• Previously: Simple Boolean retrieval system

• Our assumptions were:

• We know what a document is.

• We can “machine-read” each document.

• This can be complex in reality.
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Parsing a document

• We need to deal with format and language of each document.

• What format is it in? pdf, word, excel, html etc.

• What language is it in?

• What character set is in use?

• Each of these is a classification problem, which we will study 

later in this course.

• Alternative: use heuristics

• machine learning vs. heuristics:

• Data driven vs. human experience

58



Format/Language: Complications

• A single index usually contains terms of several languages.

• Sometimes a document or its components contain multiple 

languages/formats.

• French email with Spanish pdf attachment

• What is the document unit for indexing?

• A file?

• An email?

• An email with 5 attachments?

• A group of files (ppt or latex in HTML)?

• Bottomline: Answering the question “what is a document?” 

is not trivial and requires some design decisions.

• Also: XML 59



OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries
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Definitions

▪Word – A delimited string of characters as it appears in the text.

▪Term – A “normalized” word (case, morphology, spelling etc); an 

equivalence class of words.

▪Token – An instance of a word or term occurring in a document.

▪Type – The same as a term in most cases: an equivalence class of tokens.
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Normalization

• Need to “normalize” terms in indexed text as well as query terms 

into the same form.

• Example: We want to match U.S.A. and USA

• We most commonly implicitly define equivalence classes of terms.

• Alternatively: do asymmetric expansion
• window → window, windows

• windows → Windows, windows

• Windows (no expansion)

• More powerful, but less efficient

• Why don’t you want to put window, Window, windows, and 

Windows in the same equivalence class?

• Because they have different meanings

62



Normalization: Other languages

• Normalization and language detection interact.

• PETER WILL NICHT MIT. → MIT = mit

(Peter do not want to.)

• He got his PhD from MIT. → MIT ≠ mit
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Recall: Inverted index construction

▪Input:

▪Output:

▪Each token is a candidate for a postings entry.

▪What are valid tokens to emit?
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Quiz: Tokens, Words and Terms

In June, the dog likes to chase the cat in the barn. 

– How many English word tokens are there? 

– How many non-English word tokens are there?

– How many terms are there? 
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Tokenization problems: One word or two? 

(or several)

• Hewlett-Packard

• State-of-the-art

• co-education

• the hold-him-back-and-drag-him-away maneuver

• data base

• San Francisco

• Los Angeles-based company

• cheap San Francisco-Los Angeles fares

• York University vs. New York University
66



Numbers

• 3/20/91

• 20/3/91

• Mar 20, 1991

• B-52

• 100.2.86.144

• (800) 234-2333

• 800.234.2333

• Older IR systems may not index numbers . . .

• . . . but generally it’s a useful feature.
67



Chinese: No whitespace
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Ambiguous segmentation in Chinese

The two characters can be treated as one word meaning ‘monk’ or 

as a sequence of two words meaning ‘and’ and ‘still’.
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Other cases of “no whitespace”

• Compounds in Dutch, German, Swedish

• Computerlinguistik → Computer + Linguistik

• Lebensversicherungsgesellschaftsangestellter

→ leben + versicherung + gesellschaft + angestellter

(life insurance company employee)

• Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)

• Many other languages with segmentation difficulties: Finnish, 

Urdu, . . .
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Japanese

4 different “alphabets”: Chinese characters, hiragana syllabary

for inflectional endings and functional words, katakana syllabary

for transcription of foreign words and other uses, and latin. No

spaces (as in Chinese). End user can express query entirely in 

hiragana! 
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Arabic script
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Arabic script: Bidirectionality

← → ←      → ← START

‘Algeria achieved its independence in 1962 after 132 years 

of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.
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Accents and diacritics

▪Accents: résumé vs. resume (simple omission of accent)

▪Umlauts: Universität vs. Universitaet (substitution with special letter

sequence “ae”)

▪Most important criterion: How are users likely to write their queries for

these words?

▪Even in languages that standardly have accents, users often do not type 

them. (Polish?)
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Case folding

• Reduce all letters to lower case

• Possible exceptions: capitalized words in mid-sentence

• MIT vs. mit

• Fed vs. fed

• It’s often best to lowercase everything since users will use 

lowercase regardless of correct capitalization.
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Stop words

• stop words = extremely common words which would appear to be of 

little value in helping select documents matching a user need

• Examples: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, 

its, of, on, that, the, to, was, were, will, with

• Stop word elimination used to be standard in older IR systems.

• But you need stop words for phrase queries, e.g. “King of Denmark”

• Most web search engines index stop words.
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More equivalence classing

• Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)

• Thesauri: IIR 9 (semantic equivalence, car = automobile)
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Lemmatization 

• Reduce inflectional/variant forms to base form

• Example: am, are, is → be

• Example: car, cars, car’s, cars’ → car

• Example: the boy’s cars are different colors → the boy car be 

different color

• Lemmatization implies doing “proper” reduction to dictionary 

headword form (the lemma).

• Inflectional morphology (cutting → cut) vs. derivational 

morphology (destruction → destroy)
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Stemming

• Definition of stemming: Crude heuristic process that chops off the 

ends of words in the hope of achieving what “principled” 

lemmatization attempts to do with a lot of linguistic knowledge.

• Language dependent

• Often inflectional and derivational

• Example for derivational: automate, automatic, automation all 

reduce to automat
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Porter algorithm
• Most common algorithm for stemming English

• Results suggest that it is at least as good as other stemming 

options

• Conventions + 5 phases of reductions

• Phases are applied sequentially

• Each phase consists of a set of commands.

• Example command: Delete final ement if what remains is 

longer than 1 character

• replacement → replac

• cement → cement

• Example convention: Of the rules in a compound command, 

select the one that applies to the longest suffix.
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Porter stemmer: A few rules

Rule

SSES → SS

IES → I

SS → SS

S →

Example

caresses → caress

ponies → poni

caress → caress

cats → cat
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Three stemmers: A comparison
Sample text: Such an analysis can reveal features that are not easily

visible from the variations in the individual genes and    

can lead to a picture of expression that is more  

biologically transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl

from the variat in the individu gene and can lead to                   

pictur of express that is more biolog transpar and  

access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from 

th vari in th individu gen and can lead to a pictur of   

expres that is mor biolog transpar and acces to  interpres

Paice stemmer:  such an analys can rev feat that are not easy vis from    

the vary in the individ gen and can lead to a pict of    

express that is mor biolog transp and access to interpret
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Does stemming improve effectiveness?

• In general, stemming increases effectiveness for some 

queries, and decreases effectiveness for others.

• Queries where stemming is likely to help: [tartan sweaters], 

[sightseeing tour san francisco] (equivalence classes: 

{sweater,sweaters}, {tour,tours})

• Porter Stemmer equivalence class oper contains all of 

operate operating operates operation operative operatives 

operational.

• Queries where stemming hurts: [operational AND research], 

[operating AND system], [operative AND dentistry]
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QUIZ: STEMMING

Are the following statements true or false?

1. In a Boolean retrieval system, stemming never 

lowers precision. (T/F) 

2. In a Boolean retrieval system, stemming 

sometimes lowers recall. (T/F)

3. Stemming increases the size of the vocabulary. 

(T/F)

4. Stemming is invoked at indexing time but not 

while processing a query. (T/F)
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OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries
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Recall basic intersection algorithm

• Linear in the length of the postings lists.

• Can we do better?
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AUGMENT POSTINGS WITH SKIP POINTERS

(AT INDEXING TIME)

 Why?

To skip postings that will not feature in the search results.

 How?

 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Sec. 2.3
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QUERY PROCESSING WITH SKIP POINTERS

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Suppose we’ve stepped through the lists until we 

process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower.  11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3
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Intersection with skip pointers
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WHERE DO WE PLACE SKIPS?

 Tradeoff:

 More skips → shorter skip spans  more likely to 

skip.  But lots of comparisons to skip pointers.

 Fewer skips → few pointer comparison, but then long 

skip spans  few successful skips.

Sec. 2.3
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Where do we place skips? (cont)

• Simple heuristic: for postings list of length P, use             evenly-

spaced skip pointers.

• This ignores the distribution of query terms.

• Easy if the index is static; harder in a dynamic environment because

of updates.

• How much do skip pointers help?

• They used to help a lot.

• With today’s fast CPUs, they don’t help that much anymore.
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