
CS7330 INTRODUCTION TO WEB

SEARCH AND MINING

Kenny Q. Zhu （朱其立）

Dept. of Computer Science

Shanghai Jiao Tong University

1

KENNY Q. ZHU

Degrees: National University of Singapore

Postdoc: Princeton University

Experiences: Microsoft Redmond, USA

Microsoft Research Asia

Faculty Member (PhD. Advisor) at SJTU since 2009

Director of ADAPT Lab

Research Interests:

NLP & Knowledge Engineering
Information extraction

Knowledge discovery

Commonsense reasoning

Text generation (Dialogue/QA/QG/Summarization)

Programming Languages
Concurrent and Distributed Languages

Data Processing

Probabilistic Programming

Recent Publications:
WWW, AAAI, IJCAI, ACL, EMNLP, SIGMOD

2

EVOLUTION OF INFORMATION RETRIEVAL

3

Library Science

Before 1950’s

Data Mining/

Info Retrieval

After 1950’s

Web Search &

Mining

After 1995

QA, Summary

& ChatBots

After 2015

Term &

Vector based

Large

Language

Model based

ADMINISTRATIVE INFO (I)

 All-English Course: everything in English!

 Lecturer:

 Kenny Zhu, SEIEE #03-407, kzhu@cs.sjtu.edu.cn

 Office hours: by appointment or after class

 Teaching Assistant:

 Apple Chen, SEIEE #03-329, chp33@126.com

 Xukai Wang, SEIEE #03-329, wangxukai@sjtu.edu.cn

 Office hours: Thursday 16:00 - 17:00

 Course Web Page (definitive source!):
http://www.cs.sjtu.edu.cn/~kzhu/wsm/

3

mailto:kzhu@cs.sjtu.edu.cn
mailto:chp33@126.com
mailto:wangxukai@sjtu.edu.cn
http://www.cs.sjtu.edu.cn/~kzhu/cs490/

ADMINISTRATIVE INFO (II)

 Format:

 Lectures on Friday (3 periods with 1-2 breaks)

 Part of lectures may be tutorials – Led by TAs; Your

participation is REQUIRED!

 Reference Texts:

 Introduction to Information Retrieval, by Christopher

D. Manning and Prabhakar Raghavan

 Modern Information Retrieval: The Concepts and

Technology behind Search (2nd Edition), by Ricardo

Baeza-Yates, Berthier Ribeiro-Neto

 Other research papers
 Web Data Mining: Exploring Hyperlinks, Contents, and Usage

Data (Data-Centric Systems and Applications), by Bing Liu

 Lecture materials on course web page
4

ADMINISTRATIVE INFO (III)

 2-credit course

 Modes of Assessment:

 In-class quizzes: 30%

 Assignments: 30%

 Programming Project: 40%

 Quizzes

 Given out at random times during class.

 Submit to me immediately after class.

 Tutorials (ad hoc)

 Discuss hard assignment questions and also issues in
project.

 You may be asked to present your answers.

 Volunteer to win bonus points! 5

ADMINISTRATIVE INFO (IV)

 Assignments

 Released (usually) on weekend

 Due date printed on assignment sheet

 Submit to OC by the due date

 Late submission: -30% of full score for each
additional day

 Programming Project

 Group project (max 3 people)

 Implement a crawler to crawl large amount of data
and then develop a search engine for the data

 Produce a report + code + data: due end of semester

 More details on the course website 7

WECHAT GROUP

8

DISCLAIMER

 Part of the materials in this presentation were

adapted from the slides created by Manning et al.

of Stanford University and Schütze et al. of

University of Stuttgart.

9

BOOLEAN RETRIEVAL
10

OUTLINE

• Introduction

• Inverted index

• Processing Boolean queries

• Query optimization

11

Definition of information retrieval

Information retrieval (IR) is finding material (usually

documents) of an unstructured nature (usually text)

that satisfies an information need from within large

collections (usually stored on computers).

12

HOW GOOD ARE THE RETRIEVED DOCS?

▪ Precision : Fraction of retrieved docs that are

relevant to the user’s information need

▪ Recall : Fraction of relevant docs in collection

that are retrieved

▪ More precise definitions and measurements to follow

later

Sec. 1.1

13

14

15

AFTER 2006…

16

Boolean retrieval

• The Boolean model is arguably the simplest model to base an

information retrieval system on.

• Queries are Boolean expressions, e.g., CAESAR AND

BRUTUS

• The search engine returns all documents that satisfy the Boolean

expression.

17

Does Google use the Boolean model?

• On Google, the default interpretation of a query [w1

w2 . . .wn] is w1 AND w2 AND . . .AND wn

• Cases where you get hits that do not contain one of

the wi :
• anchor text to the page contains wi

• page contains variant of wi (morphology, spelling

correction, synonym)

• long queries (n large)

• boolean expression generates very few hits

• Simple Boolean vs. Ranking of result set
• Simple Boolean retrieval returns matching documents in

no particular order.

• Google (and most well designed Boolean engines) rank the

result set – they rank good hits (according to some

estimator of relevance) higher than bad hits.

18

QUIZ

Does Baidu use the simple Boolean model?

a) Yes

b) No

19

OUTLINE

• Introduction

• Inverted index

• Processing Boolean queries

• Query optimization

20

Unstructured data in 1650:

Shakespeare

21

Unstructured data in 1650

o Which plays of Shakespeare contain the words

BRUTUS AND CAESAR, but not CALPURNIA?

o One could “grep” all of Shakespeare’s plays for

BRUTUS and CAESAR, then strip out lines

containing CALPURNIA

o Why isn’t “grep” a good solution?

▪ Slow (for large collections)

▪ grep is line-oriented, IR is document-oriented

▪ “NOT CALPURNIA” is non-trivial

▪ Other operations (e.g., find where word ROMANS near

COUNTRYMAN) not feasible
22

Term-document incidence matrix

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius Caesar. Entry

is 0 if term doesn’t occur. Example: CALPURNIA doesn’t occur in The tempest.

Anthony

and

Cleopatra

Julius

Caesar

The

Tempest

Hamlet Othello Macbeth

ANTHONY

BRUTUS

CAESAR

CALPURNIA

CLEOPATRA

MERCY

WORSER

. . .

1

1

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

1

0

0

1

1

1

0

1

0

0

1

0

23

Incidence vectors

▪So we have a 0/1 vector for each term.

▪To answer the query BRUTUS AND CAESAR AND NOT

CALPURNIA:

▪Take the vectors for BRUTUS, CAESAR AND NOT

CALPURNIA

▪Complement the vector of CALPURNIA

▪Do a (bitwise) and on the three vectors

▪110100 AND 110111 AND 101111 = 100100

24

0/1 vector for BRUTUS AND CAESAR

AND NOT CALPURNIA:

Anthony

and

Cleopatra

Julius

Caesar

The

Tempest

Hamlet Othello Macbeth

ANTHONY

BRUTUS

CAESAR

CALPURNIA

CLEOPATRA

MERCY

WORSER

. . .

1

1

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

1

0

0

1

1

1

0

1

0

0

1

0

result: 1 0 0 1 0 0

25

Answers to query

Anthony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Domitius Enobarbus]:

Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii

Lord Polonius: I did enact

Julius Caesar: I was killed i’

the Capitol; Brutus killed me.

26

Bigger collections

• Consider N = 106 documents, each with about 1000 tokens

• ⇒ total of 109 (1 billion) tokens

• On average 6 bytes per token, including spaces and punctuation

• ⇒ size of document collection is about 6 ・ 109 = 6 GB

• Assume there are M = 500,000 distinct terms in the collection

• (Notice that we are making a term/token distinction.)

27

Can’t build the incidence matrix

• M = 500,000 ×106 = half a trillion 0s and 1s.

• But the matrix has no more than one billion 1s.

• Matrix is extremely sparse.

• What is a better representations?

• We only record the 1s.

28

Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 29

Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 30

Inverted Index

For each term t, we store a list of all documents that contain t.

dictionary postings 31

INVERTED INDEX CONSTRUCTION

1. Collect the documents to be indexed:

2. Tokenize the text, turning each document into a list of tokens:

3. Do linguistic preprocessing, producing a list of normalized tokens,

which are the indexing terms:

4. Index the documents that each term occurs in by creating an

inverted index, consisting of a dictionary and postings. 32

INITIAL STAGES OF TEXT PROCESSING

• Tokenization

– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization

– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming

– We may wish different forms of a root to match

• authorize, authorization

• Stop words

– We may omit very common words (or not)

• the, a, to, of 33

Tokenizing and preprocessing

34

Generate posting

35

Sort postings

36

Create postings lists, determine document

frequency

37

Split the result into dictionary and

postings file

dictionary

postings

38

Later in this course

• Index construction: how can we create inverted

indexes for large collections?

• How much space do we need for dictionary and

index?

• Index compression: how can we efficiently store and

process indexes for large collections?

• Ranked retrieval: what does the inverted index look

like when we want the “best” answer?

39

OUTLINE

• Introduction

• Inverted index

• Processing Boolean queries

• Query optimization

40

Simple conjunctive query (two terms)

• Consider the query: BRUTUS AND CALPURNIA

• To find all matching documents using inverted index:

1. Locate BRUTUS in the dictionary

2. Retrieve its postings list from the postings file

3. Locate CALPURNIA in the dictionary

4. Retrieve its postings list from the postings file

5. Intersect the two postings lists

6. Return intersection to user

41

Intersecting two posting lists

▪This is linear in the length of the postings lists.

▪Note: This only works if postings lists are sorted.

42

Intersecting two posting lists

43

Quiz: Query processing

Compute matching docs for

((paris AND NOT france) OR lear)

44

Boolean queries
▪The Boolean retrieval model can answer any query that is a

Boolean expression.

▪Boolean queries are queries that use AND, OR and NOT to join query

terms.

▪Views each document as a set of terms.

▪Is precise: Document matches condition or not.

▪Primary commercial retrieval tool for 3 decades

▪Many professional searchers (e.g., lawyers) still like Boolean

queries.

▪You know exactly what you are getting.

▪Many search systems you use are also Boolean: spotlight, email,

intranet etc.

45

Commercially successful Boolean retrieval:

Westlaw

• Largest commercial legal search service in terms of the number of

paying subscribers

• Over half a million subscribers performing millions of searches a

day over tens of terabytes of text data

• The service was started in 1975.

• In 2005, Boolean search (called “Terms and Connectors” by

Westlaw) was still the default, and used by a large percentage of

users . . .

• . . . although ranked retrieval has been available since 1992.

46

Westlaw: Example queries

Information need: Information on the legal theories involved

in preventing the disclosure of trade secrets by employees

formerly employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able

to access a workplace

Query: disab! /p access! /s work-site work-place (employment

/3 place)

Information need: Cases about a host’s responsibility for

drunk guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest
47

Westlaw: Comments

• Proximity operators: /3 = within 3 words, /s = within a

sentence, /p = within a paragraph

• Space is disjunction, not conjunction! (This was the default in

search pre-Google.)

• Long, precise queries: incrementally developed, not like web

search

• Why professional searchers often like Boolean search:

precision, transparency, control

• When are Boolean queries the best way of searching? Depends

on: information need, searcher, document collection, . . .

48

OUTLINE

• Introduction

• Inverted index

• Processing Boolean queries

• Query optimization

49

Query optimization

• Consider a query that is an and of n terms, n > 2

• For each of the terms, get its postings list, then and them together

• Example query: BRUTUS AND CALPURNIA AND CAESAR

• What is the best order for processing this query?

50

Query optimization

• Example query: BRUTUS AND CALPURNIA AND CAESAR

• Simple and effective optimization: Process in order of increasing frequency

• Start with the shortest postings list, then keep cutting further

• In this example, first CAESAR, then CALPURNIA, then BRUTUS

51

52

Optimized intersection algorithm for

conjunctive queries

52

More general optimization

• Example query: (MADDING OR CROWD) and (IGNOBLE OR

STRIFE)

• Get frequencies for all terms

• Estimate the size of each “or” by the sum of its frequencies (conservative)

• Process in increasing order of “or” sizes

53

QUIZ: QUERY PROCESSING ORDER

 Recommend a query

processing order for Term Freq

 eyes 213312

 kaleidoscope 87009

 marmalade 107913

 skies 271658

 tangerine 46653

 trees 316812

54

(tangerine OR skies) AND

(marmalade OR trees) AND

(kaleidoscope OR eyes)

TERM VOCABULARY &

POSTING LISTS
55

OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries

56

Documents

• Previously: Simple Boolean retrieval system

• Our assumptions were:

• We know what a document is.

• We can “machine-read” each document.

• This can be complex in reality.

57

Parsing a document

• We need to deal with format and language of each document.

• What format is it in? pdf, word, excel, html etc.

• What language is it in?

• What character set is in use?

• Each of these is a classification problem, which we will study

later in this course.

• Alternative: use heuristics

• machine learning vs. heuristics:

• Data driven vs. human experience

58

Format/Language: Complications

• A single index usually contains terms of several languages.

• Sometimes a document or its components contain multiple

languages/formats.

• French email with Spanish pdf attachment

• What is the document unit for indexing?

• A file?

• An email?

• An email with 5 attachments?

• A group of files (ppt or latex in HTML)?

• Bottomline: Answering the question “what is a document?”

is not trivial and requires some design decisions.

• Also: XML 59

OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries

60

Definitions

▪Word – A delimited string of characters as it appears in the text.

▪Term – A “normalized” word (case, morphology, spelling etc); an

equivalence class of words.

▪Token – An instance of a word or term occurring in a document.

▪Type – The same as a term in most cases: an equivalence class of tokens.

61

Normalization

• Need to “normalize” terms in indexed text as well as query terms

into the same form.

• Example: We want to match U.S.A. and USA

• We most commonly implicitly define equivalence classes of terms.

• Alternatively: do asymmetric expansion
• window → window, windows

• windows → Windows, windows

• Windows (no expansion)

• More powerful, but less efficient

• Why don’t you want to put window, Window, windows, and

Windows in the same equivalence class?

• Because they have different meanings

62

Normalization: Other languages

• Normalization and language detection interact.

• PETER WILL NICHT MIT. → MIT = mit

(Peter do not want to.)

• He got his PhD from MIT. → MIT ≠ mit

63

Recall: Inverted index construction

▪Input:

▪Output:

▪Each token is a candidate for a postings entry.

▪What are valid tokens to emit?

64

Quiz: Tokens, Words and Terms

In June, the dog likes to chase the cat in the barn.

– How many English word tokens are there?

– How many non-English word tokens are there?

– How many terms are there?

65

Tokenization problems: One word or two?

(or several)

• Hewlett-Packard

• State-of-the-art

• co-education

• the hold-him-back-and-drag-him-away maneuver

• data base

• San Francisco

• Los Angeles-based company

• cheap San Francisco-Los Angeles fares

• York University vs. New York University
66

Numbers

• 3/20/91

• 20/3/91

• Mar 20, 1991

• B-52

• 100.2.86.144

• (800) 234-2333

• 800.234.2333

• Older IR systems may not index numbers . . .

• . . . but generally it’s a useful feature.
67

Chinese: No whitespace

68

Ambiguous segmentation in Chinese

The two characters can be treated as one word meaning ‘monk’ or

as a sequence of two words meaning ‘and’ and ‘still’.

69

Other cases of “no whitespace”

• Compounds in Dutch, German, Swedish

• Computerlinguistik → Computer + Linguistik

• Lebensversicherungsgesellschaftsangestellter

→ leben + versicherung + gesellschaft + angestellter

(life insurance company employee)

• Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)

• Many other languages with segmentation difficulties: Finnish,

Urdu, . . .

70

Japanese

4 different “alphabets”: Chinese characters, hiragana syllabary

for inflectional endings and functional words, katakana syllabary

for transcription of foreign words and other uses, and latin. No

spaces (as in Chinese). End user can express query entirely in

hiragana!

71

Arabic script

72

Arabic script: Bidirectionality

← → ← → ← START

‘Algeria achieved its independence in 1962 after 132 years

of French occupation.’

Bidirectionality is not a problem if text is coded in Unicode.

73

Accents and diacritics

▪Accents: résumé vs. resume (simple omission of accent)

▪Umlauts: Universität vs. Universitaet (substitution with special letter

sequence “ae”)

▪Most important criterion: How are users likely to write their queries for

these words?

▪Even in languages that standardly have accents, users often do not type

them. (Polish?)

74

Case folding

• Reduce all letters to lower case

• Possible exceptions: capitalized words in mid-sentence

• MIT vs. mit

• Fed vs. fed

• It’s often best to lowercase everything since users will use

lowercase regardless of correct capitalization.

75

Stop words

• stop words = extremely common words which would appear to be of

little value in helping select documents matching a user need

• Examples: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it,

its, of, on, that, the, to, was, were, will, with

• Stop word elimination used to be standard in older IR systems.

• But you need stop words for phrase queries, e.g. “King of Denmark”

• Most web search engines index stop words.

76

More equivalence classing

• Soundex: IIR 3 (phonetic equivalence, Muller = Mueller)

• Thesauri: IIR 9 (semantic equivalence, car = automobile)

77

Lemmatization

• Reduce inflectional/variant forms to base form

• Example: am, are, is → be

• Example: car, cars, car’s, cars’ → car

• Example: the boy’s cars are different colors → the boy car be

different color

• Lemmatization implies doing “proper” reduction to dictionary

headword form (the lemma).

• Inflectional morphology (cutting → cut) vs. derivational

morphology (destruction → destroy)

78

Stemming

• Definition of stemming: Crude heuristic process that chops off the

ends of words in the hope of achieving what “principled”

lemmatization attempts to do with a lot of linguistic knowledge.

• Language dependent

• Often inflectional and derivational

• Example for derivational: automate, automatic, automation all

reduce to automat

79

Porter algorithm
• Most common algorithm for stemming English

• Results suggest that it is at least as good as other stemming

options

• Conventions + 5 phases of reductions

• Phases are applied sequentially

• Each phase consists of a set of commands.

• Example command: Delete final ement if what remains is

longer than 1 character

• replacement → replac

• cement → cement

• Example convention: Of the rules in a compound command,

select the one that applies to the longest suffix.

80

Porter stemmer: A few rules

Rule

SSES → SS

IES → I

SS → SS

S →

Example

caresses → caress

ponies → poni

caress → caress

cats → cat

81

Three stemmers: A comparison
Sample text: Such an analysis can reveal features that are not easily

visible from the variations in the individual genes and

can lead to a picture of expression that is more

biologically transparent and accessible to interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl

from the variat in the individu gene and can lead to

pictur of express that is more biolog transpar and

access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from

th vari in th individu gen and can lead to a pictur of

expres that is mor biolog transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from

the vary in the individ gen and can lead to a pict of

express that is mor biolog transp and access to interpret

82

Does stemming improve effectiveness?

• In general, stemming increases effectiveness for some

queries, and decreases effectiveness for others.

• Queries where stemming is likely to help: [tartan sweaters],

[sightseeing tour san francisco] (equivalence classes:

{sweater,sweaters}, {tour,tours})

• Porter Stemmer equivalence class oper contains all of

operate operating operates operation operative operatives

operational.

• Queries where stemming hurts: [operational AND research],

[operating AND system], [operative AND dentistry]

83

QUIZ: STEMMING

Are the following statements true or false?

1. In a Boolean retrieval system, stemming never

lowers precision. (T/F)

2. In a Boolean retrieval system, stemming

sometimes lowers recall. (T/F)

3. Stemming increases the size of the vocabulary.

(T/F)

4. Stemming is invoked at indexing time but not

while processing a query. (T/F)

84

OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries

85

Recall basic intersection algorithm

• Linear in the length of the postings lists.

• Can we do better?

86

AUGMENT POSTINGS WITH SKIP POINTERS

(AT INDEXING TIME)

 Why?

To skip postings that will not feature in the search results.

 How?

 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Sec. 2.3

87

QUERY PROCESSING WITH SKIP POINTERS

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Suppose we’ve stepped through the lists until we

process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3

88

Intersection with skip pointers

89

WHERE DO WE PLACE SKIPS?

 Tradeoff:

 More skips → shorter skip spans more likely to

skip. But lots of comparisons to skip pointers.

 Fewer skips → few pointer comparison, but then long

skip spans few successful skips.

Sec. 2.3

90

Where do we place skips? (cont)

• Simple heuristic: for postings list of length P, use evenly-

spaced skip pointers.

• This ignores the distribution of query terms.

• Easy if the index is static; harder in a dynamic environment because

of updates.

• How much do skip pointers help?

• They used to help a lot.

• With today’s fast CPUs, they don’t help that much anymore.

91

