
Introduction to SQL (III)

1

Roadmap of This Lecture

 Transactions

 Integrity Constraints

 SQL Data Types and Schemas

 Authorization

 Embedded SQL

2

Transactions

 Logical unit of work – contains several sequential actions

 Atomic transaction

 either fully executed or rolled back as if it never occurred

 Isolation from concurrent transactions

 Transactions begin implicitly

 Ended by commit work or rollback work

 But default on most databases: each SQL statement commits

automatically

 Can turn off auto commit for a session (e.g. using API)

 In SQL:1999, can use: begin atomic …. end

3

Integrity Constraints

 Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

 A checking account must have a balance greater than

$10,000.00

 A salary of a bank employee must be at least $4.00 an

hour

 A customer must have a (non-null) phone number

4

 Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

5

Not Null and Unique Constraints

 not null

 Declare name and budget to be not null

 name varchar(20) not null

 budget numeric(12,2) not null

 unique (A1, A2, …, Am)

 The unique specification states that the attributes

 A1, A2, … Am

form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary

keys).

6

The check clause

 check (P)

 where P is a predicate

Example: ensure that semester value is one of fall, winter,

spring or summer:

create table section (

 course_id varchar (8),

 sec_id varchar (8),

 semester varchar (6),

 year numeric (4,0),

 building varchar (15),

 room_number varchar (7),

 time slot id varchar (4),

 primary key (course_id, sec_id, semester, year),

 check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’))

);
7

Referential Integrity

 Ensures that a value that appears in one relation for a given

set of attributes also appears for a certain set of attributes in

another relation.

 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists

a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that

contain attributes A and where A is the primary key of S. A is

said to be a foreign key of R if for any values of A appearing

in R these values also appear in S.

8

Cascading Actions in Referential Integrity

 create table course (
 course_id char(5),
 title varchar(20),
 dept_name varchar(20),

 primary key (course_id)
 foreign key (dept_name) references department)

 create table course (
 …
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete cascade
 on update cascade,
 . . .
)

 alternative actions to cascade: set null, set default

9

Integrity Constraint Violation During Transactions

 E.g.

create table person (

ID char(10),

name char(40),

mother char(10),

father char(10),

primary key ID,

foreign key father references person,

foreign key mother references person)

 How to insert the first tuple without causing constraint violation ?

 insert father and mother of a person before inserting person

 OR, set father and mother to null initially, update after inserting

all persons (not possible if father and mother attributes declared

to be not null)

 OR defer constraint checking (rarely supported)

10

Complex Check Clauses

 check (time_slot_id in (select time_slot_id from time_slot))

 why not use a foreign key here?

 Every section has at least one instructor teaching the section.

 teaches(ID, course_id, sec_id, semester, year)

 section(course_id, sec_id, semester, year)

 how to write this?

 check((course_id, sec_id, semester, year) in

 (select course_id, sec_id, semester, year from teaches)

 Unfortunately: subquery in check clause not supported by

pretty much any database

 Alternative: triggers (later)

 create assertion <assertion-name> check <predicate>;

 Also not supported by anyone

 11

Index Creation

 create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

 create index studentID_index on student(ID)

 Indices are data structures used to speed up access to records

with specified values for index attributes

 e.g. select *

 from student

 where ID = ‘12345’

 can be executed by using the index to find the required

 record, without looking at all records of student

More on indices later.

12

Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date

 Example: date ‘2005-7-27’

 time: Time of day, in hours, minutes and seconds.

 Example: time ‘09:00:30’ time ‘09:00:30.75’

 timestamp: date plus time of day

 Example: timestamp ‘2005-7-27 09:00:30.75’

 interval: period of time

 Example: interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives

an interval value

 Interval values can be added to date/time/timestamp values

13

User-Defined Types

 create type construct in SQL creates user-defined type

 create type Dollars as numeric (12,2) final

 create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

14

No subtypes can be

Defined from Dollar

Domains

 create domain construct in SQL-92 creates user-defined

domain types

 create domain person_name char(20) not null

 Types and domains are similar.

 Domains can have constraints, such as not null, specified

on them.

 Domains are not strongly typed.

 create domain degree_level varchar(10)

constraint degree_level_test

check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

15

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a

large object:

 blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an

application outside of the database system)

 clob: character large object -- object is a large collection of

character data

 When a query returns a large object, a pointer is returned

rather than the large object itself.

16

Authorization

Forms of authorization on parts of the database:

 Read - allows reading, but not modification of data.

 Insert - allows insertion of new data, but not modification of

existing data.

 Update - allows modification, but not deletion of data.

 Delete - allows deletion of data.

Forms of authorization to modify the database schema

 Index - allows creation and deletion of indices.

 Resources - allows creation of new relations.

 Alteration - allows addition or deletion of attributes in a

relation.

 Drop - allows deletion of relations.

17

Authorization Specification in SQL

 The grant statement is used to confer authorization

 grant <privilege list>

 on <relation name or view name> to <user list>

 <user list> is:

 a user-id

 public, which allows all valid users the privilege granted

 A role (more on this later)

 Granting a privilege on a view does not imply granting any

privileges on the underlying relations.

 The grantor of the privilege must already hold the privilege on

the specified item (or be the database administrator).

18

Privileges in SQL

 select: allows read access to relation, or the ability to query

using the view

 Example: grant users U1, U2, and U3 the select

authorization on the instructor relation:

 grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update statement

 delete: the ability to delete tuples.

 all privileges: used as a short form for all the allowable

privileges

19

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

 revoke <privilege list>

 on <relation name or view name> from <revokee list>

 Example:

 revoke select on branch from U1, U2, U3

 <privilege list> may be all to revoke all privileges the revokee may

hold.

 If <revokee list> includes public, all users lose the privilege except

those granted it explicitly.

 If the same privilege was granted twice to the same user by different

grantors, the user may retain the privilege after the revocation.

 All privileges that depend on the privilege being revoked are also

revoked.

 Question: What if the grantor and the grantee have the same privilege

on a relation, and the grantee wants to revoke the privilege of the

grantor?

 20

Roles

 create role instructor;

 grant instructor to Amit;

 Privileges can be granted to roles:

 grant select on takes to instructor;

 Roles can be granted to users, as well as to other roles

 create role teaching_assistant;

 grant teaching_assistant to instructor;

 instructor inherits all privileges of teaching_assistant

 Chain of Roles

 create role dean;

 grant instructor to dean;

 grant dean to Satoshi;

21

Authorization on Views

 create view geo_instructor as

(select *

from instructor

where dept_name = ’Geology’);

 grant select on geo_instructor to geo_staff

 Suppose that a geo-staff member issues

 select *

from geo_instructor;

 Clearly the geo-staff should be able to issue the query?

 Need to deal with the case where geo-staff does not have

authorization to instructor

22

Authorizations on Schema

 references privilege to create foreign key

 grant reference (dept_name) on department to Mariano;

 why is this required?

 Because a foreign key guarantees the existence of the

value in the other table -- can perform existence check on

the other table!

23

Transfer of Privileges

 Transfer of privileges

 grant select on department to Amit with grant option;

 revoke select on department from Amit, Satoshi cascade;

 revoke select on department from Amit, Satoshi restrict;

24

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, Java, and Cobol.

 A language to which SQL queries are embedded is referred to as a host

language, and the SQL structures permitted in the host language

comprise embedded SQL.

 The basic form of these languages follows that of the System R

embedding of SQL into PL/I.

 EXEC SQL statement is used to identify embedded SQL request to the

preprocessor

 EXEC SQL <embedded SQL statement > END_EXEC

 Note: this varies by language (for example, the Java embedding uses

 # SQL { …. };)

25

Example Query

 Specify the query in SQL and declare a cursor for it

 EXEC SQL

 declare c cursor for

 select ID, name

 from student

 where tot_cred > :credit_amount

 END_EXEC

 From within a host language, find the ID and name of students

who have completed more than the number of credits stored in

variable credit_amount.

26

Embedded SQL (Cont.)

 The open statement causes the query to be evaluated

 EXEC SQL open c END_EXEC

 The fetch statement causes the values of one tuple in the query result

to be placed on host language variables.

 EXEC SQL fetch c into :si, :sn END_EXEC

si holds the ID and sn holds the name

 Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the

temporary relation that holds the result of the query.

 EXEC SQL close c END_EXEC

 Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

27

Updates Through Cursors

 Can update tuples fetched by cursor by declaring that the cursor is for

update

 declare c cursor for

 select *

 from instructor

 where dept_name = ‘Music’

 for update

 To update tuple at the current location of cursor c

 update instructor

 set salary = salary + 100

 where current of c

28

JDBC and ODBC

 API (application-program interface) for a program to interact with a

database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 SQL queries are created at runtime and hence “dynamic SQL”

 ODBC (Open Database Connectivity) works with C, C++, C#, and

Visual Basic

 Other API’s such as ADO.NET sit on top of ODBC

 JDBC (Java Database Connectivity) works with Java

29

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL.

 JDBC supports a variety of features for querying and updating data, and

for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of relation

attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

30

JDBC Code

public static void JDBCexample(String dbid, String userid, String

passwd)

 {

 try {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection conn = DriverManager.getConnection(

 "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid,

passwd);

 Statement stmt = conn.createStatement();

 … Do Actual Work ….

 stmt.close();

 conn.close();

 }

 catch (SQLException sqle) {

 System.out.println("SQLException : " + sqle);

 }

 }

31

JDBC Code (Cont.)

 Update to database

try {

 stmt.executeUpdate(

 "insert into instructor values(’77987’, ’Kim’, ’Physics’, 98000)");

} catch (SQLException sqle)

{

 System.out.println("Could not insert tuple. " + sqle);

}

 Execute query and fetch and print results

 ResultSet rset = stmt.executeQuery(

 "select dept_name, avg (salary)

 from instructor

 group by dept_name");

while (rset.next()) {

 System.out.println(rset.getString("dept_name") + " " +

 rset.getFloat(2));

}

32

JDBC Code Details

 Getting result fields:

 rs.getString(“dept_name”) and rs.getString(1) equivalent if

dept_name is the first argument of select result.

 Dealing with Null values

 int a = rs.getInt(“a”);

 if (rs.wasNull()) Systems.out.println(“Got null value”);

33

Prepared Statement

 PreparedStatement pStmt = conn.prepareStatement(

 "insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");

pStmt.setString(2, "Perry");

pStmt.setString(3, "Finance");

pStmt.setInt(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");

pStmt.executeUpdate();

 WARNING: always use prepared statements when taking an input

from the user and adding it to a query

 NEVER create a query by concatenating strings

 "insert into instructor values(“ ’ " + ID + " ’, ’ " + name + " ’, " + " ’ +

dept name + " ’, " ’ balance + ")“

 What if name is “D’Souza”?

34

SQL Injection

 Suppose query is constructed using

 "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

 X’ or ’Y’ = ’Y

 then the resulting statement becomes:

 "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

 which is:

 select * from instructor where name = ’X’ or ’Y’ = ’Y’

 User could have even used

 X’; update instructor set salary = salary + 10000; --

 Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’"

 Always use prepared statements, with user inputs as
parameters

35

Metadata Features

 ResultSet metadata

 E.g., after executing query to get a ResultSet rs:

 ResultSetMetaData rsmd = rs.getMetaData();

 for(int i = 1; i <= rsmd.getColumnCount(); i++) {

 System.out.println(rsmd.getColumnName(i));

 System.out.println(rsmd.getColumnTypeName(i));

 }

 How is this useful?

 Print the scheme for this relation

36

Metadata (Cont)

 Database metadata

 DatabaseMetaData dbmd = conn.getMetaData();

 ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

 // Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

 // and Column-Pattern

 // Returns: One row for each column; row has a number of attributes

 // such as COLUMN_NAME, TYPE_NAME

 while(rs.next()) {

 System.out.println(rs.getString("COLUMN_NAME"),

 rs.getString("TYPE_NAME"));

 }

 And where is this useful?

 Only those specified columns are retrieved

37

Transaction Control in JDBC

 By default, each SQL statement is treated as a separate transaction

that is committed automatically

 bad idea for transactions with multiple updates

 Can turn off automatic commit on a connection

 conn.setAutoCommit(false);

 Transactions must then be committed or rolled back explicitly

 conn.commit(); or

 conn.rollback();

 conn.setAutoCommit(true) turns on automatic commit.

38

Other JDBC Features

 Calling functions and procedures

 CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");

 CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");

 Handling large object types

 getBlob() and getClob() that are similar to the getString() method,

but return objects of type Blob and Clob, respectively

 get data from these objects by getBytes()

 associate an open stream with Java Blob or Clob object to update

large objects

 blob.setBlob(int parameterIndex, InputStream inputStream).

39

SQLJ

 JDBC is overly dynamic, errors cannot be caught by compiler

 SQLJ: embedded SQL in Java

 #sql iterator deptInfoIter (String dept_name, int avgSal);

 deptInfoIter iter = null;

 #sql iter = { select dept_name, avg(salary) from instructor

 group by dept name };

 while (iter.next()) {

 String deptName = iter.dept_name();

 int avgSal = iter.avgSal();

 System.out.println(deptName + " " + avgSal);

 }

 iter.close();

40

ODBC

 Open DataBase Connectivity(ODBC) standard

 standard for application program to communicate with a database

server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

41

ODBC (Cont.)

 Each database system supporting ODBC provides a "driver" library

that must be linked with the client program.

 When client program makes an ODBC API call, the code in the library

communicates with the server to carry out the requested action, and

fetch results.

 ODBC program first allocates an SQL environment, then a database

connection handle.

 Opens database connection using SQLConnect(). Parameters for

SQLConnect:

 connection handle,

 the server to which to connect

 the user identifier,

 password

 Must also specify types of arguments:

 SQL_NTS denotes previous argument is a null-terminated string.

42

ODBC Code

 int ODBCexample()

 {

 RETCODE error;

 HENV env; /* environment */

 HDBC conn; /* database connection */

 SQLAllocEnv(&env);

 SQLAllocConnect(env, &conn);

 SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

 { …. Do actual work … }

 SQLDisconnect(conn);

 SQLFreeConnect(conn);

 SQLFreeEnv(env);

 }

43

ODBC Code (Cont.)

 Program sends SQL commands to the database by using
SQLExecDirect

 Result tuples are fetched using SQLFetch()

 SQLBindCol() binds C language variables to attributes of the query
result

 When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

 Arguments to SQLBindCol()

 ODBC stmt variable, attribute position in query result

 The type conversion from SQL to C.

 The address of the variable.

 For variable-length types like character arrays,

– The maximum length of the variable

– Location to store actual length when a tuple is fetched.

– Note: A negative value returned for the length field indicates null
value

 Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

 44

ODBC Code (Cont.)

 Main body of program

 char deptname[80];

float salary;

int lenOut1, lenOut2;

HSTMT stmt;

char * sqlquery = "select dept_name, sum (salary)

 from instructor

 group by dept_name";

SQLAllocStmt(conn, &stmt);

error = SQLExecDirect(stmt, sqlquery, SQL NTS);

if (error == SQL SUCCESS) {

 SQLBindCol(stmt, 1, SQL C CHAR, deptname , 80,

&lenOut1);

 SQLBindCol(stmt, 2, SQL C FLOAT, &salary, 0 , &lenOut2);

 while (SQLFetch(stmt) == SQL SUCCESS) {

 printf (" %s %g\n", deptname, salary);

 }

}

SQLFreeStmt(stmt, SQL DROP);
45

ODBC Prepared Statements

 Prepared Statement

 SQL statement prepared: compiled at the database

 Can have placeholders: E.g. insert into account values(?,?,?)

 Repeatedly executed with actual values for the placeholders

 To prepare a statement

 SQLPrepare(stmt, <SQL String>);

 To bind parameters

 SQLBindParameter(stmt, <parameter#>,

 … type information and value omitted for simplicity..)

 To execute the statement

 retcode = SQLExecute(stmt);

 To avoid SQL injection security risk, do not create SQL strings directly

using user input; instead use prepared statements to bind user inputs

46

More ODBC Features

 Metadata features

 finding all the relations in the database and

 finding the names and types of columns of a query result or a

relation in the database.

 By default, each SQL statement is treated as a separate transaction

that is committed automatically.

 Can turn off automatic commit on a connection

 SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

 Transactions must then be committed or rolled back explicitly by

 SQLTransact(conn, SQL_COMMIT) or

 SQLTransact(conn, SQL_ROLLBACK)

47

ODBC Conformance Levels

 Conformance levels specify subsets of the functionality defined by the

standard.

 Core

 Level 1 requires support for metadata querying

 Level 2 requires ability to send and retrieve arrays of parameter

values and more detailed catalog information.

 SQL Call Level Interface (CLI) standard similar to ODBC interface, but

with some minor differences.

48

ADO.NET

 API designed for Visual Basic .NET and C#, providing database access
facilities similar to JDBC/ODBC

 Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient;
SqlConnection conn = new SqlConnection(
 “Data Source=<IPaddr>, Initial Catalog=<Catalog>”);
conn.Open();
SqlCommand cmd = new SqlCommand(“select * from students”,
 conn);
SqlDataReader rdr = cmd.ExecuteReader();
while(rdr.Read()) {
 Console.WriteLine(rdr[0], rdr[1]); /* Prints first 2 attributes of result*/
}
rdr.Close(); conn.Close();

 Translated into ODBC calls

 Can also access non-relational data sources such as

 OLE-DB

 XML data

 Entity framework

 49

