Introduction to SQL (llI)

Roadmap of This Lecture

Transactions

Integrity Constraints

SQL Data Types and Schemas
Authorization

Embedded SQL

Transactions

Logical unit of work — contains several sequential actions
Atomic transaction

either fully executed or rolled back as if it never occurred
Isolation from concurrent transactions
Transactions begin implicitly

Ended by commit work or rollback work

But default on most databases: each SQL statement commits
automatically

Can turn off auto commit for a session (e.g. using API)
In SQL:1999, can use: begin atomic end

Integrity Constraints

®m Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

A checking account must have a balance greater than
$10,000.00

A salary of a bank employee must be at least $4.00 an
hour

A customer must have a (non-null) phone number

Integrity Constraints on a Single Relation

not null

primary key

unique

check (P), where P is a predicate

Not Null and Unigue Constraints

® not null
Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

B unique (Aq, Ay, ..., Ap)
The unique specification states that the attributes

Al, A2, ... Am
form a candidate key.

Candidate keys are permitted to be null (in contrast to primary
keys).

The check clause

m check (P)
where P is a predicate

Example: ensure that semester value is one of fall, winter,
spring or summer:

create table section (
course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4),
primary key (course _id, sec_id, semester, year),
check (semester in ('Fall’, 'Winter’, 'Spring’, 'Summer?))

Referential Integrity

B Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.

Example: If “Biology” is a department name appearing in
one of the tuples in the instructor relation, then there exists
a tuple in the department relation for “Biology”.

®m Let A be a set of attributes. Let R and S be two relations that
contain attributes A and where A is the primary key of S. Ais
said to be a foreign key of R if for any values of A appearing
iIn R these values also appear in S.

Cascading Actions in Referential Integrity

m create table course (
course_id char(5),
title varchar(20),
dept_name varchar(20),
primary key (course_id)
foreign key (dept_name) references department)

m create table course (

dept_name varchar(20),

foreign key (dept_name) references department
on delete cascade
on update cascade,

o

B alternative actions to cascade: set null, set default

Integrity Constraint Violation During Transactions

m E.g.

create table person (
ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,
foreign key mother references person)

® How to insert the first tuple without causing constraint violation ?
iInsert father and mother of a person before inserting person

OR, set father and mother to null initially, update after inserting
all persons (not possible if father and mother attributes declared

to be not null)

OR defer constraint checking (rarely supported)
10

Complex Check Clauses

check (time_slot_id in (select time_slot_id from time_slot))
why not use a foreign key here?

Every section has at least one instructor teaching the section.
teaches(ID, course _id, sec_id, semester, year)

section(course_id, sec_id, semester, year)

how to write this?
check((course_id, sec_id, semester, year) in
(select course _id, sec_id, semester, year from teaches)

Unfortunately: subquery in check clause not supported by
pretty much any database

Alternative: triggers (later)
create assertion <assertion-name> check <predicate>;
Also not supported by anyone

11

Index Creation

®m create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default O,
primary key (ID))

®m create index studentlD_index on student(ID)

B Indices are data structures used to speed up access to records
with specified values for index attributes

e.g. select *
from student
where ID ='12345’
can be executed by using the index to find the required
record, without looking at all records of student

More on indices later.

Built-in Data Types in SQL

m date: Dates, containing a (4 digit) year, month and date
Example: date 2005-7-27"

m time: Time of day, in hours, minutes and seconds.
Example: time ‘09:00:30° time ‘09:00:30.75’

B timestamp: date plus time of day
Example: timestamp ‘2005-7-27 09:00:30.75’

®m interval: period of time
Example: interval ‘1’ day

Subtracting a date/time/timestamp value from another gives
an interval value

Interval values can be added to date/time/timestamp values

13

User-Defined Types
B create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

create table department No subtypes can be
(dept_name varchar (20), Defined from Dollar
building varchar (15),

budget Dollars);

14

Domains

B create domain construct in SQL-92 creates user-defined
domain types

create domain person_name char(20) not null

® Types and domains are similar.

Domains can have constraints, such as not null, specified
on them.

Domains are not strongly typed.

B create domain degree level varchar(10)
constraint degree level test
check (value in ('Bachelors’, 'Masters’, 'Doctorate’));

15

Large-Object Types

B Large objects (photos, videos, CAD files, etc.) are stored as a
large object:

blob: binary large object -- object is a large collection of
uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

clob: character large object -- object is a large collection of
character data

When a query returns a large object, a pointer is returned
rather than the large object itself.

16

Authorization

Forms of authorization on parts of the database:

Read - allows reading, but not modification of data.

Insert - allows insertion of new data, but not modification of
existing data.

Update - allows modification, but not deletion of data.
Delete - allows deletion of data.

Forms of authorization to modify the database schema

Index - allows creation and deletion of indices.
Resources - allows creation of new relations.

Alteration - allows addition or deletion of attributes in a
relation.

Drop - allows deletion of relations.

17

Authorization Specification in SQL

The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>
<user list> is:
a user-id
public, which allows all valid users the privilege granted
A role (more on this later)

Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

18

Privileges in SQL

select: allows read access to relation, or the ability to query
using the view

Example: grant users U;, U,, and U, the select
authorization on the instructor relation:

grant select on instructor to U, U,, U,
Insert: the ability to insert tuples
update: the ability to update using the SQL update statement
delete: the ability to delete tuples.

all privileges: used as a short form for all the allowable
privileges

19

Revoking Authorization in SQL

The revoke statement is used to revoke authorization.

revoke <privilege list>
on <relation name or view name> from <revokee list>

Example:
revoke select on branch from U, U,, U,

<privilege list> may be all to revoke all privileges the revokee may
hold.

If <revokee list> includes public, all users lose the privilege except
those granted it explicitly.

If the same privilege was granted twice to the same user by different
grantors, the user may retain the privilege after the revocation.

All privileges that depend on the privilege being revoked are also
revoked.

Question: What if the grantor and the grantee have the same privilege
on a relation, and the grantee wants to revoke the privilege of the
grantor?

20

Roles

create role instructor;
grant instructor to Amit;
Privileges can be granted to roles:
grant select on takes to instructor;
Roles can be granted to users, as well as to other roles
create role teaching_assistant;
grant teaching_assistant to instructor;
Instructor inherits all privileges of teaching_assistant
Chain of Roles
create role dean;
grant instructor to dean,
grant dean to Satoshi;

Authorization on Views

create view geo_instructor as
(select *

from instructor

where dept_name = 'Geology’);

grant select on geo_instructor to geo_staff
Suppose that a geo-staff member issues

select *
from geo_instructor;

Clearly the geo-staff should be able to issue the query?

Need to deal with the case where geo-staff does not have
authorization to instructor

22

Authorizations on Schema

®m references privilege to create foreign key
grant reference (dept_name) on department to Mariano;
why is this required?

Because a foreign key guarantees the existence of the
value in the other table -- can perform existence check on

the other table!

23

Transfer of Privileges

®m Transfer of privileges
grant select on department to Amit with grant option;
revoke select on department from Amit, Satoshi cascade;
revoke select on department from Amit, Satoshi restrict;

24

Embedded SQL

The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language
comprise embedded SQL.

The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

EXEC SQL statement is used to identify embedded SQL request to the
preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding uses
#SQL{....};)

25

Example Query

From within a host language, find the ID and name of students
who have completed more than the number of credits stored in

variable credit_amount.

Specify the query in SQL and declare a cursor for it

EXEC SQL

declare ¢ cursor for
select ID, name

from student
where tot_cred > :credit_amount

END_EXEC

26

Embedded SQL (Cont.)

The open statement causes the query to be evaluated
EXEC SQL open c END_EXEC

The fetch statement causes the values of one tuple in the query result
to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

si holds the ID and sn holds the name
Repeated calls to fetch get successive tuples in the query result

A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

27

Updates Through Cursors

m Can update tuples fetched by cursor by declaring that the cursor is for
update

declare ¢ cursor for

select *

from instructor

where dept_name = ‘Music’
for update

® To update tuple at the current location of cursor c

update instructor
set salary = salary + 100
where current of c

28

JDBC and ODBC

API (application-program interface) for a program to interact with a
database server

Application makes calls to
Connect with the database server
Send SQL commands to the database server
Fetch tuples of result one-by-one into program variables
SQL queries are created at runtime and hence “dynamic SQL”

ODBC (Open Database Connectivity) works with C, C++, C#, and
Visual Basic

Other API's such as ADO.NET sit on top of ODBC
JDBC (Java Database Connectivity) works with Java

29

JDBC

JDBC is a Java API for communicating with database systems
supporting SQL.

JDBC supports a variety of features for querying and updating data, and
for retrieving query results.

JDBC also supports metadata retrieval, such as guerying about
relations present in the database and the names and types of relation
attributes.

Model for communicating with the database:
Open a connection
Create a “statement” object

Execute queries using the Statement object to send queries and
fetch results

Exception mechanism to handle errors

JDBC Code

public static void JDBCexample(String dbid, String userid, String
passwd)

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid,
passwd);

Statement stmt = conn.createStatement();
... Do Actual Work
stmt.close();
conn.close();
}
catch (SQLException sqle) {
System.out.printin("SQLEXxception : " + sqle);

31

JDBC Code (Cont.)

® Update to database

try {
stmt.executeUpdate(

"insert into instructor values(’77987’, 'Kim’, 'Physics’, 98000)");
} catch (SQLEXxception sqle)
{
System.out.printin(*Could not insert tuple. " + sqgle);

}

m Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)
from instructor
group by dept_name");
while (rset.next()) {
System.out.printin(rset.getString("'dept_name") + " " +
rset.getFloat(2));

32

JDBC Code Detalls

m Getting result fields:

rs.getString(“dept_name”) and rs.getString(1) equivalent if
dept_name is the first argument of select result.

m Dealing with Null values
int a = rs.getint(“a”);
if (rs.wasNull()) Systems.out.printin(“Got null value’);

33

Prepared Statement

B PreparedStatement pStmt = conn.prepareStatement(
“Insert into instructor values(?,?,?,?)");
pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setint(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

®m WARNING: always use prepared statements when taking an input
from the user and adding it to a query

NEVER create a query by concatenating strings

wi »n wi»s n

"insert into instructor values(“’"+ID+"’,""+name+"’, "+ "’ +

nws n

dept name + "’ "’ balance + ")"
What if name is “D’Souza”?

34

SQL Injection

Suppose query is constructed using
"select * from instructor where name =

m ”n

+ name +'

Suppose the user, instead of entering a name, enters:
Xor'Y =Y

then the resulting statement becomes:

"select * from instructor where name =""+"X or’Y' =’Y" +

which is:

» select * from instructor where name =X or’Y’ =Y’
User could have even used

» X'; update instructor set salary = salary + 10000; --

Prepared statement internally uses:
"select * from instructor where name ='X\' or 'Y\’ = \'Y"™"

Always use prepared statements, with user inputs as
parameters

35

Metadata Features

® ResultSet metadata
m E.g., after executing query to get a ResultSet rs:
ResultSetMetaData rsmd = rs.getMetaData();
for(inti=1; i <= rsmd.getColumnCount(); i++) {
System.out.printin(rsmd.getColumnName(i));
System.out.printin(rsmd.getColumnTypeName(i));
}
® How is this useful?
Print the scheme for this relation

36

Metadata (Cont)

m Database metadata
m DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
/[Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
/[and Column-Pattern
I/ Returns: One row for each column; row has a number of attributes
// such as COLUMN_NAME, TYPE_NAME
while(rs.next()) {
System.out.printin(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME"));
}
® And where is this useful?
Only those specified columns are retrieved

37

Transaction Control in JDBC

By default, each SQL statement is treated as a separate transaction
that is committed automatically

bad idea for transactions with multiple updates

Can turn off automatic commit on a connection
conn.setAutoCommit(false);

Transactions must then be committed or rolled back explicitly
conn.commit(); or
conn.rollback();

conn.setAutoCommit(true) turns on automatic commit.

38

Other JDBC Features

m Calling functions and procedures

CallableStatement cStmtl = conn.prepareCall("{? = call some
function(?)}");

CallableStatement cStmt2 = conn.prepareCall("{call some
procedure(?,?)}");

m Handling large object types

getBlob() and getClob() that are similar to the getString() method,
but return objects of type Blob and Clob, respectively

get data from these objects by getBytes()

associate an open stream with Java Blob or Clob object to update
large objects

» blob.setBlob(int parameterindex, InputStream inputStream).

39

SQLJ

m JDBC is overly dynamic, errors cannot be caught by compiler
B SQLJ: embedded SQL in Java
#sql iterator deptinfolter (String dept_name, int avgSal);
deptinfolter iter = null;
#sql iter = { select dept_name, avg(salary) from instructor
group by dept name };
while (iter.next()) {
String deptName = iter.dept_name();
int avgSal = iter.avgSal();
System.out.printin(deptName + " " + avgSal);

}

iter.close();

40

ODBC

Open DataBase Connectivity(ODBC) standard

standard for application program to communicate with a database
server.

application program interface (API) to
open a connection with a database,
send queries and updates,
get back results.
Applications such as GUI, spreadsheets, etc. can use ODBC

41

ODBC (Cont.)

Each database system supporting ODBC provides a "driver" library
that must be linked with the client program.

When client program makes an ODBC API call, the code in the library
communicates with the server to carry out the requested action, and
fetch results.

ODBC program first allocates an SQL environment, then a database
connection handle.

Opens database connection using SQLConnect(). Parameters for
SQLConnect:

connection handle,
the server to which to connect
the user identifier,
password
Must also specify types of arguments:
SQL_NTS denotes previous argument is a null-terminated string.

42

ODBC Code

int ODBCexample()

{
RETCODE error;
HENV env; [*environment */
HDBC conn; /* database connection */
SQLAIllocEnv(&env);
SQLAIllocConnect(env, &conn);

SQLConnect(conn, “db.yale.edu”, SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTYS);

{.... Do actual work ... }

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

43

ODBC Code (Cont.)

® Program sends SQL commands to the database by using
SQLExecDirect

m Result tuples are fetched using SQLFetch()

m SQLBindCol() binds C language variables to attributes of the query
result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

Arguments to SQLBindCol()
ODBC stmt variable, attribute position in query result
The type conversion from SQL to C.
The address of the variable.
For variable-length types like character arrays,
The maximum length of the variable
Location to store actual length when a tuple is fetched.

Note: A negative value returned for the length field indicates null
value

® Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

44

ODBC Code (Cont.)

® Main body of program

char deptname[80];
float salary;
int lenOutl, lenOut2;
HSTMT stmt;
char * sglquery = "select dept_name, sum (salary)
from instructor
group by dept_name";
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqglquery, SQL NTS);
if (error == SQL SUCCESS) {
SQLBindCol(stmt, 1, SQL C CHAR, deptname , 80,
&lenOutl);
SQLBindCol(stmt, 2, SQL C FLOAT, &salary, 0, &enOut2);
while (SQLFetch(stmt) == SQL SUCCESS) {
printf (" %s %g\n", deptname, salary);
}
}
SQLFreeStmt(stmt, SQL DROP);

45

ODBC Prepared Statements

Prepared Statement
SQL statement prepared: compiled at the database
Can have placeholders: E.g. insert into account values(?,?,?)
Repeatedly executed with actual values for the placeholders

To prepare a statement
SQLPrepare(stmt, <SQL String>);

To bind parameters
SQLBindParameter(stmt, <parameter#>,
... type information and value omitted for simplicity..)

To execute the statement
retcode = SQLExecute(stmt);

To avoid SQL injection security risk, do not create SQL strings directly
using user input; instead use prepared statements to bind user inputs

46

More ODBC Features

® Metadata features
finding all the relations in the database and

finding the names and types of columns of a query result or a
relation in the database.

m By default, each SQL statement is treated as a separate transaction
that is committed automatically.

Can turn off automatic commit on a connection
» SQLSetConnectOption(conn, SQL_ AUTOCOMMIT, 0)}
Transactions must then be committed or rolled back explicitly by
» SQLTransact(conn, SQL_COMMIT) or
» SQLTransact(conn, SQL_ROLLBACK)

47

ODBC Conformance Levels

Conformance levels specify subsets of the functionality defined by the
standard.

Core
Level 1 requires support for metadata querying

Level 2 requires ability to send and retrieve arrays of parameter
values and more detailed catalog information.

SQL Call Level Interface (CLI) standard similar to ODBC interface, but
with some minor differences.

48

ADO.NET

m API designed for Visual Basic .NET and C#, providing database access
facilities similar to JDBC/ODBC

Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient;
SqglConnection conn = new SqlConnection(

“Data Source=<I|Paddr>, Initial Catalog=<Catalog>");

conn.Open();

SqlCommand cmd = new SqlCommand(“select * from students”,
conn);

SqglDataReader rdr = cmd.ExecuteReader();

while(rdr.Read()) {
Console.WriteLine(rdr[O], rdr[1]); /* Prints first 2 attributes of result*/
}

rdr.Close(); conn.Close();

® Translated into ODBC calls

m Can also access non-relational data sources such as
OLE-DB
XML data

Entity framework
49

