
Introduction to SQL (III)

1

Roadmap of This Lecture

 Transactions

 Integrity Constraints

 SQL Data Types and Schemas

 Authorization

 Embedded SQL

2

Transactions

 Logical unit of work – contains several sequential actions

 Atomic transaction

 either fully executed or rolled back as if it never occurred

 Isolation from concurrent transactions

 Transactions begin implicitly

 Ended by commit work or rollback work

 But default on most databases: each SQL statement commits

automatically

 Can turn off auto commit for a session (e.g. using API)

 In SQL:1999, can use: begin atomic …. end

3

Integrity Constraints

 Integrity constraints guard against accidental damage to the

database, by ensuring that authorized changes to the

database do not result in a loss of data consistency.

 A checking account must have a balance greater than

$10,000.00

 A salary of a bank employee must be at least $4.00 an

hour

 A customer must have a (non-null) phone number

4

 Integrity Constraints on a Single Relation

 not null

 primary key

 unique

 check (P), where P is a predicate

5

Not Null and Unique Constraints

 not null

 Declare name and budget to be not null

 name varchar(20) not null

 budget numeric(12,2) not null

 unique (A1, A2, …, Am)

 The unique specification states that the attributes

 A1, A2, … Am

form a candidate key.

 Candidate keys are permitted to be null (in contrast to primary

keys).

6

The check clause

 check (P)

 where P is a predicate

Example: ensure that semester value is one of fall, winter,

spring or summer:

create table section (

 course_id varchar (8),

 sec_id varchar (8),

 semester varchar (6),

 year numeric (4,0),

 building varchar (15),

 room_number varchar (7),

 time slot id varchar (4),

 primary key (course_id, sec_id, semester, year),

 check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’))

);
7

Referential Integrity

 Ensures that a value that appears in one relation for a given

set of attributes also appears for a certain set of attributes in

another relation.

 Example: If “Biology” is a department name appearing in

one of the tuples in the instructor relation, then there exists

a tuple in the department relation for “Biology”.

 Let A be a set of attributes. Let R and S be two relations that

contain attributes A and where A is the primary key of S. A is

said to be a foreign key of R if for any values of A appearing

in R these values also appear in S.

8

Cascading Actions in Referential Integrity

 create table course (
 course_id char(5),
 title varchar(20),
 dept_name varchar(20),

 primary key (course_id)
 foreign key (dept_name) references department)

 create table course (
 …
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete cascade
 on update cascade,
 . . .
)

 alternative actions to cascade: set null, set default

9

Integrity Constraint Violation During Transactions

 E.g.

create table person (

ID char(10),

name char(40),

mother char(10),

father char(10),

primary key ID,

foreign key father references person,

foreign key mother references person)

 How to insert the first tuple without causing constraint violation ?

 insert father and mother of a person before inserting person

 OR, set father and mother to null initially, update after inserting

all persons (not possible if father and mother attributes declared

to be not null)

 OR defer constraint checking (rarely supported)

10

Complex Check Clauses

 check (time_slot_id in (select time_slot_id from time_slot))

 why not use a foreign key here?

 Every section has at least one instructor teaching the section.

 teaches(ID, course_id, sec_id, semester, year)

 section(course_id, sec_id, semester, year)

 how to write this?

 check((course_id, sec_id, semester, year) in

 (select course_id, sec_id, semester, year from teaches)

 Unfortunately: subquery in check clause not supported by

pretty much any database

 Alternative: triggers (later)

 create assertion <assertion-name> check <predicate>;

 Also not supported by anyone

 11

Index Creation

 create table student

(ID varchar (5),

name varchar (20) not null,

dept_name varchar (20),

tot_cred numeric (3,0) default 0,

primary key (ID))

 create index studentID_index on student(ID)

 Indices are data structures used to speed up access to records

with specified values for index attributes

 e.g. select *

 from student

 where ID = ‘12345’

 can be executed by using the index to find the required

 record, without looking at all records of student

More on indices later.

12

Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date

 Example: date ‘2005-7-27’

 time: Time of day, in hours, minutes and seconds.

 Example: time ‘09:00:30’ time ‘09:00:30.75’

 timestamp: date plus time of day

 Example: timestamp ‘2005-7-27 09:00:30.75’

 interval: period of time

 Example: interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives

an interval value

 Interval values can be added to date/time/timestamp values

13

User-Defined Types

 create type construct in SQL creates user-defined type

 create type Dollars as numeric (12,2) final

 create table department

(dept_name varchar (20),

building varchar (15),

budget Dollars);

14

No subtypes can be

Defined from Dollar

Domains

 create domain construct in SQL-92 creates user-defined

domain types

 create domain person_name char(20) not null

 Types and domains are similar.

 Domains can have constraints, such as not null, specified

on them.

 Domains are not strongly typed.

 create domain degree_level varchar(10)

constraint degree_level_test

check (value in (’Bachelors’, ’Masters’, ’Doctorate’));

15

Large-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a

large object:

 blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an

application outside of the database system)

 clob: character large object -- object is a large collection of

character data

 When a query returns a large object, a pointer is returned

rather than the large object itself.

16

Authorization

Forms of authorization on parts of the database:

 Read - allows reading, but not modification of data.

 Insert - allows insertion of new data, but not modification of

existing data.

 Update - allows modification, but not deletion of data.

 Delete - allows deletion of data.

Forms of authorization to modify the database schema

 Index - allows creation and deletion of indices.

 Resources - allows creation of new relations.

 Alteration - allows addition or deletion of attributes in a

relation.

 Drop - allows deletion of relations.

17

Authorization Specification in SQL

 The grant statement is used to confer authorization

 grant <privilege list>

 on <relation name or view name> to <user list>

 <user list> is:

 a user-id

 public, which allows all valid users the privilege granted

 A role (more on this later)

 Granting a privilege on a view does not imply granting any

privileges on the underlying relations.

 The grantor of the privilege must already hold the privilege on

the specified item (or be the database administrator).

18

Privileges in SQL

 select: allows read access to relation, or the ability to query

using the view

 Example: grant users U1, U2, and U3 the select

authorization on the instructor relation:

 grant select on instructor to U1, U2, U3

 insert: the ability to insert tuples

 update: the ability to update using the SQL update statement

 delete: the ability to delete tuples.

 all privileges: used as a short form for all the allowable

privileges

19

Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

 revoke <privilege list>

 on <relation name or view name> from <revokee list>

 Example:

 revoke select on branch from U1, U2, U3

 <privilege list> may be all to revoke all privileges the revokee may

hold.

 If <revokee list> includes public, all users lose the privilege except

those granted it explicitly.

 If the same privilege was granted twice to the same user by different

grantors, the user may retain the privilege after the revocation.

 All privileges that depend on the privilege being revoked are also

revoked.

 Question: What if the grantor and the grantee have the same privilege

on a relation, and the grantee wants to revoke the privilege of the

grantor?

 20

Roles

 create role instructor;

 grant instructor to Amit;

 Privileges can be granted to roles:

 grant select on takes to instructor;

 Roles can be granted to users, as well as to other roles

 create role teaching_assistant;

 grant teaching_assistant to instructor;

 instructor inherits all privileges of teaching_assistant

 Chain of Roles

 create role dean;

 grant instructor to dean;

 grant dean to Satoshi;

21

Authorization on Views

 create view geo_instructor as

(select *

from instructor

where dept_name = ’Geology’);

 grant select on geo_instructor to geo_staff

 Suppose that a geo-staff member issues

 select *

from geo_instructor;

 Clearly the geo-staff should be able to issue the query?

 Need to deal with the case where geo-staff does not have

authorization to instructor

22

Authorizations on Schema

 references privilege to create foreign key

 grant reference (dept_name) on department to Mariano;

 why is this required?

 Because a foreign key guarantees the existence of the

value in the other table -- can perform existence check on

the other table!

23

Transfer of Privileges

 Transfer of privileges

 grant select on department to Amit with grant option;

 revoke select on department from Amit, Satoshi cascade;

 revoke select on department from Amit, Satoshi restrict;

24

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, Java, and Cobol.

 A language to which SQL queries are embedded is referred to as a host

language, and the SQL structures permitted in the host language

comprise embedded SQL.

 The basic form of these languages follows that of the System R

embedding of SQL into PL/I.

 EXEC SQL statement is used to identify embedded SQL request to the

preprocessor

 EXEC SQL <embedded SQL statement > END_EXEC

 Note: this varies by language (for example, the Java embedding uses

 # SQL { …. };)

25

Example Query

 Specify the query in SQL and declare a cursor for it

 EXEC SQL

 declare c cursor for

 select ID, name

 from student

 where tot_cred > :credit_amount

 END_EXEC

 From within a host language, find the ID and name of students

who have completed more than the number of credits stored in

variable credit_amount.

26

Embedded SQL (Cont.)

 The open statement causes the query to be evaluated

 EXEC SQL open c END_EXEC

 The fetch statement causes the values of one tuple in the query result

to be placed on host language variables.

 EXEC SQL fetch c into :si, :sn END_EXEC

si holds the ID and sn holds the name

 Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the

temporary relation that holds the result of the query.

 EXEC SQL close c END_EXEC

 Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

27

Updates Through Cursors

 Can update tuples fetched by cursor by declaring that the cursor is for

update

 declare c cursor for

 select *

 from instructor

 where dept_name = ‘Music’

 for update

 To update tuple at the current location of cursor c

 update instructor

 set salary = salary + 100

 where current of c

28

JDBC and ODBC

 API (application-program interface) for a program to interact with a

database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 SQL queries are created at runtime and hence “dynamic SQL”

 ODBC (Open Database Connectivity) works with C, C++, C#, and

Visual Basic

 Other API’s such as ADO.NET sit on top of ODBC

 JDBC (Java Database Connectivity) works with Java

29

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL.

 JDBC supports a variety of features for querying and updating data, and

for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of relation

attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

30

JDBC Code

public static void JDBCexample(String dbid, String userid, String

passwd)

 {

 try {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection conn = DriverManager.getConnection(

 "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid,

passwd);

 Statement stmt = conn.createStatement();

 … Do Actual Work ….

 stmt.close();

 conn.close();

 }

 catch (SQLException sqle) {

 System.out.println("SQLException : " + sqle);

 }

 }

31

JDBC Code (Cont.)

 Update to database

try {

 stmt.executeUpdate(

 "insert into instructor values(’77987’, ’Kim’, ’Physics’, 98000)");

} catch (SQLException sqle)

{

 System.out.println("Could not insert tuple. " + sqle);

}

 Execute query and fetch and print results

 ResultSet rset = stmt.executeQuery(

 "select dept_name, avg (salary)

 from instructor

 group by dept_name");

while (rset.next()) {

 System.out.println(rset.getString("dept_name") + " " +

 rset.getFloat(2));

}

32

JDBC Code Details

 Getting result fields:

 rs.getString(“dept_name”) and rs.getString(1) equivalent if

dept_name is the first argument of select result.

 Dealing with Null values

 int a = rs.getInt(“a”);

 if (rs.wasNull()) Systems.out.println(“Got null value”);

33

Prepared Statement

 PreparedStatement pStmt = conn.prepareStatement(

 "insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");

pStmt.setString(2, "Perry");

pStmt.setString(3, "Finance");

pStmt.setInt(4, 125000);

pStmt.executeUpdate();

pStmt.setString(1, "88878");

pStmt.executeUpdate();

 WARNING: always use prepared statements when taking an input

from the user and adding it to a query

 NEVER create a query by concatenating strings

 "insert into instructor values(“ ’ " + ID + " ’, ’ " + name + " ’, " + " ’ +

dept name + " ’, " ’ balance + ")“

 What if name is “D’Souza”?

34

SQL Injection

 Suppose query is constructed using

 "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

 X’ or ’Y’ = ’Y

 then the resulting statement becomes:

 "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

 which is:

 select * from instructor where name = ’X’ or ’Y’ = ’Y’

 User could have even used

 X’; update instructor set salary = salary + 10000; --

 Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’"

 Always use prepared statements, with user inputs as
parameters

35

Metadata Features

 ResultSet metadata

 E.g., after executing query to get a ResultSet rs:

 ResultSetMetaData rsmd = rs.getMetaData();

 for(int i = 1; i <= rsmd.getColumnCount(); i++) {

 System.out.println(rsmd.getColumnName(i));

 System.out.println(rsmd.getColumnTypeName(i));

 }

 How is this useful?

 Print the scheme for this relation

36

Metadata (Cont)

 Database metadata

 DatabaseMetaData dbmd = conn.getMetaData();

 ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");

 // Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,

 // and Column-Pattern

 // Returns: One row for each column; row has a number of attributes

 // such as COLUMN_NAME, TYPE_NAME

 while(rs.next()) {

 System.out.println(rs.getString("COLUMN_NAME"),

 rs.getString("TYPE_NAME"));

 }

 And where is this useful?

 Only those specified columns are retrieved

37

Transaction Control in JDBC

 By default, each SQL statement is treated as a separate transaction

that is committed automatically

 bad idea for transactions with multiple updates

 Can turn off automatic commit on a connection

 conn.setAutoCommit(false);

 Transactions must then be committed or rolled back explicitly

 conn.commit(); or

 conn.rollback();

 conn.setAutoCommit(true) turns on automatic commit.

38

Other JDBC Features

 Calling functions and procedures

 CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");

 CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");

 Handling large object types

 getBlob() and getClob() that are similar to the getString() method,

but return objects of type Blob and Clob, respectively

 get data from these objects by getBytes()

 associate an open stream with Java Blob or Clob object to update

large objects

 blob.setBlob(int parameterIndex, InputStream inputStream).

39

SQLJ

 JDBC is overly dynamic, errors cannot be caught by compiler

 SQLJ: embedded SQL in Java

 #sql iterator deptInfoIter (String dept_name, int avgSal);

 deptInfoIter iter = null;

 #sql iter = { select dept_name, avg(salary) from instructor

 group by dept name };

 while (iter.next()) {

 String deptName = iter.dept_name();

 int avgSal = iter.avgSal();

 System.out.println(deptName + " " + avgSal);

 }

 iter.close();

40

ODBC

 Open DataBase Connectivity(ODBC) standard

 standard for application program to communicate with a database

server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

41

ODBC (Cont.)

 Each database system supporting ODBC provides a "driver" library

that must be linked with the client program.

 When client program makes an ODBC API call, the code in the library

communicates with the server to carry out the requested action, and

fetch results.

 ODBC program first allocates an SQL environment, then a database

connection handle.

 Opens database connection using SQLConnect(). Parameters for

SQLConnect:

 connection handle,

 the server to which to connect

 the user identifier,

 password

 Must also specify types of arguments:

 SQL_NTS denotes previous argument is a null-terminated string.

42

ODBC Code

 int ODBCexample()

 {

 RETCODE error;

 HENV env; /* environment */

 HDBC conn; /* database connection */

 SQLAllocEnv(&env);

 SQLAllocConnect(env, &conn);

 SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

 { …. Do actual work … }

 SQLDisconnect(conn);

 SQLFreeConnect(conn);

 SQLFreeEnv(env);

 }

43

ODBC Code (Cont.)

 Program sends SQL commands to the database by using
SQLExecDirect

 Result tuples are fetched using SQLFetch()

 SQLBindCol() binds C language variables to attributes of the query
result

 When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

 Arguments to SQLBindCol()

 ODBC stmt variable, attribute position in query result

 The type conversion from SQL to C.

 The address of the variable.

 For variable-length types like character arrays,

– The maximum length of the variable

– Location to store actual length when a tuple is fetched.

– Note: A negative value returned for the length field indicates null
value

 Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

 44

ODBC Code (Cont.)

 Main body of program

 char deptname[80];

float salary;

int lenOut1, lenOut2;

HSTMT stmt;

char * sqlquery = "select dept_name, sum (salary)

 from instructor

 group by dept_name";

SQLAllocStmt(conn, &stmt);

error = SQLExecDirect(stmt, sqlquery, SQL NTS);

if (error == SQL SUCCESS) {

 SQLBindCol(stmt, 1, SQL C CHAR, deptname , 80,

&lenOut1);

 SQLBindCol(stmt, 2, SQL C FLOAT, &salary, 0 , &lenOut2);

 while (SQLFetch(stmt) == SQL SUCCESS) {

 printf (" %s %g\n", deptname, salary);

 }

}

SQLFreeStmt(stmt, SQL DROP);
45

ODBC Prepared Statements

 Prepared Statement

 SQL statement prepared: compiled at the database

 Can have placeholders: E.g. insert into account values(?,?,?)

 Repeatedly executed with actual values for the placeholders

 To prepare a statement

 SQLPrepare(stmt, <SQL String>);

 To bind parameters

 SQLBindParameter(stmt, <parameter#>,

 … type information and value omitted for simplicity..)

 To execute the statement

 retcode = SQLExecute(stmt);

 To avoid SQL injection security risk, do not create SQL strings directly

using user input; instead use prepared statements to bind user inputs

46

More ODBC Features

 Metadata features

 finding all the relations in the database and

 finding the names and types of columns of a query result or a

relation in the database.

 By default, each SQL statement is treated as a separate transaction

that is committed automatically.

 Can turn off automatic commit on a connection

 SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

 Transactions must then be committed or rolled back explicitly by

 SQLTransact(conn, SQL_COMMIT) or

 SQLTransact(conn, SQL_ROLLBACK)

47

ODBC Conformance Levels

 Conformance levels specify subsets of the functionality defined by the

standard.

 Core

 Level 1 requires support for metadata querying

 Level 2 requires ability to send and retrieve arrays of parameter

values and more detailed catalog information.

 SQL Call Level Interface (CLI) standard similar to ODBC interface, but

with some minor differences.

48

ADO.NET

 API designed for Visual Basic .NET and C#, providing database access
facilities similar to JDBC/ODBC

 Partial example of ADO.NET code in C#
using System, System.Data, System.Data.SqlClient;
SqlConnection conn = new SqlConnection(
 “Data Source=<IPaddr>, Initial Catalog=<Catalog>”);
conn.Open();
SqlCommand cmd = new SqlCommand(“select * from students”,
 conn);
SqlDataReader rdr = cmd.ExecuteReader();
while(rdr.Read()) {
 Console.WriteLine(rdr[0], rdr[1]); /* Prints first 2 attributes of result*/
}
rdr.Close(); conn.Close();

 Translated into ODBC calls

 Can also access non-relational data sources such as

 OLE-DB

 XML data

 Entity framework

 49

