
Introduction to SQL (II)

1

Roadmap to This Lecture

 Set operations

 Aggregates

 Nested Subqueries

 Modification of the Database

 Join Expressions

 Views

2

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)

 union

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)

 intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)

 except

(select course_id from section where sem = ‘Spring’ and year = 2010)

3

Set Operations

 Set operations union, intersect, and except

 Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the corresponding multiset versions union

all, intersect all and except all.

 Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

4

Null Values

 It is possible for tuples to have a null value, denoted by null, for some

of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.

 select name

 from instructor

 where salary is null

5

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

 (unknown or false) = unknown

 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

 (false and unknown) = false,

 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to

unknown

 Result of where clause predicate is treated as false if it evaluates to

unknown

6

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

7

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science

department

 select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the Spring

2010 semester

 select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010;

 Find the number of tuples in the course relation

 select count (*)

from course;

8

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

avg_salary

9

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear

in group by list

 /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

 Reason is simple: ID has different values in each group of

dept_name, so which ID shall we return along with the average

salary?

10

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose

average salary is greater than 42000

 Note: predicates in the having clause are applied after the

 formation of groups whereas predicates in the where

 clause are applied before forming groups

select dept_name, avg (salary)

from instructor

group by dept_name

having avg (salary) > 42000;

11

Null Values and Aggregates

 Total all salaries

 select sum (salary)

 from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null values

on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

12

Schemas

 instructor(ID, name, dept_name, salary)

 student(ID, name, dept_name, tot_cred)

 takes(ID, course_id, sec_id, semester, year, grade)

 teaches(ID, course_id, sec_id, semester, year)

 course(course_id, title, dept_name, credits)

 section(course_id, sec_id, semester, year)

13

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested within

another query.

 A common use of subqueries is to perform tests for set membership, set

comparisons, and set cardinality.

14

Example Query

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

 course_id in (select course_id

 from section

 where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

 course_id not in (select course_id

 from section

 where semester = ’Spring’ and year= 2010);

15

Example Query

 Find the total number of (distinct) students who have taken course

sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner. The

 formulation above is simply to illustrate SQL features.

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

 (select course_id, sec_id, semester, year

 from teaches

 where teaches.ID= 10101);

16

Set Comparison

 Find names of instructors with salary greater than that of some (at

least one) instructor in the Biology department.

 Same query using > some clause

select name

from instructor

where salary > some (select salary

 from instructor

 where dept name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

17

Definition of Some Clause

 F <comp> some r t r such that (F <comp> t)

Where <comp> can be:

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5 (5 some) = true (since 0 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true (5 = some

(= some) in

However, (some) ≠ not in

18

Example Query

 Find the names of all instructors whose salary is greater than the

salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

 from instructor

 where dept name = ’Biology’);

19

Definition of all Clause

 F <comp> all r t r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6 (5 all) = true (since 5 4 and 5 6)

(5 < all

) = false (5 = all

(all) not in

However, (= all) ≠ in

20

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is

nonempty.

 exists r r Ø

 not exists r r = Ø

21

Correlation Variables

 Yet another way of specifying the query “Find all courses taught in

both the Fall 2009 semester and in the Spring 2010 semester”

 select course_id

 from section as S

 where semester = ’Fall’ and year = 2009 and

 exists (select *

 from section as T

 where semester = ’Spring’ and year= 2010

 and S.course_id = T.course_id);

 Correlated subquery

 Correlation name or correlation variable

 Scope of variables restricted to the inner-most query structure that

defines them

22

Not Exists

 Find all students who have taken all courses offered in the Biology

department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

 from course

 where dept_name = ’Biology’)

 except

 (select T.course_id

 from takes as T

 where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

 Note that X – Y = Ø X Y (set containment)

 Note: Cannot write this query using = all or its variants

23

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples

in its result.

 The unique construct evaluates to “true” on an empty set.

 Find all courses that were offered at most once in 2009

 select T.course_id

from course as T

where unique (select R.course_id

 from section as R

 where T.course_id= R.course_id

 and R.year = 2009);

24

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.

 select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

 from instructor

 group by dept_name)

where avg_salary > 42000;

 The above eliminate the need to use the having clause

 Another way to write above query

 select dept_name, avg_salary

from (select dept_name, avg (salary)

 from instructor

 group by dept_name) as dept_avg (dept_name, avg_salary)

 where avg_salary > 42000;

 25

Subqueries in the From Clause (Cont.)

 Sub-queries in the from clause normally can’t access variables from

other attributes of the relations in the from clause

 And yet another way to write it: lateral clause

 Return instructor’s name, his or her salary and the average salary of

his or her department:

 select name, salary, avg_salary

from instructor I1,

 lateral (select avg(salary) as avg_salary

 from instructor I2

 where I2.dept_name= I1.dept_name);

 Note: lateral is part of the SQL standard, but is not supported on many

database systems; some databases such as SQL Server offer

alternative syntax

26

With Clause

 The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with

clause occurs.

 Find all departments with the maximum budget

 with max_budget (value) as

 (select max(budget)

 from department)

 select department.dept_name

 from department, max_budget

 where department.budget = max_budget.value;

 You can think of with clause as declaration of local variables and

assigning values to them

27

Complex Queries using With Clause

 Find all departments where the total salary is greater than the

average of the total salary at all departments

 Write it without the with clause?

with dept _total (dept_name, value) as

 (select dept_name, sum(salary)

 from instructor

 group by dept_name),

dept_total_avg(value) as

 (select avg(value)

 from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value >= dept_total_avg.value;

28

Scalar Subquery

 Scalar subquery is one which is used where a single value (tuple)

is expected

 select dept_name,

 (select count(*)

 from instructor

 where department.dept_name = instructor.dept_name)

 as num_instructors

from department;

 What does this query do?

 Variables in the select clause must be scale value

 Runtime error if subquery returns more than one result tuple

29

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

30

Deletion

 Delete all instructors

 delete from instructor

 Delete all instructors from the Finance department

 delete from instructor

 where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

 delete from instructor

 where dept_name in (select dept_name

 from department

 where building = ’Watson’);

31

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of

instructors

delete from instructor

where salary < (select avg (salary) from instructor);

 Problem?

 as we delete tuples from instructor table, the average salary changes

 Solution used in SQL:

 1. First, compute avg salary and find all tuples to delete

 2. Next, delete all tuples found above (without

 recomputing avg or retesting the tuples)

32

Insertion

 Add a new tuple to course

 insert into course

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

 insert into course (course_id, title, dept_name, credits)

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

 insert into student

 values (’3003’, ’Green’, ’Finance’, null);

33

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0

 insert into student

 select ID, name, dept_name, 0

 from instructor

 The select from where statement is evaluated fully before any of its

results are inserted into the relation.

 Otherwise queries like

 insert into table1 select * from table1

 would cause problem

34

Updates

 Increase salaries of instructors whose salary is over $100,000 by 3%,

and all others receive a 5% raise

 Write two update statements:

 update instructor

 set salary = salary * 1.05

 where salary <= 100000;

 update instructor

 set salary = salary * 1.03

 where salary > 100000;

 What’s the problem here?

 The order is important

 Can be done better using the case statement (next slide)

35

Case Statement for Conditional Updates

 Same query as before but with case statement

 update instructor

 set salary = case

 when salary <= 100000 then salary * 1.05

 else salary * 1.03

 end

36

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

 update student S

 set tot_cred = (select sum(credits)

 from takes natural join course

 where S.ID= takes.ID and

 takes.grade <> ’F’ and

 takes.grade is not null);

 The above sets tot_creds to null for students who have not

taken any course

 Instead of sum(credits), use:

 case

 when sum(credits) is not null then sum(credits)

 else 0

 end

37

Joined Relations

 Join operations take two relations and return as a result

another relation.

 A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).

It also specifies the attributes that are present in the result

of the join

 The join operations are typically used as subquery

expressions in the from clause

38

Join operations – Example

 Relation course

 Relation prereq

 Observe that

 prereq information is missing for CS-315 and

 course information is missing for CS-347
39

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

40

Outer Join

 An extension of the join operation that avoids loss of

information.

 Computes the join and then adds tuples from one relation

that does not match tuples in the other relation to the result

of the join.

 Uses null values.

41

Left Outer Join

 course natural left outer join prereq

42

Right Outer Join

 course natural right outer join prereq

43

Full Outer Join

 course natural full outer join prereq

44

Joined Relations in SQL – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above and a natural

join?

 Cartesian product with a selection condition

45

Joined Relations in SQL – Examples

 course left outer join prereq on

course.course_id = prereq.course_id

46

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

47

Views

 In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the

database.)

 Consider a person who needs to know an instructor’s name

and department, but not the salary. This person should see a

relation described, in SQL, by

 select ID, name, dept_name

 from instructor

 A view provides a mechanism to hide certain data from the

view of certain users.

 Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

48

View Definition

 A view is defined using the create view statement which has

the form

 create view v as < query expression >

 where <query expression> is any legal SQL expression. The

view name is represented by v.

 Once a view is defined, the view name can be used to refer to

the virtual relation that the view generates.

 View definition is not the same as creating a new relation by

evaluating the query expression

 Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

 In programming language terms, this is “call by name” or

lazy evaluation!

49

Example Views

 A view of instructors without their salary

 create view faculty as

 select ID, name, dept_name

 from instructor

 A view of all instructors in the Biology department

 create view bio_instructors as

 select name

 from faculty

 where dept_name = ‘Biology’

 Create a view of department salary totals

 create view departments_total_salary(dept_name, total_salary) as

 select dept_name, sum (salary)

 from instructor

 group by dept_name;

50

Views Defined Using Other Views

 create view physics_fall_2009 as

 select course.course_id, sec_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = ’Physics’

 and section.semester = ’Fall’

 and section.year = ’2009’;

 create view physics_fall_2009_watson as

 select course_id, room_number

 from physics_fall_2009

 where building= ’Watson’;

51

View Expansion

 Expand use of a view (physics_fall_2009) in a query/another view

create view physics_fall_2009_watson as

(select course_id, room_number

from (select course.course_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = ’Physics’

 and section.semester = ’Fall’

 and section.year = ’2009’)

where building= ’Watson’;)

52

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation

v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either

v1 depends directly to v2 or there is a path of dependencies

from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

53

View Expansion

 A way to define the meaning of views defined in terms of other

views.

 Let view v1 be defined by an expression e1 that may itself

contain uses of view relations.

 View expansion of an expression repeats the following

replacement step:

 repeat

 Find any view relation vi in e1

 Replace the view relation vi by the expression defining vi

 until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will

terminate

54

Update of a View

 Add a new tuple to faculty view which we defined earlier

 insert into faculty values (’30765’, ’Green’, ’Music’);

 This insertion must be represented by the insertion of the tuple

 (’30765’, ’Green’, ’Music’, null)

 into the instructor relation

55

Some Updates cannot be Translated Uniquely

 create view instructor_info as

 select ID, name, building

 from instructor, department

 where instructor.dept_name= department.dept_name;

 insert into instructor_info values (’69987’, ’White’, ’Taylor’);

which department, if multiple departments in Taylor?

what if no department is in Taylor?

 Most SQL implementations allow updates only on simple views

 The from clause has only one database relation.

 The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or

distinct specification.

 Any attribute not listed in the select clause can be set to null

 The query does not have a group by or having clause.

56

More Problems

 create view history_instructors as

 select *

 from instructor

 where dept_name= ’History’;

 What happens if we insert (’25566’, ’Brown’, ’Biology’, 100000)

into history_instructors?

57

Materialized Views

 When defining a view, simply create a physical table

representing the view at the time of creation.

 Update is simple to handle.

 How are updates handled to the “base” relations on which

the view was defined?

58

