
Introduction to SQL (II)

1

Roadmap to This Lecture

 Set operations

 Aggregates

 Nested Subqueries

 Modification of the Database

 Join Expressions

 Views

2

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)

 union

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)

 intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)

 except

(select course_id from section where sem = ‘Spring’ and year = 2010)

3

Set Operations

 Set operations union, intersect, and except

 Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the corresponding multiset versions union

all, intersect all and except all.

 Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

4

Null Values

 It is possible for tuples to have a null value, denoted by null, for some

of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.

 select name

 from instructor

 where salary is null

5

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,

 (unknown or false) = unknown

 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

 (false and unknown) = false,

 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to

unknown

 Result of where clause predicate is treated as false if it evaluates to

unknown

6

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

 avg: average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

7

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science

department

 select avg (salary)

from instructor

where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the Spring

2010 semester

 select count (distinct ID)

from teaches

where semester = ’Spring’ and year = 2010;

 Find the number of tuples in the course relation

 select count (*)

from course;

8

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

avg_salary

9

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear

in group by list

 /* erroneous query */

select dept_name, ID, avg (salary)

from instructor

group by dept_name;

 Reason is simple: ID has different values in each group of

dept_name, so which ID shall we return along with the average

salary?

10

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose

average salary is greater than 42000

 Note: predicates in the having clause are applied after the

 formation of groups whereas predicates in the where

 clause are applied before forming groups

select dept_name, avg (salary)

from instructor

group by dept_name

having avg (salary) > 42000;

11

Null Values and Aggregates

 Total all salaries

 select sum (salary)

 from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null values

on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

12

Schemas

 instructor(ID, name, dept_name, salary)

 student(ID, name, dept_name, tot_cred)

 takes(ID, course_id, sec_id, semester, year, grade)

 teaches(ID, course_id, sec_id, semester, year)

 course(course_id, title, dept_name, credits)

 section(course_id, sec_id, semester, year)

13

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested within

another query.

 A common use of subqueries is to perform tests for set membership, set

comparisons, and set cardinality.

14

Example Query

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

 course_id in (select course_id

 from section

 where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

 course_id not in (select course_id

 from section

 where semester = ’Spring’ and year= 2010);

15

Example Query

 Find the total number of (distinct) students who have taken course

sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner. The

 formulation above is simply to illustrate SQL features.

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in

 (select course_id, sec_id, semester, year

 from teaches

 where teaches.ID= 10101);

16

Set Comparison

 Find names of instructors with salary greater than that of some (at

least one) instructor in the Biology department.

 Same query using > some clause

select name

from instructor

where salary > some (select salary

 from instructor

 where dept name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

17

Definition of Some Clause

 F <comp> some r t r such that (F <comp> t)

Where <comp> can be:     

0
5

6

(5 < some) = true

0
5

0

) = false

5

0
5 (5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 < some

) = true (5 = some

(= some)  in

However, ( some) ≠ not in

18

Example Query

 Find the names of all instructors whose salary is greater than the

salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

 from instructor

 where dept name = ’Biology’);

19

Definition of all Clause

 F <comp> all r t r (F <comp> t)

0
5

6

(5 < all) = false

6
10

4

) = true

5

4
6 (5  all) = true (since 5  4 and 5  6)

(5 < all

) = false (5 = all

( all)  not in

However, (= all) ≠ in

20

Test for Empty Relations

 The exists construct returns the value true if the argument subquery is

nonempty.

 exists r  r  Ø

 not exists r  r = Ø

21

Correlation Variables

 Yet another way of specifying the query “Find all courses taught in

both the Fall 2009 semester and in the Spring 2010 semester”

 select course_id

 from section as S

 where semester = ’Fall’ and year = 2009 and

 exists (select *

 from section as T

 where semester = ’Spring’ and year= 2010

 and S.course_id = T.course_id);

 Correlated subquery

 Correlation name or correlation variable

 Scope of variables restricted to the inner-most query structure that

defines them

22

Not Exists

 Find all students who have taken all courses offered in the Biology

department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

 from course

 where dept_name = ’Biology’)

 except

 (select T.course_id

 from takes as T

 where S.ID = T.ID));

• First nested query lists all courses offered in Biology

• Second nested query lists all courses a particular student took

 Note that X – Y = Ø  X Y (set containment)

 Note: Cannot write this query using = all or its variants

23

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any duplicate tuples

in its result.

 The unique construct evaluates to “true” on an empty set.

 Find all courses that were offered at most once in 2009

 select T.course_id

from course as T

where unique (select R.course_id

 from section as R

 where T.course_id= R.course_id

 and R.year = 2009);

24

Subqueries in the From Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.

 select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

 from instructor

 group by dept_name)

where avg_salary > 42000;

 The above eliminate the need to use the having clause

 Another way to write above query

 select dept_name, avg_salary

from (select dept_name, avg (salary)

 from instructor

 group by dept_name) as dept_avg (dept_name, avg_salary)

 where avg_salary > 42000;

 25

Subqueries in the From Clause (Cont.)

 Sub-queries in the from clause normally can’t access variables from

other attributes of the relations in the from clause

 And yet another way to write it: lateral clause

 Return instructor’s name, his or her salary and the average salary of

his or her department:

 select name, salary, avg_salary

from instructor I1,

 lateral (select avg(salary) as avg_salary

 from instructor I2

 where I2.dept_name= I1.dept_name);

 Note: lateral is part of the SQL standard, but is not supported on many

database systems; some databases such as SQL Server offer

alternative syntax

26

With Clause

 The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with

clause occurs.

 Find all departments with the maximum budget

 with max_budget (value) as

 (select max(budget)

 from department)

 select department.dept_name

 from department, max_budget

 where department.budget = max_budget.value;

 You can think of with clause as declaration of local variables and

assigning values to them

27

Complex Queries using With Clause

 Find all departments where the total salary is greater than the

average of the total salary at all departments

 Write it without the with clause?

with dept _total (dept_name, value) as

 (select dept_name, sum(salary)

 from instructor

 group by dept_name),

dept_total_avg(value) as

 (select avg(value)

 from dept_total)

select dept_name

from dept_total, dept_total_avg

where dept_total.value >= dept_total_avg.value;

28

Scalar Subquery

 Scalar subquery is one which is used where a single value (tuple)

is expected

 select dept_name,

 (select count(*)

 from instructor

 where department.dept_name = instructor.dept_name)

 as num_instructors

from department;

 What does this query do?

 Variables in the select clause must be scale value

 Runtime error if subquery returns more than one result tuple

29

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

30

Deletion

 Delete all instructors

 delete from instructor

 Delete all instructors from the Finance department

 delete from instructor

 where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors

associated with a department located in the Watson building.

 delete from instructor

 where dept_name in (select dept_name

 from department

 where building = ’Watson’);

31

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of

instructors

delete from instructor

where salary < (select avg (salary) from instructor);

 Problem?

 as we delete tuples from instructor table, the average salary changes

 Solution used in SQL:

 1. First, compute avg salary and find all tuples to delete

 2. Next, delete all tuples found above (without

 recomputing avg or retesting the tuples)

32

Insertion

 Add a new tuple to course

 insert into course

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

 insert into course (course_id, title, dept_name, credits)

 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

 insert into student

 values (’3003’, ’Green’, ’Finance’, null);

33

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0

 insert into student

 select ID, name, dept_name, 0

 from instructor

 The select from where statement is evaluated fully before any of its

results are inserted into the relation.

 Otherwise queries like

 insert into table1 select * from table1

 would cause problem

34

Updates

 Increase salaries of instructors whose salary is over $100,000 by 3%,

and all others receive a 5% raise

 Write two update statements:

 update instructor

 set salary = salary * 1.05

 where salary <= 100000;

 update instructor

 set salary = salary * 1.03

 where salary > 100000;

 What’s the problem here?

 The order is important

 Can be done better using the case statement (next slide)

35

Case Statement for Conditional Updates

 Same query as before but with case statement

 update instructor

 set salary = case

 when salary <= 100000 then salary * 1.05

 else salary * 1.03

 end

36

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

 update student S

 set tot_cred = (select sum(credits)

 from takes natural join course

 where S.ID= takes.ID and

 takes.grade <> ’F’ and

 takes.grade is not null);

 The above sets tot_creds to null for students who have not

taken any course

 Instead of sum(credits), use:

 case

 when sum(credits) is not null then sum(credits)

 else 0

 end

37

Joined Relations

 Join operations take two relations and return as a result

another relation.

 A join operation is a Cartesian product which requires that

tuples in the two relations match (under some condition).

It also specifies the attributes that are present in the result

of the join

 The join operations are typically used as subquery

expressions in the from clause

38

Join operations – Example

 Relation course

 Relation prereq

 Observe that

 prereq information is missing for CS-315 and

 course information is missing for CS-347
39

Joined Relations

 Join operations take two relations and return as a result

another relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations

match, and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not

match any tuple in the other relation (based on the join

condition) are treated.

40

Outer Join

 An extension of the join operation that avoids loss of

information.

 Computes the join and then adds tuples from one relation

that does not match tuples in the other relation to the result

of the join.

 Uses null values.

41

Left Outer Join

 course natural left outer join prereq

42

Right Outer Join

 course natural right outer join prereq

43

Full Outer Join

 course natural full outer join prereq

44

Joined Relations in SQL – Examples

 course inner join prereq on

course.course_id = prereq.course_id

 What is the difference between the above and a natural

join?

 Cartesian product with a selection condition

45

Joined Relations in SQL – Examples

 course left outer join prereq on

course.course_id = prereq.course_id

46

Joined Relations – Examples

 course natural right outer join prereq

 course full outer join prereq using (course_id)

47

Views

 In some cases, it is not desirable for all users to see the entire

logical model (that is, all the actual relations stored in the

database.)

 Consider a person who needs to know an instructor’s name

and department, but not the salary. This person should see a

relation described, in SQL, by

 select ID, name, dept_name

 from instructor

 A view provides a mechanism to hide certain data from the

view of certain users.

 Any relation that is not of the conceptual model but is made

visible to a user as a “virtual relation” is called a view.

48

View Definition

 A view is defined using the create view statement which has

the form

 create view v as < query expression >

 where <query expression> is any legal SQL expression. The

view name is represented by v.

 Once a view is defined, the view name can be used to refer to

the virtual relation that the view generates.

 View definition is not the same as creating a new relation by

evaluating the query expression

 Rather, a view definition causes the saving of an expression;

the expression is substituted into queries using the view.

 In programming language terms, this is “call by name” or

lazy evaluation!

49

Example Views

 A view of instructors without their salary

 create view faculty as

 select ID, name, dept_name

 from instructor

 A view of all instructors in the Biology department

 create view bio_instructors as

 select name

 from faculty

 where dept_name = ‘Biology’

 Create a view of department salary totals

 create view departments_total_salary(dept_name, total_salary) as

 select dept_name, sum (salary)

 from instructor

 group by dept_name;

50

Views Defined Using Other Views

 create view physics_fall_2009 as

 select course.course_id, sec_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = ’Physics’

 and section.semester = ’Fall’

 and section.year = ’2009’;

 create view physics_fall_2009_watson as

 select course_id, room_number

 from physics_fall_2009

 where building= ’Watson’;

51

View Expansion

 Expand use of a view (physics_fall_2009) in a query/another view

create view physics_fall_2009_watson as

(select course_id, room_number

from (select course.course_id, building, room_number

 from course, section

 where course.course_id = section.course_id

 and course.dept_name = ’Physics’

 and section.semester = ’Fall’

 and section.year = ’2009’)

where building= ’Watson’;)

52

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation

v2 if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either

v1 depends directly to v2 or there is a path of dependencies

from v1 to v2

 A view relation v is said to be recursive if it depends on itself.

53

View Expansion

 A way to define the meaning of views defined in terms of other

views.

 Let view v1 be defined by an expression e1 that may itself

contain uses of view relations.

 View expansion of an expression repeats the following

replacement step:

 repeat

 Find any view relation vi in e1

 Replace the view relation vi by the expression defining vi

 until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will

terminate

54

Update of a View

 Add a new tuple to faculty view which we defined earlier

 insert into faculty values (’30765’, ’Green’, ’Music’);

 This insertion must be represented by the insertion of the tuple

 (’30765’, ’Green’, ’Music’, null)

 into the instructor relation

55

Some Updates cannot be Translated Uniquely

 create view instructor_info as

 select ID, name, building

 from instructor, department

 where instructor.dept_name= department.dept_name;

 insert into instructor_info values (’69987’, ’White’, ’Taylor’);

which department, if multiple departments in Taylor?

what if no department is in Taylor?

 Most SQL implementations allow updates only on simple views

 The from clause has only one database relation.

 The select clause contains only attribute names of the

relation, and does not have any expressions, aggregates, or

distinct specification.

 Any attribute not listed in the select clause can be set to null

 The query does not have a group by or having clause.

56

More Problems

 create view history_instructors as

 select *

 from instructor

 where dept_name= ’History’;

 What happens if we insert (’25566’, ’Brown’, ’Biology’, 100000)

into history_instructors?

57

Materialized Views

 When defining a view, simply create a physical table

representing the view at the time of creation.

 Update is simple to handle.

 How are updates handled to the “base” relations on which

the view was defined?

58

