Introduction to SQL (Il

Roadmap to This Lecture

Set operations

Aggregates

Nested Subqueries
Modification of the Database
Join EXxpressions

Views

Set Operations

® Find courses that ran in Fall 2009 or in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union
(select course_id from section where sem = ‘Spring’ and year = 2010)

®m Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

® Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
except
(select course_id from section where sem = ‘Spring’” and year = 2010)

Set Operations

Set operations union, intersect, and except
Each of the above operations automatically eliminates duplicates

To retain all duplicates use the corresponding multiset versions union
all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
m + ntimesinrunion all s

min(m,n) times in r intersect all s
max(0, m — n) times inr except all s

Null Values

It is possible for tuples to have a null value, denoted by null, for some
of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null
Example: 5 + null returns null

The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

Null Values and Three Valued Logic

® Any comparison with null returns unknown
Example: 5<null or null<>null or null=null
® Three-valued logic using the truth value unknown:

OR: (unknown or true) =true,
(unknown or false) = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

NOT: (not unknown) = unknown

“P is unknown” evaluates to true if predicate P evaluates to
unknown

B Result of where clause predicate is treated as false if it evaluates to
unknown

Aggregate Functions

® These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate Functions (Cont.)

Find the average salary of instructors in the Computer Science
department

select avg (salary)
from instructor
where dept_name="Comp. Sci.’;

Find the total number of instructors who teach a course in the Spring
2010 semester

select count (distinct ID)
from teaches
where semester =’ Spring’ and year = 2010;

Find the number of tuples in the course relation

select count (*)
from course;

Aggregate Functions — Group By

® Find the average salary of instructors in each department

select dept_name, avg (salary) as avg_salary
from instructor

group by dept_name;

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

dep I name avg_SaIgry
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

9

Aggregation (Cont.)

m Attributes in select clause outside of aggregate functions must appear
iIn group by list

[* erroneous query */

select dept_name, 1D, avg (salary)
from instructor

group by dept_name;

Reason is simple: ID has different values in each group of
dept_name, so which ID shall we return along with the average
salary?

10

Aggregate Functions — Having Clause

® Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept_name, avg (salary)
from instructor

group by dept_name

having avg (salary) > 42000;

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

11

Null Values and Aggregates

Total all salaries

select sum (salary)
from instructor

Above statement ignores null amounts
Result is null if there is no non-null amount

All aggregate operations except count(*) ignore tuples with null values
on the aggregated attributes

What if collection has only null values?
count returns O
all other aggregates return null

12

Schemas

instructor(ID, name, dept_name, salary)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)

teaches(ID, course_id, sec_id, semester, year)
course(course_lid, title, dept_name, credits)

section(course id, sec id, semester, year)

13

Nested Subqueries

m SQL provides a mechanism for the nesting of subqueries.

B A subquery is a select-from-where expression that is nested within
another query.

® A common use of subqueries is to perform tests for set membership, set
comparisons, and set cardinality.

14

Example Query

®m Find courses offered in Fall 2009 and in Spring 2010

select distinct course _id
from section
where semester = 'Fall’ and year= 2009 and
course_id in (select course_id
from section
where semester = 'Spring’ and year= 2010);

® Find courses offered in Fall 2009 but not in Spring 2010

select distinct course _id
from section
where semester = 'Fall’ and year= 2009 and
course_id not in (select course_id
from section
where semester = 'Spring’ and year= 2010);

15

Example Query

® Find the total number of (distinct) students who have taken course
sections taught by the instructor with 1D 10101

select count (distinct ID)

from takes

where (course_id, sec_id, semester, year) in
(select course _id, sec_id, semester, year
from teaches
where teaches.|ID=10101);

®m Note: Above gquery can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

16

Set Comparison

® Find names of instructors with salary greater than that of some (at
least one) instructor in the Biology department.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

® Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology’);

17

Definition of Some Clause

m F <comp>somer<«< 3t er suchthat (F <comp>t)
Where <comp> can be: <, <, >, =, #

0
(5 <some 5 |)=true
5 (read: 5 < some tuple in the relation)
0
(b<some | § |)="false
0
(5 =some 5) = true
0
(5 # some 5) = true (since 0 # 5)

(=some) =in
However, (= some) # not in

18

Example Query

® Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology’);

19

Definition of all Clause

B F<comp>allreVter (F<comp>t)

0

(5<all 5
6

6

G<all (10
4

(5 =all 5
4

G#all | 6

(= all)=not in
However, (= all) #in

) = false

) = true

) = false

) = true (since 5 # 4 and 5 7% 6)

20

Test for Empty Relations

The exists construct returns the value true if the argument subquery is
nonempty.

exists re r-0
notexistsr< r=9¢@

21

Correlation Variables

Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course id
from section as S
where semester = 'Fall’ and year = 2009 and
exists (select *
from sectionas T
where semester = 'Spring’ and year= 2010
and S.course_id = T.course_id);

Correlated subquery
Correlation name or correlation variable

Scope of variables restricted to the inner-most query structure that
defines them

22

Not Exists

® Find all students who have taken all courses offered in the Biology
department.

select distinct S.ID, S.name
from studentas S
where not exists ((select course _id
from course
where dept_name = 'Biology’)
except
(select T.course_id
fromtakesas T
where S.ID = T.ID));

» First nested query lists all courses offered in Biology
« Second nested query lists all courses a particular student took

m Notethat X-Y=0 < XcY (setcontainment)
® Note: Cannot write this query using = all or its variants

23

Test for Absence of Duplicate Tuples

The unique construct tests whether a subquery has any duplicate tuples
In its result.

The unique construct evaluates to “true” on an empty set.

Find all courses that were offered at most once in 2009

select T.course_id
fromcourseas T
where unique (select R.course_id
from section as R
where T.course_id= R.course _id
and R.year = 2009);

24

Subqueries in the From Clause

SQL allows a subquery expression to be used in the from clause

Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)

where avg_salary > 42000;

The above eliminate the need to use the having clause
Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)
from instructor
group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

25

Subqueries in the From Clause (Cont.)

Sub-queries in the from clause normally can’t access variables from
other attributes of the relations in the from clause

And yet another way to write it: lateral clause

Return instructor’'s name, his or her salary and the average salary of
his or her department:

select name, salary, avg_salary
from instructor I1,
lateral (select avg(salary) as avg_salary
from instructor 12
where 12.dept_name= |1.dept_name);

Note: lateral is part of the SQL standard, but is not supported on many
database systems; some databases such as SQL Server offer
alternative syntax

26

With Clause

® The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with
clause occurs.

® Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select department.dept_name
from department, max_budget
where department.budget = max_budget.value;

B You can think of with clause as declaration of local variables and
assigning values to them

27

Complex Queries using With Clause

® Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total avg
where dept_total.value >= dept_total avg.value;

®m \Write it without the with clause?

28

Scalar Subquery

Scalar subquery is one which is used where a single value (tuple)
IS expected

select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

® What does this query do?

®m Variables in the select clause must be scale value

Runtime error if subquery returns more than one result tuple

29

Modification of the Database

m Deletion of tuples from a given relation.
®m Insertion of new tuples into a given relation
m Updating of values in some tuples in a given relation

30

Deletion

Delete all instructors
delete from instructor

Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance’;

Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name
from department
where building = "Watson’);

31

Deletion (Cont.)

m Delete all instructors whose salary is less than the average salary of
Instructors

delete from instructor
where salary < (select avg (salary) from instructor);

Problem?
as we delete tuples from instructor table, the average salary changes

Solution used in SQL:
1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without

recomputing avg or retesting the tuples)

32

Insertion

® Add a new tuple to course

insert into course
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

® or equivalently

Insert into course (course_id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

® Add a new tuple to student with tot_creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

33

Insertion (Cont.)

® Add all instructors to the student relation with tot_creds setto O

insert into student
select ID, name, dept_name, O
from instructor

® The select from where statement is evaluated fully before any of its
results are inserted into the relation.
Otherwise queries like

insert into tablel select * from tablel

would cause problem

34

Updates

Increase salaries of instructors whose salary is over $100,000 by 3%,
and all others receive a 5% raise

Write two update statements:

update instructor
set salary = salary * 1.05
where salary <= 100000;

update instructor
set salary = salary * 1.03
where salary > 100000;

What's the problem here?
The order is important
Can be done better using the case statement (next slide)

35

Case Statement for Conditional Updates

® Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

36

Updates with Scalar Subqueries

B Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)
from takes natural join course
where S.ID= takes.ID and
takes.grade <> 'F’ and
takes.grade is not null);

B The above sets tot_creds to null for students who have not
taken any course

B Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)

else 0
end

37

Joined Relations

Join operations take two relations and return as a result
another relation.

A join operation is a Cartesian product which requires that
tuples in the two relations match (under some condition).
It also specifies the attributes that are present in the result
of the join

The join operations are typically used as subquery
expressions in the from clause

38

Join operations — Example

B Relation course

course_id title

BIO-301 | Genetics Biology +
CS-190 [Game Design| Comp. Sci. 4

dept_name | credits

B Observe that

prereq information is missing for CS-315 and
course information is missing for CS-347

(CS-315 |Robotics Comp. Sci. 3
® Relation prereq
course_id | prereq_id
BIO-301 | BIO-101
CS5-190 CS5-101
CS-347 CS5-101

39

Joined Relations

Join operations take two relations and return as a result
another relation.

These additional operations are typically used as subquery
expressions in the from clause

Join condition — defines which tuples in the two relations

match, and what attributes are present in the result of the join.

Join type — defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated.

Join types Join Conditions

inner join natural

left outer join on < predicate>
right outer join using (A1, Ay, ..., A,)
full outer join

40

Quter Join

® An extension of the join operation that avoids loss of
information.

m Computes the join and then adds tuples from one relation
that does not match tuples in the other relation to the result
of the join.

®m Uses null values.

41

B course natural left outer join prereq

Left OQuter Join

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 C5-101
(CS5-315 |Robotics Comp. 5¢i. 3 null

42

B course natural right outer join prereq

Right Outer Join

course_id title dept_name | credits | prereg_id
BIO-301 | Genetics Biology 4 BIO-101
CS-190 | Game Design| Comp. Sci. 4 C5-101
(CS-315 |Robotics Comp. Sci. 3 null

43

Full Quter Join

®m course natural full outer join prereq

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 | Robotics Comp. Sci. 3 null
CS-347 | null null null | CS-101

44

Joined Relations in SQL — Examples

B course inner join prereqg on
course.course_id = prereqg.course_id

course_id title dept_name | credits | prereq_id course_id
BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
CS-190 |Game Design|Comp. Sci.| 4 | CS-101 | €S-190

B What is the difference between the above and a natural

join?

Cartesian product with a selection condition

45

Joined Relations in SQL — Examples

B course left outer join prereqg on
course.course_id = prereqg.course_id

course_id title dept_name | credits | prere_id | course_id

BIO-301 | Genetics Biology 4 BIO-101 | BIO-301
CS-190 | Game Design| Comp. Sci. 4 C5-101 | CS-190
CS-315 | Robotics Comp. Sci. 3 null null

Joined Relations — Examples

B course natural right outer join prereq

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
CS5-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 [Robotics Comp. Sci. & null

m course full outer join prereq using (course_id)

course_id title dept_name | credits | prereq_id
BIO-301 | Genetics Biology 4 BIO-101
C5-190 | Game Design| Comp. Sci. 4 C5-101
CS-315 | Robotics Comp. Sci. 9 null
CS-347 | null null null | CS-101

47

Views

In some cases, it Is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

Consider a person who needs to know an instructor's name
and department, but not the salary. This person should see a
relation described, in SQL, by

select ID, name, dept_name
from instructor

A view provides a mechanism to hide certain data from the
view of certain users.

Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

View Definition

® A view is defined using the create view statement which has
the form

create view v as < query expression >
where <guery expression> is any legal SQL expression. The
view name is represented by v.

B Once aview Is defined, the view name can be used to refer to
the virtual relation that the view generates.

® View definition is not the same as creating a new relation by
evaluating the query expression

Rather, a view definition causes the saving of an expression;
the expression is substituted into queries using the view.

In programming language terms, this is “call by name” or
lazy evaluation!

Example Views

® A view of instructors without their salary

create view faculty as
select ID, name, dept_name
from instructor

® A view of all instructors in the Biology department
create view bio_instructors as
select name
from faculty
where dept_name = ‘Biology’

® Create a view of department salary totals
create view departments_total salary(dept_name, total salary) as
select dept_name, sum (salary)
from instructor
group by dept _name;

50

Views Defined Using Other Views

B create view physics_fall 2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course _id
and course.dept_name = 'Physics’
and section.semester = "Fall’
and section.year = '2009’;

B create view physics_fall 2009 watson as
select course_id, room_number
from physics_fall 2009
where building= "Watson’;

51

View Expansion

m Expand use of a view (physics_fall_2009) in a query/another view

create view physics_fall 2009 watson as
(select course_id, room_number
from (select course.course _id, building, room_number
from course, section
where course.course_id = section.course _id
and course.dept_name = 'Physics’
and section.semester = "Fall’
and section.year = '2009’)
where building= "Watson’;)

52

Views Defined Using Other Views

One view may be used in the expression defining another view

®m A view relation v, is said to depend directly on a view relation

Vv, if v, Is used in the expression defining v,

A view relation v, is said to depend on view relation v, if either
v, depends directly to v, or there is a path of dependencies
from v, to v,

A view relation v is said to be recursive if it depends on itself.

53

View Expansion

A way to define the meaning of views defined in terms of other
views.

Let view v, be defined by an expression e, that may itself
contain uses of view relations.

View expansion of an expression repeats the following
replacement step:

repeat

Find any view relation v; in e,

Replace the view relation v, by the expression defining v,
until no more view relations are present in e;

As long as the view definitions are not recursive, this loop will
terminate

54

Update of a View

® Add a new tuple to faculty view which we defined earlier
insert into faculty values ('30765’, 'Green’, 'Music’);
This insertion must be represented by the insertion of the tuple
('30765°, 'Green’, 'Music’, null)
Into the instructor relation

55

Some Updates cannot be Translated Uniquely

m create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name= department.dept_name,;

® insert into instructor_info values ('69987°, 'White’, "Taylor’);
which department, if multiple departments in Taylor?
what if no department is in Taylor?
® Most SQL implementations allow updates only on simple views
The from clause has only one database relation.

The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates, or
distinct specification.

Any attribute not listed in the select clause can be set to null
The query does not have a group by or having clause.

56

More Problems

B create view history _instructors as
select *
from instructor
where dept_name= 'History’;

® What happens if we insert ('25566’, 'Brown’, 'Biology’, 100000)
Into history_instructors?

57

Materialized Views

When defining a view, simply create a physical table
representing the view at the time of creation.

Update is simple to handle.

How are updates handled to the “base” relations on which
the view was defined?

58

