
Extended Relational-Algebra-Operations

■ Generalized Projection
■ Aggregate Functions
■ Outer Join

1

Generalized Projection

■ Extends the projection operation by allowing arithmetic functions to be
used in the projection list.

■ E is any relational-algebra expression
■ Each of F1, F2, …, Fn are are arithmetic expressions involving constants

and attributes in the schema of E.
■ Given relation credit_info(customer_name, limit, credit_balance), find

how much more each person can spend:
Õcustomer_name, limit – credit_balance (credit_info)

)(,...,,
21

E
nFFF∏

2

Aggregate Functions and Operations

■ Aggregation function takes a collection of values and returns a single
value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

■ Aggregate operation in relational algebra

E is any relational-algebra expression
● G1, G2 …, Gn is a list of attributes on which to group (can be empty)
● Each Fi is an aggregate function
● Each Ai is an attribute name
● A1, …, An are disjoint from G1, …, Gn

)()(,),(),(,,, 221121
E

nnn AFAFAFGGG !! J

3

Aggregate Operation – Example

■ Relation r:

A B

a
a
b
b

a
b
b
b

C

7
7
3
10

■ g sum(c) (r) sum(c)

27

4

Aggregate Operation – Example

■ Relation account grouped by branch-name:

branch_name g sum(balance) (account)

branch_name account_number balance
Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch_name sum(balance)
Perryridge
Brighton
Redwood

1300
1500
700

5

Aggregate Functions (Cont.)

■ Result of aggregation does not have a name
● Can use rename operation to give it a name
● For convenience, we permit renaming as part of aggregate

operation

branch_name g sum(balance) as sum_balance (account)

6

Outer Join

■ An extension of the join operation that avoids loss of information.
■ Computes the join and then adds tuples from one relation that does not

match tuples in the other relation to the result of the join.
■ Uses null values:

● null signifies that the value is unknown or does not exist
● All comparisons involving null are (roughly speaking) false by

definition.
4 We shall study precise meaning of comparisons with nulls later

7

Banking Example

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

8

Outer Join – Example

■ Relation loan

■ Relation borrower

customer_name loan_number
Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan_number amount
L-170
L-230
L-260

branch_name
Downtown
Redwood
Perryridge

9

Outer Join – Example

■ Join

loan borrower

loan_number amount
L-170
L-230

3000
4000

customer_name
Jones
Smith

branch_name
Downtown
Redwood

Jones
Smith
null

loan_number amount
L-170
L-230
L-260

3000
4000
1700

customer_namebranch_name
Downtown
Redwood
Perryridge

■ Left Outer Join
loan borrower

10

Outer Join – Example

loan_number amount
L-170
L-230
L-155

3000
4000
null

customer_name
Jones
Smith
Hayes

branch_name
Downtown
Redwood
null

loan_number amount
L-170
L-230
L-260
L-155

3000
4000
1700
null

customer_name
Jones
Smith
null
Hayes

branch_name
Downtown
Redwood
Perryridge
null

■ Full Outer Join
loan borrower

■ Right Outer Join
loan borrower

11

Null Values

■ It is possible for tuples to have a null value, denoted by null, for some
of their attributes

■ null signifies an unknown value or that a value does not exist.

■ The result of any arithmetic expression involving null is null.

■ Aggregate functions simply ignore null values (as in SQL)

■ For duplicate elimination and grouping, null is treated like any other
value, and two nulls are assumed to be the same (as in SQL)

12

Null Values

■ Comparisons with null values return the special truth value: unknown
● If false was used instead of unknown, then not (A < 5)

would not be equivalent to A >= 5
■ Three-valued logic using the truth value unknown:

● OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

● AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

● NOT: (not unknown) = unknown
● In SQL �P is unknown� evaluates to true if predicate P evaluates

to unknown
■ Result of select predicate is treated as false if it evaluates to unknown

13

Modification of the Database

■ The content of the database may be modified using the following
operations:
● Deletion
● Insertion
● Update

■ All these operations are expressed using the assignment
operator.

14

Deletion

■ A delete request is expressed similarly to a query, except
instead of displaying tuples to the user, the selected tuples are
removed from the database.

■ Can delete only whole tuples; cannot delete values on only
particular attributes

■ A deletion is expressed in relational algebra by:
r¬ r – E

where r is a relation and E is a relational algebra query.

15

Banking Example

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

16

Deletion Examples

■ Delete all account records in the Perryridge branch.

■ Delete all accounts at branches located in Needham.

r1 ¬ s branch_city = �Needham� (account branch)
r2 ¬ Õ account_number, branch_name, balance (r1)
r3 ¬ Õ customer_name, account_number (r2 depositor)
account ¬ account – r2

depositor ¬ depositor – r3

■ Delete all loan records with amount in the range of 0 to 50

loan ¬ loan – s amount ³ 0 and amount £ 50 (loan)

account ¬ account – s branch_name = �Perryridge� (account)

17

Insertion

■ To insert data into a relation, we either:
● specify a tuple to be inserted
● write a query whose result is a set of tuples to be inserted

■ in relational algebra, an insertion is expressed by:
r ¬ r È E

where r is a relation and E is a relational algebra expression.
■ The insertion of a single tuple is expressed by letting E be a constant

relation containing one tuple.

18

Insertion Examples

■ Insert information in the database specifying that Smith has $1200 in
account A-973 at the Perryridge branch.

■ Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

account ¬ account È {(�A-973�, �Perryridge�, 1200)}
depositor ¬ depositor È {(�Smith�, �A-973�)}

r1 ¬ (sbranch_name = �Perryridge� (borrower loan))
account ¬ account È Õloan_number, branch_name, 200 (r1)
depositor ¬ depositor È Õcustomer_name, loan_number (r1)

19

Updating

■ A mechanism to change a value in a tuple without changing all values in
the tuple

■ Use the generalized projection operator to do this task

■ Each Fi is either
● The i th attribute of r, if the i th attribute is not updated, or,
● if the attribute is to be updated Fi is an expression, involving only

constants and the attributes of r, which gives the new value for the
attribute

)(,,,, 21
rr

lFFF !Õ¬

20

Update Examples

■ Make interest payments by increasing all balances by 5 percent.

■ Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account ¬ Õ account_number, branch_name, balance * 1.06 (s BAL > 10000 (account))
È Õ account_number, branch_name, balance * 1.05 (sBAL £ 10000

(account))

account ¬ Õ account_number, branch_name, balance * 1.05 (account)

21

Introduction to SQL (I)

22

Roadmap of This Lecture

■ Overview of The SQL Query Language
■ Data Definition
■ Basic Query Structure
■ Additional Basic Operations
■ Set Operations
■ Null Values
■ Aggregate Functions

23

History

■ IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

■ Renamed Structured Query Language (SQL)
■ ANSI and ISO standard SQL:

● SQL-86
● SQL-89
● SQL-92
● SQL:1999 (language name became Y2K compliant!)
● SQL:2003

■ Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.
● Not all examples here may work on your particular system.

24

Data Definition Language

■ The schema for each relation.
■ The domain of values associated with each attribute.
■ Integrity constraints
■ And as we will see later, also other information such as

● The set of indices to be maintained for each relations.
● Security and authorization information for each relation.
● The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

25

Domain Types in SQL

■ char(n). Fixed length character string, with user-specified length n.
■ varchar(n). Variable length character strings, with user-specified maximum

length n.
■ int. Integer (a finite subset of the integers that is machine-dependent).
■ smallint. Small integer (a machine-dependent subset of the integer

domain type).
■ numeric(p,d). Fixed point number, with user-specified precision of p digits,

with d digits to the right of decimal point.
■ real, double precision. Floating point and double-precision floating point

numbers, with machine-dependent precision.
■ float(n). Floating point number, with user-specified precision of at least n

digits.
■ More are covered in �Data types and schemas� later.

26

Create Table Construct

■ An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

● r is the name of the relation
● each Ai is an attribute name in the schema of relation r
● Di is the data type of values in the domain of attribute Ai

■ Example:
create table instructor (

ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

27

Integrity Constraints in Create Table

■ not null
■ primary key (A1, ..., An)
■ foreign key (Am, ..., An) references r

Example: Declare branch_name as the primary key for branch

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null

28

And a Few More Relation Definitions
■ create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

■ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

● Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

29

And more still

■ create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),
foreign key (dept_name) references department);

30

Updates to tables

■ Insert
● insert into instructor values (�10211�, �Smith�, �Biology�,

66000);
■ Delete

● delete from student
■ Drop Table

● drop table r
■ Alter

● alter table r add A D
4 where A is the name of the attribute to be added to relation

r and D is the domain of A.
4 All tuples in the relation are assigned null as the value for

the new attribute.
● alter table r drop A

4 where A is the name of an attribute of relation r
4 Dropping of attributes not supported by many databases.

31

Basic Query Structure

■ A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

● Ai represents an attribute
● ri represents a relation
● P is a predicate.

■ The result of an SQL query is a relation.

32

The select Clause

■ The select clause list the attributes desired in the result of a query
● corresponds to the projection operation of the relational algebra

■ Example: find the names of all instructors:
select name
from instructor

■ NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)
● E.g., Name ≡ NAME ≡ name
● Some people use upper case wherever we use bold font.

33

The select Clause (Cont.)

■ SQL allows duplicates in relations as well as in query results.
■ To force the elimination of duplicates, insert the keyword distinct after

select.
■ Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

■ The keyword all specifies that duplicates not be removed.

select all dept_name
from instructor

34

The select Clause (Cont.)

■ An asterisk in the select clause denotes �all attributes�
select *
from instructor

■ The select clause can contain arithmetic expressions involving the
operation, +, –, *, and /, and operating on constants or attributes of
tuples. (This corresponds to generalized projection.)

■ The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, except
that the value of the attribute salary is divided by 12.

35

The where Clause

■ The where clause specifies conditions that the result must satisfy
● Corresponds to the selection predicate of the relational algebra.

■ To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept_name = �Comp. Sci.' and salary > 80000

■ Comparison results can be combined using the logical connectives and,
or, and not.

■ Comparisons can be applied to results of arithmetic expressions.

36

The from Clause

■ The from clause lists the relations involved in the query
● Corresponds to the Cartesian product operation of the relational

algebra.
■ Find the Cartesian product instructor X teaches

select *
from instructor, teaches

● generates every possible instructor – teaches pair, with all attributes
from both relations.

■ Cartesian product not very useful directly, but useful combined with
where-clause condition (selection operation in relational algebra).

37

Cartesian Product
instructor teaches

38

Joins

■ For all instructors who have taught courses, find their names and the
course ID of the courses they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

■ Find the course ID, semester, year and title of each course offered by the
Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where section.course_id = course.course_id and

dept_name = �Comp. Sci.'

39

Natural Join

■ Natural join matches tuples with the same values for all common
attributes, and retains only one copy of each common column

■ select *
from instructor natural join teaches;

40

Natural Join Example

■ List the names of instructors along with the course ID of the courses that
they taught.

● select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

● select name, course_id
from instructor natural join teaches;

41

The Rename Operation

■ The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

■ E.g.,
● select ID, name, salary/12 as monthly_salary

from instructor

■ Find the names of all instructors who have a higher salary than
some instructor in �Comp. Sci�.
● select distinct T. name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = �Comp. Sci.�

■ Keyword as is optional and may be omitted
instructor as T ≡ instructor T

42

String Operations

■ SQL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characters:
● percent (%). The % character matches any substring.
● underscore (_). The _ character matches any character.

■ Find the names of all instructors whose name includes the substring
�dar�.

select name
from instructor
where name like '%dar%'

■ Match the string �100%�
like �100 \%' escape '\'

in that above we use backslash (\) as the escape character.

43

String Operations (Cont.)

■ Patterns are case sensitive.
■ Pattern matching examples:

● �Intro%� matches any string beginning with �Intro�.
● �%Comp� matches any string containing �Comp� as a suffix.
● �_ _ _� matches any string of exactly three characters.
● �_ _ _ %� matches any string of at least three characters.

■ SQL supports a variety of string operations such as
● concatenation (using �||�)
● converting from upper to lower case (and vice versa)

4 upper() and lower()
● finding string length, extracting substrings, etc.

44

Ordering the Display of Tuples

■ List in alphabetic order the names of all instructors

select distinct name
from instructor
order by name

■ We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.
● Example: order by name desc

■ Can sort on multiple attributes
● Example: order by dept_name, name

45

Where Clause Predicates

■ SQL includes a between comparison operator
■ Example: Find the names of all instructors with salary between $90,000

and $100,000 (that is, ³ $90,000 and £ $100,000)
● select name

from instructor
where salary between 90000 and 100000

■ Tuple comparison
● select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, �Biology�);

46

Duplicates

■ In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

■ Multiset versions of some of the relational algebra operators – given
multiset relations r1 and r2:

1. sq (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies
selections sq,, then there are c1 copies of t1 in sq (r1).

2. PA (r): For each copy of tuple t1 in r1, there is a copy of tuple
PA (t1) in PA (r1) where PA (t1) denotes the projection of the single
tuple t1.

3. r1 x r2: If there are c1 copies of tuple t1 in r1 and c2 copies of tuple
t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

47

Duplicates (Cont.)

■ Example: Suppose multiset relations r1 (A, B) and r2 (C) are as
follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}
■ Then PB(r1) would be {(a), (a)}, while PB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
■ SQL duplicate semantics:

select A1,, A2, ..., An
from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

))((21,,, 21 mPAAA rrr
n

´´´Õ !! s

48

End

49

