
Extended Relational-Algebra-Operations

■ Generalized Projection
■ Aggregate Functions
■ Outer Join
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Generalized Projection

■ Extends the projection operation by allowing arithmetic functions to be 
used in the projection list.

■ E is any relational-algebra expression
■ Each of F1, F2, …, Fn are are arithmetic expressions involving constants 

and attributes in the schema of E.
■ Given relation credit_info(customer_name, limit, credit_balance), find 

how much more each person can spend: 
Õcustomer_name, limit – credit_balance (credit_info)
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Aggregate Functions and Operations

■ Aggregation function takes a collection of values and returns a single 
value as a result.

avg:  average value
min:  minimum value
max:  maximum value
sum:  sum of values
count:  number of values

■ Aggregate operation in relational algebra 

E is any relational-algebra expression
● G1, G2 …, Gn is a list of attributes on which to group (can be empty)
● Each Fi is an aggregate function
● Each Ai is an attribute name
● A1, …, An are disjoint from G1, …, Gn
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Aggregate Operation – Example

■ Relation r:

A B

a
a
b
b

a
b
b
b

C

7
7
3
10

■ g sum(c) (r) sum(c )

27
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Aggregate Operation – Example

■ Relation account grouped by branch-name:

branch_name g sum(balance) (account)

branch_name account_number balance
Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch_name sum(balance)
Perryridge
Brighton
Redwood

1300
1500
700
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Aggregate Functions (Cont.)

■ Result of aggregation does not have a name
● Can use rename operation to give it a name
● For convenience, we permit renaming as part of aggregate 

operation

branch_name g sum(balance) as sum_balance (account)

6



Outer Join

■ An extension of the join operation that avoids loss of information.
■ Computes the join and then adds tuples from one relation that does not 

match tuples in the other relation to the result of the join. 
■ Uses null values:

● null signifies that the value is unknown or does not exist 
● All comparisons involving null are (roughly speaking) false by 

definition.
4 We shall study precise meaning of comparisons with nulls later
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Banking Example

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)
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Outer Join – Example

■ Relation loan

■ Relation borrower

customer_name loan_number
Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan_number amount
L-170
L-230
L-260

branch_name
Downtown
Redwood
Perryridge
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Outer Join – Example

■ Join 

loan      borrower

loan_number amount
L-170
L-230

3000
4000

customer_name
Jones
Smith

branch_name
Downtown
Redwood

Jones
Smith
null

loan_number amount
L-170
L-230
L-260

3000
4000
1700

customer_namebranch_name
Downtown
Redwood
Perryridge

■ Left Outer Join
loan          borrower
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Outer Join – Example

loan_number amount
L-170
L-230
L-155

3000
4000
null

customer_name
Jones
Smith
Hayes

branch_name
Downtown
Redwood
null

loan_number amount
L-170
L-230
L-260
L-155

3000
4000
1700
null

customer_name
Jones
Smith
null
Hayes

branch_name
Downtown
Redwood
Perryridge
null

■ Full Outer Join
loan        borrower

■ Right Outer Join
loan        borrower
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Null Values

■ It is possible for tuples to have a null value, denoted by null, for some 
of their attributes

■ null signifies an unknown value or that a value does not exist.

■ The result of any arithmetic expression involving null is null.

■ Aggregate functions simply ignore null values (as in SQL)

■ For duplicate elimination and grouping, null is treated like any other 
value, and two nulls are assumed to be  the same (as in SQL)
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Null Values

■ Comparisons with null values return the special truth value: unknown
● If false was used instead of unknown, then    not (A < 5)

would not be equivalent to               A >= 5
■ Three-valued logic using the truth value unknown:

● OR: (unknown or true)         = true, 
(unknown or false)        = unknown
(unknown or unknown) = unknown

● AND: (true and unknown) = unknown,   
(false and unknown) = false,
(unknown and unknown) = unknown

● NOT:  (not unknown) = unknown
● In SQL �P is unknown� evaluates to true if predicate P evaluates 

to unknown
■ Result of select predicate is treated as false if it evaluates to unknown
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Modification of the Database

■ The content of the database may be modified using the following 
operations:
● Deletion
● Insertion
● Update

■ All these operations are expressed using the assignment 
operator.
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Deletion

■ A delete request is expressed similarly to a query, except 
instead of displaying tuples to the user, the selected tuples are 
removed from the database.

■ Can delete only whole tuples; cannot delete values on only 
particular attributes

■ A deletion is expressed in relational algebra by:
r¬ r – E

where r is a relation and E is a relational algebra query.
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Banking Example

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)
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Deletion Examples

■ Delete all account records in the Perryridge branch.

■ Delete all accounts at branches located in Needham.

r1 ¬ s branch_city = �Needham� (account      branch )
r2 ¬ Õ account_number, branch_name, balance (r1)
r3 ¬ Õ customer_name, account_number (r2 depositor)
account ¬ account – r2

depositor ¬ depositor – r3

■ Delete all loan records with amount in the range of 0 to 50

loan ¬ loan – s amount ³ 0 and amount £ 50 (loan)

account ¬ account – s branch_name = �Perryridge� (account )
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Insertion

■ To insert data into a relation, we either:
● specify a tuple to be inserted
● write a query whose result is a set of tuples to be inserted

■ in relational algebra, an insertion is expressed by:
r ¬ r È E

where r is a relation and E is a relational algebra expression.
■ The insertion of a single tuple is expressed by letting E be a constant 

relation containing one tuple. 
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Insertion Examples

■ Insert information in the database specifying that Smith has $1200 in 
account A-973 at the Perryridge branch.

■ Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account.  Let the loan number serve
as the account number for the new savings account.

account ¬ account È {(�A-973�, �Perryridge�, 1200)}
depositor ¬ depositor È {(�Smith�, �A-973�)}

r1 ¬ (sbranch_name = �Perryridge� (borrower    loan))
account ¬ account È Õloan_number, branch_name, 200 (r1)
depositor ¬ depositor È Õcustomer_name, loan_number (r1)
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Updating

■ A mechanism to change a value in a tuple without changing all values in 
the tuple

■ Use the generalized projection operator to do this task

■ Each Fi is either 
● The i th attribute of r, if the i th attribute is not updated, or,
● if the attribute is to be updated Fi is an expression, involving only 

constants and the attributes of r, which gives the new value for the 
attribute
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Update Examples

■ Make interest payments by increasing all balances by 5 percent.

■ Pay all accounts with balances over $10,000 6 percent interest 
and pay all others 5 percent 

account ¬ Õ account_number, branch_name, balance * 1.06 (s BAL > 10000 (account ))
È Õ account_number, branch_name, balance * 1.05 (sBAL £ 10000  

(account))

account ¬ Õ account_number, branch_name, balance * 1.05 (account)
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Introduction to SQL (I)
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Roadmap of This Lecture

■ Overview of The SQL Query Language
■ Data Definition
■ Basic Query Structure
■ Additional Basic Operations
■ Set Operations
■ Null Values
■ Aggregate Functions
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History

■ IBM Sequel language developed as part of System R project at the 
IBM San Jose Research Laboratory

■ Renamed Structured Query Language (SQL)
■ ANSI and ISO standard SQL:

● SQL-86
● SQL-89
● SQL-92 
● SQL:1999 (language name became Y2K compliant!)
● SQL:2003

■ Commercial systems offer most, if not all, SQL-92 features, plus 
varying feature sets from later standards and special proprietary 
features.  
● Not all examples here may work on your particular system.

24



Data Definition Language

■ The schema for each relation.
■ The domain of values associated with each attribute.
■ Integrity constraints
■ And as we will see later, also other information such as 

● The set of indices to be maintained for each relations.
● Security and authorization information for each relation.
● The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the 
specification of information about relations, including:
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Domain Types in SQL

■ char(n). Fixed length character string, with user-specified length n.
■ varchar(n). Variable length character strings, with user-specified maximum 

length n.
■ int. Integer (a finite subset of the integers that is machine-dependent).
■ smallint. Small integer (a machine-dependent subset of the integer 

domain type).
■ numeric(p,d). Fixed point number, with user-specified precision of p digits, 

with d digits to the right of decimal point. 
■ real, double precision. Floating point and double-precision floating point 

numbers, with machine-dependent precision.
■ float(n). Floating point number, with user-specified precision of at least n

digits.
■ More are covered in �Data types and schemas� later.
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Create Table Construct

■ An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

● r is the name of the relation
● each Ai is an attribute name in the schema of relation r
● Di is the data type of values in the domain of attribute Ai

■ Example:
create table instructor (

ID char(5),
name           varchar(20),
dept_name  varchar(20),
salary numeric(8,2))
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Integrity Constraints in Create Table

■ not null
■ primary key (A1, ..., An )
■ foreign key (Am, ..., An ) references r

Example:  Declare branch_name as the primary key for branch

create table instructor (
ID char(5),
name           varchar(20) not null,
dept_name  varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null
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And a Few More Relation Definitions
■ create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

■ create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2), 
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

● Note: sec_id can be dropped from primary key above, to ensure a 
student cannot be registered for two sections of the same course in the 
same semester
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And more still

■ create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),
foreign key (dept_name) references department);
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Updates to tables

■ Insert 
● insert into instructor values (�10211�, �Smith�, �Biology�, 

66000);
■ Delete

● delete from student
■ Drop Table

● drop table r
■ Alter 

● alter table r add A D
4 where A is the name of the attribute to be added to relation 

r and D is the domain of A.
4 All tuples in the relation are assigned null as the value for 

the new attribute.  
● alter table r drop A     

4 where A is the name of an attribute of relation r
4 Dropping of attributes not supported by many databases.

31



Basic Query Structure 

■ A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

● Ai represents an attribute
● ri  represents a relation
● P is a predicate.

■ The result of an SQL query is a relation.
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The select Clause

■ The select clause list the attributes desired in the result of a query
● corresponds to the projection operation of the relational algebra

■ Example: find the names of all instructors:
select name
from instructor

■ NOTE:  SQL names are case insensitive (i.e., you may use upper- or 
lower-case letters.)  
● E.g.,  Name ≡ NAME ≡ name
● Some people use upper case wherever we use bold font.
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The select Clause (Cont.)

■ SQL allows duplicates in relations as well as in query results.
■ To force the elimination of duplicates, insert the keyword distinct after 

select.
■ Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

■ The keyword all specifies that duplicates not be removed.

select all dept_name
from instructor
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The select Clause (Cont.)

■ An asterisk in the select clause denotes �all attributes�
select *
from instructor

■ The select clause can contain arithmetic expressions involving the 
operation, +, –, *, and /, and operating on constants or attributes of 
tuples. (This corresponds to generalized projection.)

■ The query: 
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, except 
that the value of the attribute salary is divided by 12.
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The where Clause

■ The where clause specifies conditions that the result must satisfy
● Corresponds to the selection predicate of the relational algebra.  

■ To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept_name = �Comp. Sci.' and salary > 80000

■ Comparison results can be combined using the logical connectives and, 
or, and not.

■ Comparisons can be applied to results of arithmetic expressions.
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The from Clause

■ The from clause lists the relations involved in the query
● Corresponds to the Cartesian product operation of the relational 

algebra.
■ Find the Cartesian product instructor X teaches

select *
from instructor, teaches

● generates every possible instructor – teaches pair, with all attributes 
from both relations.

■ Cartesian product not very useful directly, but useful combined with 
where-clause condition (selection operation in relational algebra).
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Cartesian Product
instructor teaches
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Joins

■ For all instructors who have taught courses, find their names and the 
course ID of the courses they taught.

select name, course_id
from instructor, teaches
where  instructor.ID = teaches.ID

■ Find the course ID, semester, year and title of each course offered by the 
Comp. Sci. department

select section.course_id, semester, year, title
from section, course
where  section.course_id = course.course_id  and

dept_name = �Comp. Sci.' 
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Natural Join

■ Natural join matches tuples with the same values for all common 
attributes, and retains only one copy of each common column

■ select *
from instructor natural join teaches;
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Natural Join Example

■ List the names of instructors along with the course ID of the courses that 
they taught.

● select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

● select name, course_id
from instructor natural join teaches;
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The Rename Operation

■ The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

■ E.g., 
● select ID, name, salary/12 as monthly_salary

from instructor

■ Find the names of all instructors who have a higher salary than 
some instructor in �Comp. Sci�.
● select distinct T. name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = �Comp. Sci.�

■ Keyword as is optional and may be omitted
instructor as T ≡ instructor T
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String Operations

■ SQL includes a string-matching operator for comparisons on character 
strings.  The operator like uses patterns that are described using two 
special characters:
● percent (%).  The % character matches any substring.
● underscore (_).  The _ character matches any character.

■ Find the names of all instructors whose name includes the substring 
�dar�.

select name
from instructor
where name like '%dar%' 

■ Match the string �100%�
like �100 \%' escape  '\' 

in that above we use backslash (\) as the escape character.
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String Operations (Cont.)

■ Patterns are case sensitive. 
■ Pattern matching examples:

● �Intro%� matches any string beginning with �Intro�.
● �%Comp� matches any string containing �Comp� as a suffix.
● �_ _ _� matches any string of exactly three characters.
● �_ _ _ %� matches any string of at least three characters.

■ SQL supports a variety of string operations such as
● concatenation (using �||�)
● converting from upper to lower case (and vice versa)

4 upper() and lower()
● finding string length, extracting substrings, etc.
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Ordering the Display of Tuples

■ List in alphabetic order the names of all instructors 

select distinct name
from    instructor
order by name

■ We may specify desc for descending order or asc for ascending 
order, for each attribute; ascending order is the default.
● Example:  order by name desc

■ Can sort on multiple attributes
● Example: order by dept_name, name
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Where Clause Predicates

■ SQL includes a between comparison operator
■ Example:  Find the names of all instructors with salary between $90,000 

and $100,000 (that is, ³ $90,000 and £ $100,000)
● select name

from instructor
where salary between 90000 and 100000

■ Tuple comparison
● select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, �Biology�);
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Duplicates

■ In relations with duplicates, SQL can define how many copies of 
tuples appear in the result.

■ Multiset versions of some of the relational algebra operators – given 
multiset relations r1 and r2:

1. sq (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies 
selections sq,, then there are c1 copies of t1 in sq (r1).

2. PA (r ): For each copy of tuple t1 in r1, there is a copy of tuple
PA (t1) in PA (r1) where PA (t1) denotes the projection of the single 
tuple t1.

3. r1 x r2: If there are c1 copies of tuple t1 in r1 and c2 copies of tuple 
t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

47



Duplicates (Cont.)

■ Example: Suppose multiset relations r1 (A, B) and r2 (C) are as 
follows:

r1 = {(1, a) (2,a)}     r2 = {(2), (3), (3)}
■ Then PB(r1) would be {(a), (a)}, while PB(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
■ SQL duplicate semantics: 

select A1,, A2, ..., An
from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:
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End
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