
1

Relational Model

2

Roadmap of This Lecture

 Structure of Relational Databases

 Fundamental Relational-Algebra-Operations

 Additional Relational-Algebra-Operations

 Extended Relational-Algebra-Operations

 Null Values

 Modification of the Database

3

Example of a Relation

4

Basic Structure

 Formally, given sets D1, D2, …. Dn , a relation r is a subset of

 D1 x D2 x … x Dn

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai  Di

 Example: If

 customer_name = {Jones, Smith, Curry, Lindsay, …}

 /* Set of all customer names */

 customer_street = {Main, North, Park, …} /* set of all street names*/

 customer_city = {Harrison, Rye, Pittsfield, …} /* set of all city names */

Then r = { (Jones, Main, Harrison),

 (Smith, North, Rye),

 (Curry, North, Rye),

 (Lindsay, Park, Pittsfield) }

 is a relation over

 customer_name x customer_street x customer_city
5

Attribute Types

 Each attribute of a relation has a name

 The set of allowed values for each attribute is called the domain of the

attribute

 Attribute values are (normally) required to be atomic; that is, indivisible

 E.g. the value of an attribute can be an account number,

but cannot be a set of account numbers

 Domain is said to be atomic if all its members are atomic

 The special value null is a member of every domain

 The null value causes complications in the definition of many operations

 We shall ignore the effect of null values in our main presentation

and consider their effect later

6

Relation Schema

 A1, A2, …, An are attributes

 R = (A1, A2, …, An) is a relation schema

 Example:

 Customer_schema = (customer_name, customer_street, customer_city)

 r(R) denotes a relation r on the relation schema R

 Example:

 customer (Customer_schema)

7

Relation Instance

 The current values (relation instance) of a relation are specified by

a table

 An element t of r is a tuple, represented by a row in a table

Jones

Smith

Curry

Lindsay

customer_name

Main

North

North

Park

customer_street

Harrison

Rye

Rye

Pittsfield

customer_city

customer

attributes

(or columns)

tuples

(or rows)

8

Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

 Example: account relation with unordered tuples

9

Database

 A database consists of multiple relations

 Information about an enterprise is broken up into parts, with each relation

storing one part of the information

 account : stores information about accounts

 depositor : stores information about which customer

 owns which account

 customer : stores information about customers

 Storing all information as a single relation such as

 bank(account_number, balance, customer_name, ..)

results in

 repetition of information

 e.g.,if two customers own an account (What gets repeated?)

 the need for null values

 e.g., to represent a customer without an account

 Normalization theory (later) deals with how to design relational schemas

10

The customer Relation

11

The depositor Relation

12

Keys

 Let K  R

 K is a superkey of R if values for K are sufficient to identify a unique tuple of

each possible relation r(R)

 by “possible r ” we mean a relation r that could exist in the enterprise we

are modeling.

 Example: {customer_name, customer_street} and

 {customer_name}

are both superkeys of Customer, if no two customers can possibly have

the same name

 In real life, an attribute such as customer_id would be used instead of

customer_name to uniquely identify customers, but we omit it to keep

our examples small, and instead assume customer names are unique.

13

Keys (Cont.)

 K is a candidate key if K is minimal

Example: {customer_name} is a candidate key for Customer, since it

is a superkey and no subset of it is a superkey.

 Primary key: a candidate key chosen as the principal means of

identifying tuples within a relation

 Should choose an attribute whose value never, or very rarely,

changes.

 E.g. email address is unique, but may change

14

Foreign Keys

 A relation schema may have a set of attributes that corresponds to the
primary key of another relation. These attributes is called a foreign key.

 E.g. customer_name and account_number attributes of depositor are
foreign keys to customer and account respectively.

 Only values occurring in the primary key attribute of the referenced
relation may occur in the foreign key attribute of the referencing
relation.

 Schema diagram

15

Query Languages

 Language in which user requests information from the database.

 Categories of languages

 Procedural

 Non-procedural, or declarative

 “Pure” languages:

 Relational algebra

 Tuple relational calculus

 Domain relational calculus

 Pure languages form underlying basis of query languages that people

use.

 Pure languages use immutable variables only!

 They are functional.

16

Relational Algebra

 Procedural language

 Six basic operators

 select: 

 project: 

 union: 

 set difference: –

 Cartesian product: x

 rename: 

 The operators take one or two relations as inputs and produce a new

relation as a result.

17

Select Operation – Example

 Relation r
A B C D

















1

5

12

23

7

7

3

10

 A=B ^ D > 5 (r)
A B C D









1

23

7

10

18

Select Operation

 Notation:  p(r)

 p is called the selection predicate

 Defined as:

 p(r) = {t | t  r and p(t)}

 Where p is a formula in propositional calculus consisting of terms
connected by logical connectives:  (and),  (or),  (not)

Each term is one of:

 <attribute> op <attribute> or <constant>

 where op is one of: =, , >, . <. 

 Example of selection:

  branch_name=“Perryridge”(account)

19

Project Operation – Example

 Relation r: A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

=

A C







1

1

2

A,C (r)

20

Project Operation

 Notation:

 where A1, A2 are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by erasing

the columns that are not listed

 Duplicate rows removed from result, since relations are sets

 Example: To eliminate the branch_name attribute of account

 account_number, balance (account)

)(
,,, 21

r
kAAA 

21

Union Operation – Example

 Relations r, s:

 r  s:

A B







1

2

1

A B





2

3

r
s

A B









1

2

1

3

22

Union Operation

 Notation: r  s

 Defined as:

 r  s = {t | t  r or t  s}

 For r  s to be valid.

 1. r, s must have the same arity (same number of attributes)

 2. The attribute domains must be compatible (example: 2nd column

 of r deals with the same type of values as does the 2nd

 column of s)

 Example: to find all customers with either an account or a loan

 customer_name (depositor)  customer_name (borrower)

23

Set Difference Operation – Example

 Relations r, s:

 r – s:

A B







1

2

1

A B





2

3

r

s

A B





1

1

24

Set Difference Operation

 Notation r – s

 Defined as:

 r – s = {t | t  r and t  s}

 Set differences must be taken between compatible

relations.

 r and s must have the same arity

 attribute domains of r and s must be compatible

25

Cartesian-Product Operation – Example

 Relations r, s:

 r x s:

A B





1

2

A B

















1

1

1

1

2

2

2

2

C D

















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

C D









10

10

20

10

E

a

a

b

b r

s

26

Cartesian-Product Operation

 Notation r x s

 Defined as:

 r x s = {t q | t  r and q  s}

 Assume that attributes of r(R) and s(S) are disjoint. (That is, R  S = ).

 If attributes of r(R) and s(S) are not disjoint, then renaming must be

used.

27

Composition of Operations
 Can build expressions using multiple operations

 Example: A=C(r x s)

 r x s

 A=C(r x s)

A B

















1

1

1

1

2

2

2

2

C D
















10

10

20

10

10

10

20

10

E

a

a

b

b

a

a

b

b

A B C D E







1

2

2







10

10

20

a

a

b

28

Rename Operation

 Allows us to name, and therefore to refer to, the results of relational-

algebra expressions.

 Allows us to refer to a relation by more than one name.

 Example:

  x (E)

 returns the expression E under the name X

 If a relational-algebra expression E has arity n, then

 returns the result of expression E under the name X, and with the

 attributes renamed to A1 , A2 , …., An .

)(
),...,,(21
E

nAAAx
r

29

Banking Example

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

Highlighted attributes are primary keys.

30

Example Queries

 Find all loans of over $1200

 Find the loan number for each loan of an amount greater than

$1200

amount > 1200 (loan)

loan_number (amount > 1200 (loan))

 Find the names of all customers who have a loan, an account, or both,

from the bank

customer_name (borrower)  customer_name (depositor)

31

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

Example Queries

 Find the names of all customers who have a loan at the Perryridge

branch.

 Find the names of all customers who have a loan at the

 Perryridge branch but do not have an account at any branch of

 the bank.

customer_name (branch_name = “Perryridge”

 (borrower.loan_number = loan.loan_number(borrower x loan))) –

 customer_name(depositor)

customer_name (branch_name=“Perryridge”

 (borrower.loan_number = loan.loan_number(borrower x loan)))

32

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

Example Queries

 Find the names of all customers who have a loan at the Perryridge branch.

 Query 2

 customer_name(loan.loan_number = borrower.loan_number (

 (branch_name = “Perryridge” (loan)) x borrower))

 Query 1

 customer_name (branch_name = “Perryridge” (

 borrower.loan_number = loan.loan_number (borrower x loan)))

What’s the benefit of the second query?

33

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

Example Queries

 Find the largest account balance

 Strategy:

 Find those balances that are not the largest

– Rename account relation as d so that we can compare

each account balance with all others

 Use set difference to find those account balances that were not

selected in the earlier step.

 That missing balance is the MAX among all account balances

 The query is:

balance(account) - account.balance

 (account.balance < d.balance (account x d (account)))

34

Formal Definition

 A basic expression in the relational algebra consists of either one of the

following:

 A relation in the database

 A constant relation (shown later)

 Let E1 and E2 be relational-algebra expressions; the following are all

relational-algebra expressions:

 E1  E2

 E1 – E2

 E1 x E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of some of the attributes in E1

  x (E1), x is the new name for the result of E1

35

Additional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Division

 Assignment

36

Set-Intersection Operation

 Notation: r  s

 Defined as:

 r  s = { t | t  r and t  s }

 Assume:

 r, s have the same arity

 attributes of r and s are compatible

 Note: r  s = r – (r – s)

37

Set-Intersection Operation – Example

 Relation r, s:

 r  s

A B







1

2

1

A B




2

3

r s

A B

 2

38

 Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.

Then, r s is a relation on schema R  S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R  S, add

a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

 r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

39

Natural Join Operation – Example

 Relations r, s:

A B










1

2

4

1

2

C D











a

a

b

a

b

B

1

3

1

2

3

D

a

a

a

b

b

E











r

A B











1

1

1

1

2

C D











a

a

a

a

b

E











s

 r s

40

Division Operation

 Notation:

 Suited to queries that include the phrase “for all”.

 Let r and s be relations on schemas R and S respectively

where

 R = (A1, …, Am , B1, …, Bn)

 S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

 r  s = { t | t   R-S (r)   u  s (tu  r) }

Where tu means the concatenation of tuples t and u to

produce a single tuple

r  s

41

Division Operation – Example

 Relations r, s:

 r  s: A

B





1

2

A B






















1

2

3

1

1

1

3

4

6

1

2

r

s

42

Another Division Example

A B
















a

a

a

a

a

a

a

a

C D
















a

a

b

a

b

a

b

b

E

1

1

1

1

3

1

1

1

 Relations r, s:

 r  s:

D

a

b

E

1

1

A B





a

a

C





r

s

43

Division Operation (Cont.)

 Property

 Let q = r  s

 Then q is the largest relation satisfying q x s  r

 Definition in terms of the basic algebra operation

Let r(R) and s(S) be relations, and let S  R

 r  s = R-S (r) – R-S ((R-S (r) x s) – R-S,S(r))

 To see why

 R-S,S (r) simply reorders attributes of r

 R-S (R-S (r) x s) – R-S,S(r)) gives those tuples t in

 R-S (r) such that for some tuple u  s, tu  r.

44

Assignment Operation

 The assignment operation () provides a convenient way to express

complex queries.

 Write query as a sequential program consisting of

 a series of assignments

 followed by an expression whose value is displayed as a result of

the query.

 Assignment must always be made to a temporary relation variable.

 Example: Write r  s as

 temp1  R-S (r)

 temp2  R-S ((temp1 x s) – R-S,S (r))

 temp1 – temp2

 The result to the right of the  is assigned to the relation variable on

the left of the .

 May use variable in subsequent expressions.

45

Bank Example Queries

 Find the names of all customers who have a loan and an account at

bank.

customer_name (borrower)  customer_name (depositor)

 Find the name of all customers who have a loan at the bank, the loan

number and the loan amount

customer_name, loan_number, amount (borrower loan)

46

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

 Query 1

customer_name (branch_name = “Downtown” (depositor account)) 

 customer_name (branch_name = “Uptown” (depositor account))

 Query 2

 customer_name, branch_name (depositor account)

  temp(branch_name) ({(“Downtown”), (“Uptown”)})

Note that Query 2 uses a constant relation.

Bank Example Queries

 Find all customers who have an account from both the “Downtown”
and the Uptown” branches.

47

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

 Find all customers who have an account at all branches located in

Brooklyn city.

Bank Example Queries

 customer_name, branch_name (depositor account)

  branch_name (branch_city = “Brooklyn” (branch))

48

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

