
1 



Relational Model 

2 



Roadmap of This Lecture 

 Structure of Relational Databases 

 Fundamental Relational-Algebra-Operations 

 Additional Relational-Algebra-Operations 

 Extended Relational-Algebra-Operations 

 Null Values 

 Modification of the Database 

 

3 



Example of a Relation 

4 



Basic Structure 

 Formally, given sets D1, D2, …. Dn , a relation r is a subset of  

        D1 x  D2  x … x Dn 

Thus, a relation is a set of n-tuples (a1, a2, …, an) where each ai   Di 

 Example:  If 

 customer_name =  {Jones, Smith, Curry, Lindsay, …}    

    /* Set of all customer names */ 

 customer_street =  {Main, North, Park, …} /* set of all street names*/ 

 customer_city     =  {Harrison, Rye, Pittsfield, …} /* set of all city names */ 

Then r = {        (Jones,   Main,  Harrison),  

                   (Smith,    North, Rye), 

                   (Curry,    North, Rye), 

                   (Lindsay, Park,  Pittsfield) } 

 is a relation over  

  customer_name  x  customer_street  x  customer_city 
5 



Attribute Types 

 Each attribute of a relation has a name 

 The set of allowed values for each attribute is called the domain of the 

attribute 

 Attribute values are (normally) required to be atomic; that is, indivisible 

 E.g. the value of an attribute can be an account number,  

but cannot be a set of account numbers 

 Domain is said to be atomic if all its members are atomic 

 The special value null  is a member of every domain 

 The null value causes complications in the definition of many operations 

 We shall ignore the effect of null values in our main presentation 

and consider their effect later 

6 



Relation Schema 

 A1, A2, …, An are attributes 

 

 R = (A1, A2, …, An ) is a relation schema 

 Example: 

 Customer_schema = (customer_name, customer_street, customer_city) 

 

 r(R) denotes a relation r on the relation schema R 

 Example: 

 customer (Customer_schema) 

7 



Relation Instance 

 The current values (relation instance) of a relation are specified by 

a table 

 An element t of r is a tuple, represented by a row in a table 

Jones 

Smith 

Curry 

Lindsay 

customer_name 

Main 

North 

North 

Park 

customer_street 

Harrison 

Rye 

Rye 

Pittsfield 

customer_city 

customer 

attributes 

(or columns) 

tuples 

(or rows) 

8 



Relations are Unordered 

 Order of tuples is irrelevant (tuples may be stored in an arbitrary order) 

 Example: account relation with unordered tuples 

9 



Database 

 A database consists of multiple relations 

 Information about an enterprise is broken up into parts, with  each relation 

storing one part of the information 

  account :   stores information about accounts 

        depositor :   stores information about which customer 

                              owns which account  

        customer :   stores information about customers 

 Storing all information as a single relation such as  

   bank(account_number, balance, customer_name, ..) 

results in 

 repetition of information  

 e.g.,if two customers own an account (What gets repeated?) 

 the need for null values   

 e.g., to represent a customer without an account 

 Normalization theory (later) deals with how to design relational schemas 

10 



The customer Relation 

 

11 



The depositor Relation 

 

12 



Keys 

 Let K  R 

 K is a superkey of R if values for K are sufficient to identify a unique tuple of 

each possible relation r(R)  

 by “possible r ” we mean a relation r that could exist in the enterprise we 

are modeling. 

 Example:  {customer_name, customer_street} and 

                 {customer_name}  

are both superkeys of Customer, if no two customers can possibly have 

the same name 

 In real life, an attribute such as customer_id would be used instead of 

customer_name to uniquely identify customers, but we omit it to keep 

our examples small, and instead assume customer names are unique. 

13 



Keys (Cont.) 

 K is a candidate key if K is minimal 

Example:  {customer_name} is a candidate key for Customer, since it 

is a superkey and no subset of it is a superkey. 

 Primary key: a candidate key chosen as the principal means of 

identifying tuples within a relation 

 Should choose an attribute whose value never, or very rarely, 

changes. 

 E.g. email address is unique, but may change 

14 



Foreign Keys 

 A relation schema may have a set of attributes that corresponds to the 
primary key of another relation.  These attributes is called a foreign key. 

 E.g. customer_name and account_number attributes of depositor are 
foreign keys to customer and account respectively. 

 Only values occurring in the primary key attribute of the referenced 
relation may occur in the foreign key attribute of the referencing 
relation. 

 Schema diagram 

15 



Query Languages 

 Language in which user requests information from the database. 

 Categories of languages 

 Procedural 

 Non-procedural, or declarative 

 “Pure” languages: 

 Relational algebra 

 Tuple relational calculus 

 Domain relational calculus 

 Pure languages form underlying basis of query languages that people 

use. 

 Pure languages use immutable variables only! 

 They are functional. 

16 



Relational Algebra 

 Procedural language 

 Six basic operators 

 select:  

 project:  

 union:  

 set difference: –  

 Cartesian product: x 

 rename:  

 The operators take one or  two relations as inputs and produce a new 

relation as a result. 

17 



Select Operation – Example 

 Relation r 
A B C D 

 

 

 

 

 

 

 

 

1 

5 

12 

23 

7 

7 

3 

10 

 A=B ^ D > 5 (r) 
A B C D 

 

 

 

 

1 

23 

7 

10 

18 



Select Operation 

 Notation:   p(r) 

 p is called the selection predicate 

 Defined as: 
 
  p(r) = {t | t  r and p(t)} 
 

 Where p is a formula in propositional calculus consisting of terms 
connected by logical connectives:  (and),  (or),  (not) 

 
Each term is one of: 

  <attribute> op <attribute>   or   <constant> 

     where op is one of:  =, , >, . <.  
 

 Example of selection: 
 
    branch_name=“Perryridge”(account) 

19 



Project Operation – Example 

 Relation r: A B C 

 

 

 

 

10 

20 

30 

40 

1 

1 

1 

2 

A C 

 

 

 

 

1 

1 

1 

2 

= 

A C 

 

 

 

1 

1 

2 

A,C (r) 

20 



Project Operation 

 Notation: 

  

 where A1, A2 are attribute names and r is a relation name. 

 The result is defined as the relation of k columns obtained by erasing 

the columns that are not listed 

 Duplicate rows removed from result, since relations are sets 

 Example: To eliminate the branch_name attribute of account 

 

           account_number, balance (account)  

 

)( 
,,, 21

r
kAAA 

21 



Union Operation – Example 

 Relations r, s: 

 r  s: 

A B 

 

 

 

1 

2 

1 

A B 

 

 

2 

3 

r 
s 

A B 

 

 

 

 

1 

2 

1 

3 

22 



Union Operation 

 Notation:  r  s 

 Defined as:  

  r   s = {t | t  r or t  s} 

 For r  s to be valid. 

 1.  r, s must have the same arity (same number of attributes) 

 2.  The attribute domains must be compatible (example: 2nd column  

     of r deals with the same type of values as does the 2nd  

     column of s) 

 Example: to find all customers with either an account or a loan 

    customer_name (depositor)     customer_name (borrower) 

23 



Set Difference Operation – Example 

 Relations r, s: 

 r  – s: 

A B 

 

 

 

1 

2 

1 

A B 

 

 

2 

3 

r 

s 

A B 

 

 

1 

1 

24 



Set Difference Operation 

 Notation r – s 

 Defined as: 

   r – s  = {t | t  r and t  s} 

 

 Set differences must be taken between compatible 

relations. 

 r and s must have the same arity 

 attribute domains of r and s must be compatible 

 

 

 

25 



Cartesian-Product Operation –  Example 

 Relations r, s: 

 r x s: 

A B 

 

 

1 

2 

A B 

 

 

 

 

 

 

 

 

1 

1 

1 

1 

2 

2 

2 

2 

C D 

 

  

 

 

 

 

 

 

10 

10 

20 

10 

10 

10 

20 

10 

E 

a 

a 

b 

b 

a 

a 

b 

b 

C D 

 

 

 

 

10 

10 

20 

10 

E 

a 

a 

b 

b r 

s 

26 



Cartesian-Product Operation 

 Notation r x s 

 Defined as: 

  r x s = {t q | t  r and q  s} 

 

 Assume that attributes of r(R) and s(S) are disjoint. (That is, R  S = ). 

 If attributes of r(R) and s(S) are not disjoint, then renaming must be 

used. 

27 



Composition of Operations 
 Can build expressions using multiple operations 

 Example:  A=C(r x s) 

 r x s 

 

 

 

 

 

 

 

 A=C(r x s) 

A B 

 

 

 

 

 

 

 

 

1 

1 

1 

1 

2 

2 

2 

2 

C D 

 

  

 

  
 

 

 

 

10 

10 

20 

10 

10 

10 

20 

10 

E 

a 

a 

b 

b 

a 

a 

b 

b 

A B C D E 

 

 

 

1 

2 

2 

 

 

 

10 

10 

20 

a 

a 

b 

28 



Rename Operation 

 Allows us to name, and therefore to refer to, the results of relational-

algebra expressions. 

 Allows us to refer to a relation by more than one name. 

 Example: 

      x (E) 

 

 returns the expression E under the name X 

 If a relational-algebra expression E has arity n, then  

                                           

 

 returns the result of expression E under the name X, and with the 

 attributes renamed to A1 , A2 , …., An . 

 

)(
),...,,( 21
E

nAAAx
r

29 



Banking Example 

 

branch (branch_name, branch_city, assets) 
 

customer (customer_name, customer_street, customer_city) 

 

account (account_number, branch_name, balance) 

 

loan (loan_number, branch_name, amount) 

 

depositor (customer_name, account_number) 

 

borrower (customer_name, loan_number) 

 

 

 

Highlighted attributes are primary keys. 

30 



Example Queries 

 Find all loans of over $1200 

                        

 Find the loan number for each loan of an amount greater than                             

$1200 

                      

amount > 1200 (loan) 
 

loan_number (amount > 1200 (loan)) 
 

 Find the names of all customers who have a loan, an account, or both, 

from the bank 

customer_name (borrower)  customer_name (depositor) 
 

31 

branch (branch_name, branch_city, assets) 
customer (customer_name, customer_street, customer_city) 
account (account_number, branch_name, balance) 
loan (loan_number, branch_name, amount) 
depositor (customer_name, account_number) 
borrower (customer_name, loan_number) 



Example Queries 

 Find the names of all customers who have a loan at the Perryridge 

branch. 

  Find the names of all customers who have a loan at the  

    Perryridge branch but do not have an account at any branch of    

    the bank. 

customer_name (branch_name = “Perryridge” 

 (borrower.loan_number = loan.loan_number(borrower x loan)))  –            

     customer_name(depositor) 

customer_name (branch_name=“Perryridge” 

    (borrower.loan_number = loan.loan_number(borrower x loan))) 

32 

branch (branch_name, branch_city, assets) 
customer (customer_name, customer_street, customer_city) 
account (account_number, branch_name, balance) 
loan (loan_number, branch_name, amount) 
depositor (customer_name, account_number) 
borrower (customer_name, loan_number) 



Example Queries 

 Find the names of all customers who have a loan at the Perryridge branch. 

  Query 2 

 customer_name(loan.loan_number = borrower.loan_number ( 

             (branch_name = “Perryridge” (loan)) x  borrower)) 

 

 Query 1 

  customer_name (branch_name = “Perryridge” ( 

  borrower.loan_number = loan.loan_number (borrower x loan))) 

 
What’s the benefit of the second query? 

33 

branch (branch_name, branch_city, assets) 
customer (customer_name, customer_street, customer_city) 
account (account_number, branch_name, balance) 
loan (loan_number, branch_name, amount) 
depositor (customer_name, account_number) 
borrower (customer_name, loan_number) 



Example Queries 

 Find the largest account balance 

 Strategy: 

 Find those balances that are not the largest 

– Rename account relation as d so that we can compare 

each account balance with all others 

 Use set difference to find those account balances that were not 

selected in the earlier step. 

 That missing balance is the MAX among all account balances 

 

 The query is: 

      

balance(account) - account.balance 

    (account.balance < d.balance (account x d (account))) 

34 



Formal Definition 

 A basic expression in the relational algebra consists of either one of the 

following: 

 A relation in the database 

 A constant relation (shown later) 

 Let E1 and E2  be relational-algebra expressions; the following are all 

relational-algebra expressions: 

 E1  E2 

 E1 – E2 

 E1 x E2 

 p (E1), P is a predicate on attributes in E1 

 s(E1), S is a list consisting of some of the attributes in E1 

  x (E1), x is the new name for the result of E1 

35 



Additional Operations 

We define additional operations that do not add any power to the 

relational algebra, but that simplify common queries. 

 Set intersection 

 Natural join 

 Division 

 Assignment 

36 



Set-Intersection Operation 

 Notation: r  s 

 Defined as: 

 r  s = { t | t  r and t  s } 

 Assume:  

 r, s have the same arity  

 attributes of r and s are compatible 

 Note: r  s = r – (r – s) 

37 



Set-Intersection Operation – Example 

 Relation r, s: 

 

 

 

 

 

 r  s 

A       B 

 

 

 

1 

2 

1 

A       B 

 

 
2 

3 

r s 

A       B 

      2 

38 



   Notation:  r      s 

Natural-Join Operation 

 Let r and s be relations on schemas R and S respectively.  

Then,  r     s  is a relation on schema R  S obtained as follows: 

 Consider each pair of tuples tr from r and ts from s.   

 If tr and ts have the same value on each of the attributes in R  S, add 

a tuple t  to the result, where 

 t has the same value as tr on r 

 t has the same value as ts on s 

 Example: 

R = (A, B, C, D) 

S = (E, B, D) 

 Result schema = (A, B, C, D, E) 

 r     s is defined as: 

      r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r  x  s)) 

39 



Natural Join Operation – Example 

 Relations r, s: 

A B 

 

 

 
 

 

1 

2 

4 

1 

2 

C D 

 

 

 

 

 

a 

a 

b 

a 

b 

B 

1 

3 

1 

2 

3 

D 

a 

a 

a 

b 

b 

E 

 

 

 

 

 

r 

A B 

 

 

 

 

 

1 

1 

1 

1 

2 

C D 

 

 

 

 

 

a 

a 

a 

a 

b 

E 

 

 

 

 

 

s 

 r     s 

40 



Division Operation 

 Notation:  

 Suited to queries that include the phrase “for all”. 

 Let r and s be relations on schemas R and S respectively 

where 

 R = (A1, …, Am , B1, …, Bn ) 

 S = (B1, …, Bn) 

The result of  r  s is a relation on schema 

R – S = (A1, …, Am) 

  r  s = { t  |  t   R-S (r)   u  s ( tu  r ) }  

Where tu means the concatenation of tuples t and u to 

produce a single tuple 

 

r  s  

41 



Division Operation – Example 

 Relations r, s: 

 r  s: A 

B 

 

 

1 

2 

A B 

 

 

 

 

 

 

 
 

 

 

 

1 

2 

3 

1 

1 

1 

3 

4 

6 

1 

2 

r 

s 

42 



Another Division Example 

A B 

 

 

 

 

 

 

 
 

a 

a 

a 

a 

a 

a 

a 

a 

C D 

 

 

 

 

 

 

 
 

a 

a 

b 

a 

b 

a 

b 

b 

E 

1 

1 

1 

1 

3 

1 

1 

1 

 Relations r, s: 

 r  s: 

D 

a 

b 

E 

1 

1 

A B 

 

 

a 

a 

C 

 

 

r 

s 

43 



Division Operation (Cont.) 

 Property  

 Let q = r   s 

 Then q is the largest relation satisfying q x s   r 

 Definition in terms of the basic algebra operation 

Let r(R) and s(S) be relations, and let S   R 

 

  r  s = R-S (r ) – R-S ( ( R-S (r ) x s ) – R-S,S(r )) 

 

 To see why 

 R-S,S (r) simply reorders attributes of r 

 

 R-S (R-S (r ) x s ) – R-S,S(r)) gives those tuples t in  

 

 R-S (r ) such that for some tuple u  s, tu  r. 

 

44 



Assignment Operation 

 The assignment operation () provides a convenient way to express 

complex queries.  

  Write query as a sequential program consisting of 

 a series of assignments  

 followed by an expression whose value is displayed as a result of 

the query. 

 Assignment must always be made to a temporary relation variable. 

 Example:  Write r  s as  

   temp1  R-S (r )  

  temp2  R-S ((temp1 x s ) – R-S,S (r )) 

  temp1 – temp2 

 The result to the right of the  is assigned to the relation variable on 

the left of the . 

 May use variable in subsequent expressions. 

45 



Bank Example Queries 

 Find the names of all customers who have a loan and an account at 

bank. 

customer_name (borrower)  customer_name (depositor) 

 

 Find the name of all customers who have a loan at the bank, the loan 

number and the loan amount 

 

 

 

customer_name, loan_number, amount (borrower     loan) 

46 

branch (branch_name, branch_city, assets) 
customer (customer_name, customer_street, customer_city) 
account (account_number, branch_name, balance) 
loan (loan_number, branch_name, amount) 
depositor (customer_name, account_number) 
borrower (customer_name, loan_number) 



 Query 1 

customer_name (branch_name = “Downtown” (depositor      account ))  

        customer_name (branch_name = “Uptown” (depositor     account)) 

 Query 2 

  customer_name, branch_name (depositor      account) 

          temp(branch_name) ({(“Downtown” ), (“Uptown” )}) 

Note that Query 2 uses a constant relation. 

Bank Example Queries 

 Find all customers who have an account from both the “Downtown” 
and the Uptown” branches. 

47 

branch (branch_name, branch_city, assets) 
customer (customer_name, customer_street, customer_city) 
account (account_number, branch_name, balance) 
loan (loan_number, branch_name, amount) 
depositor (customer_name, account_number) 
borrower (customer_name, loan_number) 



 Find all customers who have an account at all branches located in 

Brooklyn city. 

Bank Example Queries 

 customer_name, branch_name (depositor    account) 

  branch_name (branch_city = “Brooklyn” (branch)) 

48 

branch (branch_name, branch_city, assets) 
customer (customer_name, customer_street, customer_city) 
account (account_number, branch_name, balance) 
loan (loan_number, branch_name, amount) 
depositor (customer_name, account_number) 
borrower (customer_name, loan_number) 


