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Administrative Info (I)

• All-English Course: everything in English!

• Lecturer: 
• Kenny Zhu, SEIEE #03-541, kzhu@cs.sjtu.edu.cn
• Office hours: by appointment or after class

• Teaching Assistant:  Shanshan Huang
• Office: SEIEE #-03-341
• Email: florahuangss@163.com
• Office hours: Friday 4-5 PM

• Course Web Page (definitive source!): 
http://www.cs.sjtu.edu.cn/~kzhu/se305/
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Administrative Info (II)

■ Textbook: Database System Concepts (5th ed.) By Abraham 
Silberschatz, Henry F. Korth and S. Sudarshan.

■ Lecture materials on course web page (released after the lecture)

■ Assignments:
● Released on Thursday (usually) 
● Due on the following Tuesday (usually)
● Submit hard copies to me/TA during or after class
● Late submission: -30% of full score for each additional day



Administrative Info (III)

■ 3-credit course

■ Modes of Assessment (tentative):
● Quizzes, Assignments: 40%
● 1 Lab Project (2-3 pax): 30%
● Final Exam: 30%

■ Email me/TA the names and main contact person of your group
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copyrighted to Abraham Silberschatz, et al. which is available from 
http://www.db-book.com/ .
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Course Overview

■ Introduction
■ Relational Model
■ SQL
■ Database Design and Application Design
■ Data Storage
■ Query Processing
■ Transactions
■ Concurrency Control
■ Database Architectures
■ Parallel and Distributed Databases
■ Object-based Databases and XML
■ Data Mining and Information Retrieval
■ 1-2 Tutorials
■ Project Presentations



Introduction 



Roadmap For This Lecture

■ What is a DBMS?
■ Relational Data Models
■ Languages to access the database
■ Database Design

● E-R Models
■ Object-based data model
■ XML
■ Storage management
■ Transactions
■ Database architecture
■ History of databases



Database Management System (DBMS)

■ DBMS contains information about a particular enterprise
● Collection of interrelated data (the database)
● Set of programs to access the data 
● An environment that is both convenient and efficient to use

■ Database Applications:
● Banking: transactions
● Airlines: reservations, schedules
● Universities:  registration, grades
● Sales: customers, products, purchases
● Online retailers: order tracking, customized recommendations
● Manufacturing: production, inventory, orders, supply chain
● Human resources:  employee records, salaries, tax deductions

■ Databases can be very large.
■ Databases touch all aspects of our lives



University Database Example

■ Application program examples
● Add new students, instructors, and courses
● Register students for courses, and generate class rosters
● Assign grades to students, compute grade point averages (GPA) 

and generate transcripts
■ In the early days, database applications were built directly on top of 

file systems



Drawbacks of using file systems to store data

■ Data redundancy and inconsistency
● Multiple file formats, duplication of information in different files

■ Difficulty in accessing data 
● Need to write a new program to carry out each new task

■ Data isolation — multiple files and formats
■ Integrity problems

● Integrity constraints  (e.g., account balance > 0) become �buried�
in program code rather than being stated explicitly

● Hard to add new constraints or change existing ones



Drawbacks of using file systems to store data 
(Cont.)

● Atomicity of updates
4 Failures may leave database in an inconsistent state with partial 

updates carried out
4 Example: Transfer of funds from one account to another should either 

complete or not happen at all
● Concurrent access by multiple users

4 Concurrent access needed for performance
4 Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance (say 100) and updating it 
by withdrawing money (say 50 each) at the same time

● Security problems
4 Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems



Recent Reverse Trends

■ Active research on tackling these challenges in file systems – NoSQL 
movement!

■ Map-Reduce, Hadoop, Google Big Tables …

■ Good efficiency for very large data (tera bytes to peta bytes) –
Database can’t store this much data!

■ Leverage massive distributed computing resources – data centers, 
server farms, etc.



Levels of Abstraction

■ Physical level: describes how a record (e.g., instructor) is stored.
■ Logical level: describes data stored in database, and the 

relationships among the data.
type instructor = record

ID : string; 
name : string;
dept_name : string;
salary : integer;

end;
■ View level: application programs hide details of data types.  Views 

can also hide information (such as an employee�s salary) for security 
purposes. 



View of Data

An architecture for a database system 

view 1 view 2

logical
level

physical
level

view n…

view level



Schemas and Instances

■ Similar to types and values in programming languages
■ Schema – the logical structure of the database 

● Example: The database consists of information about a set of customers 
and accounts and the relationship between them

● Analogous to type information of a variable in a program
● Physical schema: database design at the physical level
● Logical schema: database design at the logical level
● Changed infrequently

■ Instance – the actual content of the database at a particular point in time 
● Analogous to the value of a variable

■ Physical Data Independence – the ability to modify the physical schema 
without changing the logical schema
● Applications depend on the logical schema
● In general, the interfaces between the various levels and components 

should be well defined so that changes in some parts do not seriously 
affect others.



Data Models

■ A collection of tools for describing : 
● Data , Data relationships, Data semantics, Data constraints

■ Relational model
● Collection of tables

■ Entity-Relationship data model (mainly for database design) 
● Entities (objects) and their inter-relationship

■ Object-based data models (Object-oriented and Object-relational)
● Extension from E-R with encapsulations, methods and object 

identity
■ Semi-structured data model  (XML)

● Data items of the same type have different attributes 
■ Other older models:

● Network model  
● Hierarchical model (Windows registry, XML)



Relational Model

■ Relational model
■ Example of tabular data in the relational model

Columns

Rows



A Sample Relational Database



Data Manipulation Language (DML)

■ Language for accessing and manipulating the data organized by the 
appropriate data model
● DML also known as query language

■ Two classes of languages 
● Declarative (nonprocedural) – user specifies what data is 

required without specifying how to get those data (e.g. SQL)
● Procedural – user specifies what data is required and how to get 

those data (e.g. relational algebra, SQL procedural extensions)

■ SQL is the most widely used query language
● Pronounced as �sequel�
● �Structured Query Language�



Data Definition Language (DDL)

■ Specification notation for defining the database schema
Example: create table instructor (

ID char(5),
name           varchar(20),
dept_name  varchar(20),
salary numeric(8,2))

■ DDL compiler generates a set of table templates stored in a data 
dictionary

■ Data dictionary contains metadata (i.e., data about data)
● Database schema 
● Integrity constraints

4 Primary key (ID uniquely identifies instructors)
4 Referential integrity (references constraint in SQL)
– e.g. dept_name value in any instructor tuple must appear in 

department relation
● Authorization



SQL

■ SQL: widely used non-procedural language
● Example: Find the name of the instructor with ID 22222

select name
from instructor
where instructor.ID = �22222�

● Example: Find the ID and building of instructors in the Physics 
dept.
select instructor.ID, department.building
from instructor natural join department
where instructor.dept_name = �physics�

■ Application programs generally access databases through one of
● Language extensions that allow embedded SQL
● Application program interface (e.g., ODBC/JDBC) which allow 

SQL queries to be sent to a database



Database Design

The process of designing the general structure of the database:

■ Logical Design – Deciding on the database schema. Database design 
requires that we find a �good� collection of relation schemas.
● Business decision – What attributes should we record in the 

database?
● Computer Science decision – What relation schemas should we 

have and how should the attributes be distributed among the 
various relation schemas?

■ Physical Design – Deciding on the physical layout of the database                



Database Design?

■ Is there any problem with this design?



Design Approaches

■ Normalization Theory 
● Formalize what designs are bad, and test for them

■ Entity Relationship Model



The Entity-Relationship Model

■ Models an enterprise as a collection of entities and relationships
● Entity: a �thing� or �object� in the enterprise that is distinguishable 

from other objects
4 Described by a set of attributes

● Relationship: an association among several entities
■ Represented diagrammatically by an entity-relationship diagram:

What happened to dept_name of instructor and student?

instructor
ID
name
salary

department
dept_name
building
budget

member



Object-Relational Data Models

■ Relational model: flat, �atomic� values

■ Object Relational Data Models
● Extend the relational data model by including object orientation 

and constructs to deal with added data types.
● Allow attributes of tuples to have complex types, including non-

atomic values such as nested relations.
● Preserve relational foundations, in particular the declarative 

access to data, while extending modeling power.
● Provide backward compatibility with existing relational languages.



XML:  Extensible Markup Language

■ Semi-structured data model
■ Defined by the WWW Consortium (W3C)
■ Originally intended as a document markup language not a database 

language
■ The ability to specify new tags, and to create nested tag structures 

made XML a great way to exchange data, not just documents
■ XML has become the basis for all new generation data interchange 

formats.
■ A wide variety of tools is available for parsing, browsing and querying 

XML documents/data



Storage Management

■ Storage manager is a program module that provides the interface 
between the low-level data stored in the database and the application 
programs and queries submitted to the system.

■ The storage manager is responsible to the following tasks: 
● Interaction with the file manager 
● Efficient storing, retrieving and updating of data

■ Issues:
● Storage access
● File organization
● Indexing and hashing



Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data



Query Processing (Cont.)

■ Alternative ways of evaluating a given query
● Equivalent expressions
● Different algorithms for each operation

■ Cost difference between a good and a bad way of evaluating a query 
can be enormous

■ Need to estimate the cost of operations
● Depends critically on statistical information about relations which 

the database must maintain
● Need to estimate statistics for intermediate results to compute cost 

of complex expressions



Transaction Management

■ What if the system fails?
■ What if more than one user is concurrently updating the same data?
■ A transaction is a collection of operations that performs a single 

logical function in a database application
■ Transaction-management component ensures that the database 

remains in a consistent (correct) state despite system failures (e.g., 
power failures and operating system crashes) and transaction failures.

■ Concurrency-control manager controls the interaction among the 
concurrent transactions, to ensure the consistency of the database.



Database Users and Administrators

Database



Database System Internals
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Database Architecture

The architecture of a database systems is greatly influenced by
the underlying computer system on which the database is running:
■ Centralized
■ Client-server
■ Parallel (multi-processor)
■ Distributed



Two-tier and Three-tier Architectures

user

application

database system

network

(a) Two-tier architecture

client

server

user

application client

database system

network

application server

(b) Three-tier architecture



History of Database Systems

■ 1950s and early 1960s:
● Data processing using magnetic tapes for storage

4 Tapes provided only sequential access
● Punched cards for input

■ Late 1960s and 1970s:
● Hard disks allowed direct access to data
● Network and hierarchical data models in widespread use
● Edgar F. Codd defines the relational data model

4 Later won the ACM Turing Award for this work
4 IBM Research begins System R prototype
4 UC Berkeley begins Ingres prototype

● High-performance (for the era) transaction processing



History (cont.)

■ 1980s:
● Research relational prototypes evolve into commercial systems

4 SQL becomes industrial standard
● Parallel and distributed database systems
● Object-oriented database systems

■ 1990s:
● Large decision support and data-mining applications
● Large multi-terabyte data warehouses
● Emergence of Web commerce

■ Early 2000s:
● XML and XQuery standards
● Automated database administration

■ Later 2000s:
● Giant data storage systems (Cloud)

4 Google BigTable, Yahoo PNuts, Amazon EC2, ..
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