
SE305 Database System Technology

Kenny Q. Zhu
Department of Computer Science

Shanghai Jiao Tong University

Kenny Zhu

Research Interests:
AI & Knowledge Engineering

Information extraction
Knowledge discovery
Text Mining & Understanding
Natural Language Processing

Domain Specific Languages
Concurrent and Distributed Languages
Data Processing
Probabilistic Programming

Degrees: National University of Singapore (NUS)
Postdoc: Princeton University
Experiences: Microsoft Redmond, USA

Microsoft Research Asia
Faculty at SJTU since 2009

Advanced Data & Programming
Technology Lab (ADAPT-LAB)

3PhD: 6
MSc: 8
Undergrads: Many

International Collaboration

4

Administrative Info (I)

• All-English Course: everything in English!

• Lecturer:
• Kenny Zhu, SEIEE #03-541, kzhu@cs.sjtu.edu.cn
• Office hours: by appointment or after class

• Teaching Assistant: Shanshan Huang
• Office: SEIEE #-03-341
• Email: florahuangss@163.com
• Office hours: Friday 4-5 PM

• Course Web Page (definitive source!):
http://www.cs.sjtu.edu.cn/~kzhu/se305/

mailto:kzhu@cs.sjtu.edu.cn
mailto:florahuangss@163.com
http://www.cs.sjtu.edu.cn/~kzhu/se305/

Administrative Info (II)

■ Textbook: Database System Concepts (5th ed.) By Abraham
Silberschatz, Henry F. Korth and S. Sudarshan.

■ Lecture materials on course web page (released after the lecture)

■ Assignments:
● Released on Thursday (usually)
● Due on the following Tuesday (usually)
● Submit hard copies to me/TA during or after class
● Late submission: -30% of full score for each additional day

Administrative Info (III)

■ 3-credit course

■ Modes of Assessment (tentative):
● Quizzes, Assignments: 40%
● 1 Lab Project (2-3 pax): 30%
● Final Exam: 30%

■ Email me/TA the names and main contact person of your group

Acknowledgement

■ The slides series used in this course are modified from the slides
copyrighted to Abraham Silberschatz, et al. which is available from
http://www.db-book.com/ .

http://www.db-book.com/

Course Overview

■ Introduction
■ Relational Model
■ SQL
■ Database Design and Application Design
■ Data Storage
■ Query Processing
■ Transactions
■ Concurrency Control
■ Database Architectures
■ Parallel and Distributed Databases
■ Object-based Databases and XML
■ Data Mining and Information Retrieval
■ 1-2 Tutorials
■ Project Presentations

Introduction

Roadmap For This Lecture

■ What is a DBMS?
■ Relational Data Models
■ Languages to access the database
■ Database Design

● E-R Models
■ Object-based data model
■ XML
■ Storage management
■ Transactions
■ Database architecture
■ History of databases

Database Management System (DBMS)

■ DBMS contains information about a particular enterprise
● Collection of interrelated data (the database)
● Set of programs to access the data
● An environment that is both convenient and efficient to use

■ Database Applications:
● Banking: transactions
● Airlines: reservations, schedules
● Universities: registration, grades
● Sales: customers, products, purchases
● Online retailers: order tracking, customized recommendations
● Manufacturing: production, inventory, orders, supply chain
● Human resources: employee records, salaries, tax deductions

■ Databases can be very large.
■ Databases touch all aspects of our lives

University Database Example

■ Application program examples
● Add new students, instructors, and courses
● Register students for courses, and generate class rosters
● Assign grades to students, compute grade point averages (GPA)

and generate transcripts
■ In the early days, database applications were built directly on top of

file systems

Drawbacks of using file systems to store data

■ Data redundancy and inconsistency
● Multiple file formats, duplication of information in different files

■ Difficulty in accessing data
● Need to write a new program to carry out each new task

■ Data isolation — multiple files and formats
■ Integrity problems

● Integrity constraints (e.g., account balance > 0) become �buried�
in program code rather than being stated explicitly

● Hard to add new constraints or change existing ones

Drawbacks of using file systems to store data
(Cont.)

● Atomicity of updates
4 Failures may leave database in an inconsistent state with partial

updates carried out
4 Example: Transfer of funds from one account to another should either

complete or not happen at all
● Concurrent access by multiple users

4 Concurrent access needed for performance
4 Uncontrolled concurrent accesses can lead to inconsistencies

– Example: Two people reading a balance (say 100) and updating it
by withdrawing money (say 50 each) at the same time

● Security problems
4 Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

Recent Reverse Trends

■ Active research on tackling these challenges in file systems – NoSQL
movement!

■ Map-Reduce, Hadoop, Google Big Tables …

■ Good efficiency for very large data (tera bytes to peta bytes) –
Database can’t store this much data!

■ Leverage massive distributed computing resources – data centers,
server farms, etc.

Levels of Abstraction

■ Physical level: describes how a record (e.g., instructor) is stored.
■ Logical level: describes data stored in database, and the

relationships among the data.
type instructor = record

ID : string;
name : string;
dept_name : string;
salary : integer;

end;
■ View level: application programs hide details of data types. Views

can also hide information (such as an employee�s salary) for security
purposes.

View of Data

An architecture for a database system

view 1 view 2

logical
level

physical
level

view n…

view level

Schemas and Instances

■ Similar to types and values in programming languages
■ Schema – the logical structure of the database

● Example: The database consists of information about a set of customers
and accounts and the relationship between them

● Analogous to type information of a variable in a program
● Physical schema: database design at the physical level
● Logical schema: database design at the logical level
● Changed infrequently

■ Instance – the actual content of the database at a particular point in time
● Analogous to the value of a variable

■ Physical Data Independence – the ability to modify the physical schema
without changing the logical schema
● Applications depend on the logical schema
● In general, the interfaces between the various levels and components

should be well defined so that changes in some parts do not seriously
affect others.

Data Models

■ A collection of tools for describing :
● Data , Data relationships, Data semantics, Data constraints

■ Relational model
● Collection of tables

■ Entity-Relationship data model (mainly for database design)
● Entities (objects) and their inter-relationship

■ Object-based data models (Object-oriented and Object-relational)
● Extension from E-R with encapsulations, methods and object

identity
■ Semi-structured data model (XML)

● Data items of the same type have different attributes
■ Other older models:

● Network model
● Hierarchical model (Windows registry, XML)

Relational Model

■ Relational model
■ Example of tabular data in the relational model

Columns

Rows

A Sample Relational Database

Data Manipulation Language (DML)

■ Language for accessing and manipulating the data organized by the
appropriate data model
● DML also known as query language

■ Two classes of languages
● Declarative (nonprocedural) – user specifies what data is

required without specifying how to get those data (e.g. SQL)
● Procedural – user specifies what data is required and how to get

those data (e.g. relational algebra, SQL procedural extensions)

■ SQL is the most widely used query language
● Pronounced as �sequel�
● �Structured Query Language�

Data Definition Language (DDL)

■ Specification notation for defining the database schema
Example: create table instructor (

ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

■ DDL compiler generates a set of table templates stored in a data
dictionary

■ Data dictionary contains metadata (i.e., data about data)
● Database schema
● Integrity constraints

4 Primary key (ID uniquely identifies instructors)
4 Referential integrity (references constraint in SQL)
– e.g. dept_name value in any instructor tuple must appear in

department relation
● Authorization

SQL

■ SQL: widely used non-procedural language
● Example: Find the name of the instructor with ID 22222

select name
from instructor
where instructor.ID = �22222�

● Example: Find the ID and building of instructors in the Physics
dept.
select instructor.ID, department.building
from instructor natural join department
where instructor.dept_name = �physics�

■ Application programs generally access databases through one of
● Language extensions that allow embedded SQL
● Application program interface (e.g., ODBC/JDBC) which allow

SQL queries to be sent to a database

Database Design

The process of designing the general structure of the database:

■ Logical Design – Deciding on the database schema. Database design
requires that we find a �good� collection of relation schemas.
● Business decision – What attributes should we record in the

database?
● Computer Science decision – What relation schemas should we

have and how should the attributes be distributed among the
various relation schemas?

■ Physical Design – Deciding on the physical layout of the database

Database Design?

■ Is there any problem with this design?

Design Approaches

■ Normalization Theory
● Formalize what designs are bad, and test for them

■ Entity Relationship Model

The Entity-Relationship Model

■ Models an enterprise as a collection of entities and relationships
● Entity: a �thing� or �object� in the enterprise that is distinguishable

from other objects
4 Described by a set of attributes

● Relationship: an association among several entities
■ Represented diagrammatically by an entity-relationship diagram:

What happened to dept_name of instructor and student?

instructor
ID
name
salary

department
dept_name
building
budget

member

Object-Relational Data Models

■ Relational model: flat, �atomic� values

■ Object Relational Data Models
● Extend the relational data model by including object orientation

and constructs to deal with added data types.
● Allow attributes of tuples to have complex types, including non-

atomic values such as nested relations.
● Preserve relational foundations, in particular the declarative

access to data, while extending modeling power.
● Provide backward compatibility with existing relational languages.

XML: Extensible Markup Language

■ Semi-structured data model
■ Defined by the WWW Consortium (W3C)
■ Originally intended as a document markup language not a database

language
■ The ability to specify new tags, and to create nested tag structures

made XML a great way to exchange data, not just documents
■ XML has become the basis for all new generation data interchange

formats.
■ A wide variety of tools is available for parsing, browsing and querying

XML documents/data

Storage Management

■ Storage manager is a program module that provides the interface
between the low-level data stored in the database and the application
programs and queries submitted to the system.

■ The storage manager is responsible to the following tasks:
● Interaction with the file manager
● Efficient storing, retrieving and updating of data

■ Issues:
● Storage access
● File organization
● Indexing and hashing

Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

Query Processing (Cont.)

■ Alternative ways of evaluating a given query
● Equivalent expressions
● Different algorithms for each operation

■ Cost difference between a good and a bad way of evaluating a query
can be enormous

■ Need to estimate the cost of operations
● Depends critically on statistical information about relations which

the database must maintain
● Need to estimate statistics for intermediate results to compute cost

of complex expressions

Transaction Management

■ What if the system fails?
■ What if more than one user is concurrently updating the same data?
■ A transaction is a collection of operations that performs a single

logical function in a database application
■ Transaction-management component ensures that the database

remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction failures.

■ Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.

Database Users and Administrators

Database

Database System Internals
naive users

(tellers, agents,
web users)

query processor

storage manager

disk storage
indices

statistical datadata

data dictionary

application
programmers

application
interfaces

application
program

object code

compiler and
linker

buffer manager file manager authorization
and integrity

 manager

transaction
manager

DML compiler
and organizer

query evaluation
engine

DML queries DDL interpreter

application
programs

query
tools

administration
tools

sophisticated
users

(analysts)
database

administrators

use write use use

Database Architecture

The architecture of a database systems is greatly influenced by
the underlying computer system on which the database is running:
■ Centralized
■ Client-server
■ Parallel (multi-processor)
■ Distributed

Two-tier and Three-tier Architectures

user

application

database system

network

(a) Two-tier architecture

client

server

user

application client

database system

network

application server

(b) Three-tier architecture

History of Database Systems

■ 1950s and early 1960s:
● Data processing using magnetic tapes for storage

4 Tapes provided only sequential access
● Punched cards for input

■ Late 1960s and 1970s:
● Hard disks allowed direct access to data
● Network and hierarchical data models in widespread use
● Edgar F. Codd defines the relational data model

4 Later won the ACM Turing Award for this work
4 IBM Research begins System R prototype
4 UC Berkeley begins Ingres prototype

● High-performance (for the era) transaction processing

History (cont.)

■ 1980s:
● Research relational prototypes evolve into commercial systems

4 SQL becomes industrial standard
● Parallel and distributed database systems
● Object-oriented database systems

■ 1990s:
● Large decision support and data-mining applications
● Large multi-terabyte data warehouses
● Emergence of Web commerce

■ Early 2000s:
● XML and XQuery standards
● Automated database administration

■ Later 2000s:
● Giant data storage systems (Cloud)

4 Google BigTable, Yahoo PNuts, Amazon EC2, ..

End

