
RICH-IP: An Interactive System for Configurable
High-Level IP Synthesis

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Automatic synthesis,
Hardware description languages

General Terms
Design, Languages

Keywords
IP design, Hardware synthesis

1. INTRODUCTION
Hardware description language (HDL) based IP synthesis

has been the industry standard in recent years. However, it
has a number of problems. First, Verilog and VHDL are so
low level that they are often compared to assembly languages
in terms of programability. The absense of advanced data
types and control mechanisms makes programming in these
languages tedious and error-prone. For example, to program
complex circuits, one often has to write massive amount of
boilerplate code. Some designers go as far as using Perl to
generate repeated Verilog code fragments. Second, the sim-
ulation and verification is the most time-consuming step in
IP design cycle. For industry-strength design, this loop can
go on for weeks and even months. This lengthy process is in
part due to the lack of static checks at compile time in most
HDLs and the difficulty in formal verification. Third, while
most HDLs offer design libraries of basic building blocks,
these are largely limited to the harware circuit level, and
are often inadequate for programming large, complex but
common algorithms such as those used in cryptography and
image processing. Today, designs for these algorithms re-
quire thousands of lines of Verilog code which is extremely
expensive to produce, debug and maintain. Last, because
HDLs do not offer the capability of high level abstraction, it
is not easy to reconfigure the functionality of an existing de-
sign. For example, for a given design of an AES algorithm,
if the user prefers to trade die space for speed, a common

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’10 Anaheim, CA, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

approach is to unroll a loop a number of times and execute
it in parallel within a clock cycle. Such unrolling cannot be
achieved in Verilog without substantial code change.

To address some of these problems, a range of new solu-
tions have been proposed. SystemC gives software engineers
access to hardware design by introducing an event-driven
simulation kernel and some ability in describing hardware in
C. SystemVerilog, on the other hand, aids hardware design-
ers by raising the abstract level of Verilog with convenient
programming constructs and some object-oriented concepts.
None of these languages allows the specification of a design
at the algorithmic level. Property Specification Language
(PSL) let the designers add assertions in their HDL code
about certain properties. It is nonetheless the user’s respon-
siblity to add correct assertions at the appropriate places.
Another approach to the verification problem is equipping
the HDL with a type system and providing static checks. A
number of HDLs, most notably Bluespec [1], are designed as
sublanguages or libraries of strongly typed functional pro-
gramming languages like Haskell and ML. While the type
system in these languages eliminates some design errors at
early stage, it does not make the coding of a design any eas-
ier. To the contrary, hardware engineers have to learn an-
other potentially unfamilar language such as Haskell. This
is perhaps why Bluespec now uses a SystemVerilog syntax.
Probably the most relevant work to this paper is the Spiral
project [2] which developed systems that translate high level
mathematical representations (in the SPL language) of cer-
tain DSP transforms into hardware designs. The work iden-
tifies a number of one-to-one correspondence between DFT
formulas to combinatorial data paths, and hence makes the
abstraction of functional components possible.

In this paper, we propose an architecture for IP design
which leverages the programability of SystemVerilog but ex-
tends it with a high level of mathematical abstraction. It
allows the hardware designer to specify algorithms and con-
straints in their designs directly, without concerns about the
unnecessary details of hardware connections when develop-
ing larger IPs. Our two-level compiler automatically trans-
lates a high level abstraction into a paramterized template,
which, together with user input on the choices of the pa-
rameters, synthesizes to a custom RTL. This architecture
generalizes the Spiral system to handle more diverse design
problems than DSP and uses a frontend familiar to most
hardware engineers. More importantly, the interactive pa-
rameter instantiation approach conveniently exposes areas of
algorithmic optimization to the designer and automatically
generates IPs that best cater to individual’s requirements.

Algorithm/Protocol

Constraints

Parameterized

IP Template

RTL Netlist

Verification

Enviroment

LIB II

LIB I

Edit SV+

Source Code

Constraints

Instantiate

x

Custom-IP

Figure 1: The architecture

2. THE MAIN IDEA
Figure 1 depicts the architecture of the proposed the RICH

system. The IP designer describes the algorithm, IP inter-
faces as well as constraints in SV+, a language extension to
SystemVerilog. The constrains define the physical proper-
ties of IP, such as maximum frequency, area cost, or min-
imum throughput. The SV+ code then gets preprocessed
by an SV+ preprocessor. This is a coarse-grained IP gen-
eration step in which the preprocessor searches through the
template library to locate most suitable hardware templates
that satisfies the IP constraints and module interfaces. The
result of the preprocessing is a parameterized intermediate
representation of the algorithm, IR(x), where x is a set of
variable parameters. At this point, the designer instanti-
ate these variables using a configuration file. Finally, in a
fine-grained IP generation step, the fully instantiated IR is
compiled into the RTL and verification environment with
the help of the module library. The end result of the entire
flow is a custom IP core, and it is passed to the designer for
verification. In case the generated custom IP core does not
match the specification, the designer can modify his or her
design by either fine tuning the IR with a different set of
variable instantiations, or by coarse adjustment in the SV+
code. The template library is designed for mapping algo-
rithms to specific hardware architectures. It is co-designed
by hardware engineers and algorithm designers, and it is
highly optimized for hardware implementation. The module
library contains many frequently used module components.
The circuit-level optimizations are accomplished both in this
library and during RTL code generation. Both libraries are
open and extendable, which makes the system highly flexi-
ble.

3. AN EXAMPLE
As an example, Figure 2 illustrates of the synthesis of

an AES IP core. AES [3] is a new encryption standard
which is widely used in both software and hardware designs.
Different applications call for AES IP cores with different
speed, area, and frequency. There are four main functions in
the AES algorithm: Subbyte(S), Mixcolumn(M), Addround-
key(A), and KeySchedule. All of these functions can be
represented by arithmetic transformation modules.

/* IP interface*/input clk, reset, en, start;Input [31:0] data_i, key_i;output [31:0] data_o;/* AES Algorithm */for i = 0 to 10a[i] = ubbyte(c[i-1])b[i] = ixcolumn(a[i])c[i] = ddroundkey(b[i], k[i])k[i] = KeySchedule(k[i-1]) …/* Constraints */Max. Frequency = 300MHzThroughput= 200MbpsArea < 10KGates ... S

S

S

S

S

M

A
A

A

Module a (clk, reset,Module aes_ctrl (clk, reset,Module aes_if (clk, reset,Module aes_core (clk, reset,Module aes (clk, reset,en, start,..)input clk, reset, en star;input [31:0] data_i, key_i;output [31:0] data_o;wire [31:0] a, b, c;aes_core aes_core(…)aes_interface aes_if(…)…endmodule
Module tb_aes;reg clk, reset, en star;reg [31:0] data_i, key_i;reg [31:0] data_o;aes aes(…)initial begin…always begin...endmodule ...

S M ASubbyte MixColumn AddRoundKeyx, y, z: Sub-module number (configurable)

Figure 2: The synthesis of AES IP core

To automatically generate a specific type of AES core, the
designer first describes the AES algorithm, the IP interface
and constraints in SV+. The SV+ code is then preprocessed
into a parameterized IR with five components: Register,
S, M , A, and KeySchedule. Each component corresponds
to a function in the AES algorithm, and all of them are
pre-designed in libraries. The template library contains the
abstract view of these components, such as the interface,
timing and area information. The preprocessor generates
a number of possible templates that implements this algo-
rithm, and the schematic of one such template (template
1) is shown in the figure. The number of copies of S, M
and A are configurable by variable x, y, and z. The mod-
ule library contains the detailed hardware implementation
of these modules. Once instantiated with the user configu-
ration file, a custom AES IP core is automatically generated
by the IR compiler.

4. CONCLUSION
A rapid, interactive, configurable and high-level IP syn-

thesis system (RICH-IP) was proposed. It offers a friendly
front-end (based on SystemVerilog) and high levels of ab-
straction when designing complex IP cores. Its two-level
compiler allows users to interactively configure important
design parameters in order to generate optimized cores that
best suit the user’s requirements. We believe the system sig-
nificantly simplifies IP design and performance tuning, and
dramatically decreases time-to-market.

5. REFERENCES
[1] Arvind. Bluespec: A language for hardware design,

simulation, synthesis and verification. In MEMOCODE,
pages 249–, 2003.

[2] G. Nordin, P. A. Milder, J. C. Hoe, and M. Püschel.
Automatic generation of customized discrete fourier
transform IPs. In DAC, pages 471–474, 2005.

[3] N. I. of Standards and Technology(U.S.). Advanced
Encryption Standards (AES). FIPS Publication.

