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Abstract
This paper presents the design, theory and implementation of
GLOVES1, a domain-specific language that allows users to specify
the provenance (the derivation history starting from the origins),
syntax and semantic properties of collections of distributed data
sources. In particular, GLOVES specifications indicatewhere to
locate desired data,howto obtain it,whento get it or to give up try-
ing, andwhat format it will be in on arrival. The GLOVES system
compiles such specification into a suite of data-processingtools in-
cluding an archiver, a provenance tracking system, a database load-
ing tool, an alert system, an RSS feed generator and a debugging
tool. In addition, the system generates description-specific libraries
so that developers can create their own applications. GLOVES also
provides a generic infrastructure so that advanced users can build
new tools applicable to any data source with a GLOVES descrip-
tion. We show how GLOVES may be used to specify data sources
from two domains: CoMon, a monitoring system for PlanetLab’s
800+ nodes, and Arrakis, a monitoring system for an AT&T web
hosting service. We show experimentally that our system canscale
to distributed systems the size of CoMon. Finally, we provide a de-
notational semantics for GLOVES and use this semantics to prove
two important theorems. The first shows that our denotational se-
mantics respects the typing rules for the language, while the second
demonstrates that our system correctly maintains the provenance.

Categories and Subject DescriptorsD.3.2 [Programming lan-
guages]: Data-flow languages

General Terms Languages

1. Introduction
One of the primary tasks in developing a distributed system is keep-
ing it running smoothly over long periods of time. Consequently,
well-designed distributed systems include a subsystem responsi-
ble for monitoring the health, security and performance of its con-
stituent parts. CoMon [24], designed to monitor PlanetLab [25], is
an illustrative example. CoMon operates by attempting to gather
a log file from each of 800+ PlanetLab nodes every five minutes.
When all is well (which it never is) each node responds with an
ASCII data file in mail-header format containing the node’s ker-
nel version, its uptime, its memory usage, the ID of the user with

1 We call the system GLOVES because it helps users get their hands on
things that are difficult to handle.
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Name/Use Properties
CoMon [24] Multiple data sets

PlanetLab host Archiving every 5 minutes
monitoring From evolving set of 800+ nodes

CoralCDN [13] Single Format
Log files from Periodic archiving
CDN monitoring From evolving set of 250+ hosts

AT&T Arrakis Execute programs remotely to
Website host collect data
monitoring Varied fetch frequencies

AT&T Regulus Diverse data sources
Network monitoring Archiving for future analysis

Per minute, hour, and day fetches
AT&T Altair Thousands of data sources

Billing auditing Archiving and error analysis
GO DB [1] Multiple Formats

Gene function info. Uploads daily, weekly, monthly
BioGrid [27] XML and Tab-separated Formats

Curated gene and multiple data sets<= 50MB each
protein data Monthly data releases

Figure 1. Example distributed ad hoc data sources.

the greatest CPU utilization,etc.CoMon archives this data in com-
pressed form and processes the information for display to Planet-
Lab users. CoMon also tracks various networking problems, main-
tains lists of “problem nodes” and supports on-going time-indexed
queries on the data. These features make CoMon an invaluablere-
source for users who need to monitor the health and performance
of their PlanetLab applications or experiments.

Almost all distributed systems should have similar monitoring
infrastructure. However, the implementors of each new distributed
system currently have to build “one-off” monitoring tools,which
takes an enormous amount of time and expertise to do well. A sub-
stantial part of the difficulty comes from the diversity, quality, and
quantity of data these systems must handle. In addition, implemen-
tors cannot ignore errors: they must properly handle network errors,
partial disconnects and corrupted data. They also cannot ignore per-
formance issues: data must be fetched before it vanishes from re-
mote sites and it must be archived efficiently in ways that do not
burn out hard drives by causing them to overheat. Last but notleast,
new monitoring systems must interact with legacy devices, legacy
software and legacy data, often preventing implementers from us-
ing robust off-the-shelf data management tools built for standard
formats like XML and RSS.

Systems researchers are not alone in their struggles with dis-
tributed collections of ad hoc data sources. Similar problems appear
in the natural and social sciences, including biology, physics and
economics. For example, systems such as BioPixie [21], Grifn [20]
and Golem [26], built by computational biologists at Princeton,
routinely obtain data from a number of sources scattered across
the net. Often, the data is archived and later analyzed or mined for
information about gene structure and regulation. Figure 1 summa-
rizes selected examples of distributed ad hoc data sources.



We have developed a new domain-specific language and system
called GLOVES to facilitate the creation, maintenance and evolution
of tools for processing ad hoc data from distributed sources. The
language allows developers to describe the provenance, syntax and
semantics of data sources they wish to monitor, including:

• Where the data is located. The data may be in a file on the
current machine (perhaps written by another process), at some
remote location, or at a collection of locations.

• When to get the data. The data may need to be fetched just once
(right now!) or according to some repeating schedule.

• How to obtain it. The data may be accessible through standard
protocols such ashttp or ftp or it may be created via a local
or remote computation.

• What preprocessingthe system should do when the data ar-
rives. The data may be compressed or encrypted. Privacy con-
siderations may require the data be anonymized.

• What format the data source arrives in. The data may be in
ASCII, binary, or EBCDIC. It may be tab- or comma-separated
or it may be in XML. It may be in the kind of non-standard
format thatPADS [12, 16] was designed to describe or for which
the user has a well-typed parser.

The GLOVES system compiles these high-level specifications
into a collection of programming libraries and end-to-end tools for
distributed systems monitoring. Our current tool suite includes a
number of useful artifacts, inspired by the needs we have observed
in a variety of ad hoc monitoring systems including an archiver,
provenance tracking system, database loader and others.

The GLOVESsystem can generate all of these tools from declar-
ative descriptions and tool configuration specifications. Thus for
common tasks, users can manage distributed data sources simply
by writing high-level declarative specifications. There are relatively
few concepts to learn, no complex interfaces and no tricky boiler-
plate to master to initialize the system or thread together tool li-
braries. Because there is so little “programming” involved, we re-
fer to the act of writing simple specifications and using pre-defined
tools as theoff-the-shelfmode of use.

To provide extensibility, GLOVES supports two other modes of
use. The second mode is for thesingle-minded implementer, who
needs to build a new application for aspecificcollection of dis-
tributed data sources. Such users need more than the built-in set
of tools. To meet this need, the system provides support for creat-
ing new tools by generating libraries for fetching data, forparsing
and printing, for performing type-safe data traversal, andfor stream
processing using classic functional programming paradigms such
asmap, fold and iterate . These generated libraries make it
straightforward to create custom tools specific to particular data
sources. The cost of this flexibility is a steeper learning curve be-
cause the programmer must learn a variety of interfaces. Functional
programmers may find these interfaces intuitive, but computational
scientists may prefer to stick with off-the-shelf uses.

The third mode is for thegeneric programmer. Generic pro-
grammers may observe that they (or their colleagues) need toper-
form some task over and over again on different data sets. Rather
than writing a program specific to a particular data set, theyuse
a separate set of interfaces supplied by the GLOVES system to
write a single generic program to complete the task. For exam-
ple, the Round Robin Database (RRD) loader is generic because
it is possible to load data from any specified source into the RRD
tool [22] without additional “programming.” The generic program-
ming mode is the most difficult to use as it involves learning a
relatively complex set of interfaces for encoding Generalized Al-
gebraic Datatypes (GADTs) [32] and Higher-Order Abstract Syn-
tax (HOAS). These complexities are required to encode the depen-

dent features of GLOVES and to compensate for the lack of built-
in generic programming support in OCAML . Still, the reward for
building generic tools is high: as more and more such tools are built,
the life of the off-the-shelf user becomes easier and easier. We used
this infrastructure to build the off-the-shelf tools described earlier.

To guide the design and implementation of GLOVES, we have
developed an idealized, first-order calculus and associated type sys-
tem to model its core elements. We have equipped this calculus with
a denotational semantics that specifies for each data sourcedescrip-
tion the set of (meta-data, data) pairs that it should produce. The
semantics allows users to calculate and reason about the data that
they should be receiving. We have proven the type system sound
with respect to the semantics. Moreover, we have used the seman-
tics to provedependency correctness, a key theorem inspired by
earlier work on provenance in databases by Cheneyet al. [8]. This
theorem guarantees the correct provenance meta-data is associated
with every data item.

In addition to being of theoretical interest, the calculus and its
meta-theory have served as a guide for our implementation infras-
tructure. In particular, the compilation strategy for our surface-level
language was influenced by observations about how higher-level
constructs could be compiled into combinators from our calculus.
We also reorganized the way earlier versions of our system pro-
cessed and propagated provenance meta-data in order to obeythe
principle of dependency correctness.

Contributions. The paper makes the following contributions:

• It describes the design of a domain-specific language for speci-
fying provenance, syntax and semantic properties of distributed
ad hoc data sources.

• It provides a formal denotational semantics for our language
and proves the key properties of Type Soundness and Depen-
dency Correctness.

• It describes the architecture of the system and how it enables
multiple modes of use.

• It demonstrates the practicality of our architecture and its im-
plementation by showing the infrastructure will scale to handle
systems the size of PlanetLab.

Outline. In the rest of the paper, we describe the examples we will
use throughout the paper (Section 2), show how to describe these
data sources in GLOVES (Section 3), describe the generated tool in-
frastructure and its modes of use (Section 4), define a denotational
semantics and prove our key correctness properties (Section 5), dis-
cuss the implementation and evaluate its performance (Section 6),
describe related work (Section 7) and conclude (Section 8).

2. Running Examples
The CoMon [24] system, developed at Princeton, monitors the
health and status of PlanetLab [25] by attempting to fetch data from
each of PlanetLab’s 800+ nodes every 5 minutes. This data ranges
from the node uptime to memory usage to kernel version. CoMon
displays the data to users in tabular form and allows them to per-
form a number of simple queries to find, for instance, lightlyloaded
nodes, nodes with drifting clocks or nodes with little remaining disk
space. CoMon also monitors nodes for various problems and gener-
ates reports of deviant machines or user programs. Finally,CoMon
archives the data so PlanetLab users can perform custom analyses
of historical data.

AT&T provides a web hosting service. The infrastructure for
this service includes a variety of hardware components suchas
routers, firewalls, load balancing machines, actual web servers
and databases, replicated and geographically distributed. Hence,
a given web site may be distributed across a variety of machines



let sites =
[

"http://pl1.csl.utoronto.ca:3121";
"http://plab1-c703.uibk.ac.at:3121";
"http://planet-lab1.cs.princeton.edu:3121"

]
feed simple_comon =
base {|

sources = all sites;
schedule = every 5 min, starting now,

timeout 60.0 sec;
format = Comon_format.Source;

|}

Figure 2. Simple CoMon feed (simple comon.fml ).

feed comon_1 =
base {|

sources = any sites;
schedule = every 5 min, lasting 2 hours;
format = Comon_format.Source;

|}

Figure 3. Description fragment for data from one of many sites
(sites.fml ).

running a variety of operating systems in a variety of locations.
When a customer signs up for AT&T’s hosting service, part of
the contract specifies what kinds of monitoring AT&T will provide
for the site. The Arrakis infrastructure provides this monitoring ser-
vice. It tracks a variety of resources using a wide array of measures,
including network bandwidth, packet loss, cpu utilization, disk uti-
lization, memory usage, load averages,etc.For each machine in the
hosting service and for each such resource, the monitoring system
archives the values at regular intervals and issues alerts when the
values exceed resource- and contract-specific levels. The archive is
used to track long-term behavior of the service, allowing engineers
to determine when more resources need to be provisioned, forex-
ample, adding cpus, memory or disk space. It also allows engineers
to understand the “normal” behavior for a particular site which may
include daily or seasonal cycles.

3. GLOVES: An Informal Introduction
The GLOVES language allows users to describe streams of data and
meta-data that we refer to asfeeds. To introduce the central features
of the language, we work through a series of examples drawn from
the CoMon and Arrakis monitoring systems.

3.1 CoMon Feeds

Figure 2 presents a simple CoMon statistics feed. This description
specifies thesimple_comon feed using thebase feed construc-
tor. Thesources field indicates that data for the feed comes from
all of the locations listed insites . Theschedule field speci-
fies that relevant data is available from each source every five min-
utes, starting immediately. When trying to fetch such data,the sys-
tem may occasionally fail, either because a remote machine is down
or because of network problems. To manage such errors, the sched-
ule specifies that the system should try to collect the data from each
source for 60 seconds. If the data does not arrive within thatwin-
dow, the system should give up.

The last field in a base feed constructor is theformat field,
which specifies the syntax of the fetched data by supplying a
parser for it. In this case,Comon_format.Source is actu-
ally a parser generated from aPADS/ML [16] specification file
(comon_format.pml ), which we have omitted because of space

( * Ocaml helper values and functions * )
let config_locations =

["http://summer.cs.princeton.edu/status/ \
tabulator.cgi?table=slices/ \
table_princeton_comon&format=nameonly"]

( * Feed of nodes to query * )
feed nodes =

base {|
sources = all config_locations;
schedule = every 5 min;
format = Nodelist.Source;

|}

let makeURL (Nodelist.Data x) =
"http://" ˆ x ˆ ":3121"

let old_locs = ref []
let current list_opt =

match list_opt with
Some l -> old_locs := l; l

| None -> !old_locs

( * Dependent CoMon feed of node statistics * )
feed comon =

foreach nodelist in nodes
create

base {|
sources = all (List.map makeURL

(List.filter Nodelist.is_node
(current (value nodelist))));

schedule = once, timeout 60.0 sec;
format = Comon_format.Source;

|}

Figure 4. Node location feed drives data collection
(comon.fml ).

constraints. While it is not strictly necessary for GLOVESprogram-
mers to usePADS/ML specifications in their descriptions, and the
key ideas in this paper can be understood without a deep knowl-
edge ofPADS/ML , the two languages have been designed to fit
together elegantly. Moreover, several of our generated tools exploit
the common underlying infrastructure to enable useful dataanaly-
ses and transformations over feeds whose formats are specified by
PADS/ML descriptions.

A simple variation of our first description appears in Figure3. In
contrast tosimple_comon , which returns data fromall sites per
time slice,comon_1 returns data from justonesite per time slice.
This difference between the two is specified using theany con-
structor instead of theall. This feature is particularly useful when
monitoring the behavior of replicated systems, such as those us-
ing state machine replication, consensus protocols, or even loosely-
coupled ones such as Distributed Hash Tables (DHTs) [5]. In these
systems, the same data will be available from any of the function-
ing nodes, so receiving results from the first available nodeis suffi-
cient. The schedule forcomon_1 indicates the system should fetch
data every five minutes for two hours, using thelasting field
to indicate the duration of the feed. It omits thestarting and
timeout specifications, causing the system to use default settings
for the start time and the timeout window.

So far, our examples have hard-coded the set of locations from
which to gather data. In reality, however, the CoMon system has an
Internet-addressable configuration file that contains a list of hosts to
be queried, one per non-comment line. This list is periodically up-
dated to reflect the set of active nodes in PlanetLab. Figure 4spec-
ifies a version of thecomon feed that depends upon this configu-
ration information. To do so, the description includes an auxiliary
feed callednodes that describes the configuration information: it



ptype nodeitem =
Comment of ’#’ * pstring_SE(peor)

| Data of pstring_SE(peor)

let is_node item =
match item with
Data _ -> true
| _ -> false

ptype source =
nodeitem precord plist (No_sep, No_term)

Figure 5. PADS/ML description (nodelist.pml ) for CoMon
configs, with one host name per uncommented line.

is available from theconfig_location , it should be fetched
every five minutes, and its format is described by thePADS/ML de-
scription source given in the filenodelist.pml , which ap-
pears in Figure 5.

The PADS/ML description in Figure 5 specifies thatsource
is a list (plist ) of new-line terminated records (precord ) each
containing anodeitem . In turn, anodeitem is either a’#’
character followed by a comment string, which should be tagged
with the Comment constructor, or a host name, which should be
tagged asData . The description also defines a helper function
is_node , which returns true if the data item in question is a
host name rather than a comment. Given this specification, the
nodes feed logically yields a list of host names and comments
every five minutes. In fact, because of the possibility of errors, the
feed actually delivers alist optionevery five minutes:Someif the
list is populated with data,None if the data was unavailable at the
given time-slice. Furthermore, to record provenance information,
each element in the feed is actually a pair of meta-data and the
payload value.

Given thenodes specification, we can define thecomon feed
using the notationforeach nodelist in nodes create
... . In this declaration, each element ofnodes is bound in turn to
the variablenodelist for use in generating the new feed declared
in “ ... ” The final result of theforeach is the union of all such
newly generated feeds. Both the payload dataand the provenance
meta-data ofnodelist may be used in creating the dependent
feed. In this example, we use the functionvalue to select only
the payload portion, ignoring the meta-data. The complementary
functionmeta provides access to the provenance information.

To complete the construction of thecomon feed, a small
amount of functional programming allows the user to manage er-
rors and strip out comment fields. Any such simple transformations
may be written directly in OCAML , the host language into which
we have embedded GLOVES. In particular, thecurrent function
checks if thenodelist value isSome l , in which case it caches
l before returning it as a result. Otherwise, if thenodelist value
is None (indicating an error), the most recently cached list of nodes
is used instead. The rest of thesources specification filters out
comment fields and converts the host names to URLs with the re-
quired port using the auxiliary functionmakeURL.

With this specification, we expect to get data from all the active
machines listed in the configuration file every five minutes. We
further expect the system to notices changes in the configuration
file within five minutes.

The previous examples all showcased feeds containing a single
type of data. GLOVES also provides a datatype mechanism so we
may construct compound feeds containing data of different sorts.
As an example of where such a construct is useful, the CoMon
system includes a number of administrative data sources. One such
source is a collection of node profiles, collecting the domain name,
IP address, physical location,etc., for each node in the cluster.

A second such source is a list of authentication informationfor
logging into the machines. These two data sources have different
formats, locations, and update schedules, but system administrators
want to keep a combined archive of the administrative information
present in these sources. Ifsites_mime is a feed description of
the profile information andsites_keyscan_mime is a feed of
authentication information, then the declaration

feed sites =
Locale of sites_mime

| Keyscan of sites_keyscan_mime

creates a feed with elements drawn from each of the two feeds.
The constructorsLocale and Keyscan tag each item in the
compound feed to indicate its source.

3.2 Arrakis Example

We now shift to an example drawn from AT&T’s Arrakis project.
Like the earlier CoMon example, thestats feed in Figure 6
monitors a collection of machines described in a configuration file.
Before we discuss thestats feed itself, we first explain some
auxiliary feeds that we use in its definition.

The raw_hostLists description has the same form as the
nodes feed we saw earlier, except it draws the data from a local
file once a day. We use afeed comprehensionto define a clean ver-
sion of the feed,host_lists . In the comprehension, the built-in
predicateis_good verifies that no errors occurred in fetching the
current list of machineshl , as would be expected for a local file.
The functionget_hosts takeshl and uses the built-in function
get_good to extract the payload data from the provenance and
error infrastructure, an operation that is guaranteed to succeed be-
cause of theis_good guard. The functionget_hosts then se-
lects the non-comment entries and unwraps them to produce a list
of unadorned host names.

We next define a feed generatorgen_stats that yields an
integrated feed of performance statistics for each supplied host.
When given a hosth, gen_stats creates an every-five-minute
schedule lasting twenty-four hours with a one minute timeout. It
uses this schedule to describe a compound feed that pairs twobase
feeds: the first uses the Unix commandping to collect network
statistics about the route toh while the second performs a remote
shell invocation usingssh to gather statistics about how long the
machine has been up. Both of these feeds use theproc constructor
in thesources field to compute the data on the fly, rather than
reading it from a file. The argument toproc is a string that
the system executes in a freshly constructed shell. The pairing
constructor for feeds takes a pair of feeds and returns a feedof pairs,
with elements sharing the same scheduled fetch-time being paired.
This semantics produces a compound feed that for each host returns
a pair of its ping and uptime statistics, conveniently grouping the
information for each host. Of course, the full Arrakis monitoring
application uses many more tools than justping anduptime to
probe remote machines so the full feed description has many more
components than this simplified version.

Finally, we define the feedstats . The most interesting piece
of this declaration is thelist feed comprehension, given in square
brackets, that we use to generate a feed of lists. Given a hostlist
elementhl , the right-hand side of the comprehension uses the
value function to extract the payload from the meta-data and then
considers each hosth from the resulting list in turn. The left-hand
side of the comprehension uses thegen_stats feed generator to
construct a feed of the statistics forh. The list feed comprehension
then takes this collection of statistics feeds and convertsthem into
a single feed, where each entry is a list of the statistics forthe
machines inhl at a particular scheduled fetch-time. We call each
such entry asnapshotof the system. The resulting feed makes



let config_locations =
[("file:///arrakis/config/machine_list")];

feed raw_hostLists =
base {|
sources = all config_locations;
schedule = every 24 hours;
format = Hosts.Source; |}

let get_host (Hosts.Data h) = h
let get_hosts hl =

List.map get_host
(List.filter Hosts.is_node hl)

feed host_lists =
{| get_hosts (get_good hl) |

hl <- raw_hostLists, is_good hl |}

feed gen_stats (string h) =
let s = every 5 mins,

timeout 1 min,
lasting 24 hours in

(
base {|

sources = proc ("ping -c 1 " ˆ h);
format = Ping.Source;
schedule = s; |},

base {|
sources = proc ("ssh " ˆ h ˆ " uptime");
format = Uptime.Source;
schedule = s; |}

)

feed stats =
foreach hl in host_lists create

[ gen_stats (h) | h <- value hl ]

Figure 6. Simplified version of Arrakis feed (arrakis.fml ).

it easy for down-stream users to perform actions over snapshots,
relieving them of the burden of having to implement their own
multi-way synchronization. Given the list feed comprehension, the
foreach...create construct generates a feed of snapshots
from the feed of host lists.

4. Working with Feeds
4.1 The “Off the Shelf” User

The GLOVES system provides a suite of “off-the-shelf” tools to
help users cope with standard data administration needs. After writ-
ing a GLOVES description, users can customize these tools by writ-
ing simpleconfiguration files, such as shown in Figure 7. Each con-
figuration file includes a feed declaration header and a sequence of
tool specifications. The header specifies the path to the feedde-
scription file (comon.fml ) and the name of the feed to be created
(comon). Each tool specification starts with the keywordtool fol-
lowed by the name of the tool (e.g., provtrack and rss ). The
body of each tool specification lists name-value pairs, where val-
ues are OCAML expressions. Some attributes are optional, and the
compiler fills in a default value for every omitted attribute. GLOVES
compiles a configuration file into an OCAML program that creates
and archives the specified feed, configures the specified tools, and
applies them to the feed in parallel. In the following paragraphs, we
describe some of the tools we have implemented.

Archiver. The archiver saves the data fetched by a feed in
the local file system, organizing it according to the structure of
the feed, with one directory per base feed. It places a catalog in
each directory documenting the source of the data, its scheduled

feed comon.fml/comon

tool provtrack
{

minalert = true; maxalert = true;
lesssig = 3; moresig = 3;
slicesize = 10;
slicefile = "slice.acc";
totalfile = "total.acc";

}

tool rss
{

title = "CoMon Memory RSS";
link = "http://www.comon.org/memory-rss.xml";
desc = "CoMon Memory Usage Information";
path = "<top>.[?].Mem_info";

}

Figure 7. Example tool configuration file (comon.tc ).

=================================================== ===
Summary of network transmission errors
=================================================== ===
ErrCode: 1 ErrMsg: Misc HTTP error Count: 12
ErrCode: 5 ErrMsg: Bad message Count: 27
ErrCode: 6 ErrMsg: No reply Count: 2

=================================================== ===
Top 10 locations with most network errors
=================================================== ===
Loc: http://planetlab01.cnds.unibe.ch:3121 Count: 2
Loc: http://pepper.planetlab.cs.umd.edu:3121 Count: 2
... omitted ...

Figure 8. Fragment of provenance tracker output (comon.acc ).

arrival time and the actual arrival time. The archiver will optionally
compress files.

Profiler. The profiler monitors performance, reporting through-
put, average network latency and average system latencies over a
period of time. Users can specify in the configuration when topro-
file and for how long. We used this tool to produce some of the
experimental results in Section 6.

Provenance tracker.The provenance tracker maintains statisti-
cal profiles for feeds. These include error rates, most common er-
rors and their source locations and times. For numeric data,the
tracker keeps aggregates such as averages, max/min values and
standard deviations. For other data (e.g., strings, URLs and IP ad-
dresses), it keeps the frequency of the topN most common values.
The user can configure the tracker to profile entire feeds at once,
or incrementally. The latter is useful for infinite feeds, because it
allows users to continuously monitor feeds and compare their cur-
rent behavior with historical statistics. The tracker can output either
plain text or XML. Figure 8 shows portions of provenance tracker
output for the CoMon example.

Alerter. The alerter allows users to register boolean functions
which generate notifications when they evaluate to false on feed
items. The tool appends these notifications to a file, which can be
piped into other tools. The system provides a library of common
alerters such as exceeding max/min thresholds or deviatingfrom
the norm (i.e., trigger an alert when a selected value strays more
than k standard deviations from its historical value). Users can
supply their own conditions by giving arbitrary OCAML predicates
in the configuration file.

Database loader.This tool allows users to load numerical data
from a feed into an RRD. Users specify a function to transform
feed items into numeric values and RRD parameters such as data
source type and sampling rate. RRD indexes the data by arrival
time. It periodically discards old data to make space for new. The
tool supports time-indexed queries and graphing of historical data.



let (sample, _) = Feed.split_every 600. comon in
let select_load = function

Some {Comon_format.Source.
loads = (_, load::_)} -> Some load

| None -> None in
let loads = Feed.map select_load sample in
let load_tbl = Feed.fold update empty_tbl loads
in print_top 10 load_tbl

Figure 9. Code fragment finding least loaded PlanetLab nodes.

let update_m tbl adata =
let meta = Feed.get_meta adata in
let data = Feed.get_contents adata in
match meta, data with

(h, Some basemeta), Some load ->
let location = Meta.get_link basemeta in
update tbl (location, data)

| _ -> tbl (* no change to tbl *) in
let load_tbl = Feed.fold_m update_m empty_tbl loads
in print_top_with_loc 10 load_tbl

Figure 10. Revised code fragment with provenance meta-data.

RSS feed generator.The RSS feed generator converts a GLOVES
feed to an RSS feed. Users specify the title, link (source), descrip-
tion, update schedule and contents of the RSS feed. Content speci-
fications are written in the path expression language.

4.2 The Single-Minded Implementer

In addition to the off-the-shelf tools, GLOVES includes an API for
manipulating generated feeds. The API provides users with afeed
abstraction representing a potentially infinite series of elements.
This abstraction is related to that of a lazy list, but extends it with
support for provenance information. Therefore, we model the feed
API on the list APIs of functional languages but provide two levels
of abstraction. One level allows users to manipulate feeds like any
lazy list of data elements (ignoring where they come from), while
the other exposes the meta-data as well.

For example, consider PlanetLab users looking for a desirable
set of nodes on which to run their experiments. They can use the
API generated from the CoMon description to monitor PlanetLab
for a few minutes to find the least loaded nodes. Figure 9 shows
an OCAML code fragment that collects the nodes with the low-
est average loads over 10 minutes and then prints them. We omit
the details for maintaining the table of top values, as it is orthogo-
nal to our discussion. First, we useFeed.split_every to split
the feed when 600 seconds (10 minutes) have elapsed. Then, we
useFeed.map to project the load data from the CoMon elements.
Finally, we useFeed.fold to collect the data into a table. Func-
tion update adds an entry to the table, andempty_tbl is the
initially empty table. After filling the table,print_top 10 pro-
cesses each node’s loads and prints the ten lowest average loads.

However, if we want a report of the names of the nodes that
have the lowest average loads, the above solution is not good
enough because the CoMon data format does not include the node
location in the data. In such situations, provenance meta-data is
essential. We therefore replace the last two lines of Figure9 with
the code in Figure 10 that exploits the meta-data. First, we give
theupdate_m (update with meta) function that uses meta-data to
associate a location with every load in the table. It relies on the
Meta module, which GLOVES provides to facilitate management
of meta-data. Next, we show a call to the meta-aware foldfold_m ,
which passes the payload and its meta-data to the folding function.
Last, the callprint_top_with_loc 10 prints the ten lowest
average loads and their locations.

It should be clear from these examples that the single-minded
implementer has a number of new interfaces to master relative to

the off-the-shelf user, but gains a correspondingly higherdegree of
flexibility and can still write relatively concise programs.

4.3 The Generic Programmer

Occasionally, users might want to develop functions that can ma-
nipulateany feed. Often, such functions can be written parametri-
cally in the type of the feed element, much like the feed library
functions discussed above. However, the behavior of many feed
functions depends on the structure of the feed and its elements.
Such functions can be viewed asinterpretationsof feed descrip-
tions. To support their development, we provide a frameworkfor
writing feed interpreters.

Two core examples of feed interpretation are the feed creator
and the provenance tracker. The behavior of these tools depends on
the structure of the feed. Functions like these require as input a run-
time representation of the feed, complete with the details of the feed
description that they represent. The obvious choice for represent-
ing feed descriptions in OCAML is a datatype. However, standard
OCAML datatypes are not sufficiently typeful to express the types
of many generic feed functions. For example, the feed creation
function has the type:feed_create : ’a prefeed ->
’a feed where the type’a prefeed is an AST of a feed
description and feed elements have type’a . This limitation of
datatypes has been widely discussed in the literature, and vari-
ous solutions have been proposed [11, 31, 32]. We have chosento
represent our AST using a variant of the Mogensen-Scott encod-
ing [18, 30] which exploits higher-order abstract syntax toencode
variable binding in feed descriptions. This implementation strategy
exploits OCAML ’s module system to type the encodings inFω.
Our earlier work onPADS/ML [11] exploited a similar strategy, but
there we only sought to encode the OCAML type of the data, not the
entirePADS/ML description, which is where higher-order abstract
syntax becomes useful.

The result of our work is that developers can interpret feed-
description representations by case analysis on their structure,
while still achieving the desired static guarantees. Moreover, we
have successfully used this framework to developall of the tools
presented in this paper, including the feed creator. The compiler
only infers appropriate type declarations from feed descriptions
and compiles the feed syntax into our representations. However,
as one might expect, interfaces using higher-order abstract syntax
and Mogensen-Scott encodings are one step more complex than
those involving the more familiar maps and folds. Consequently,
the learning curve for the generic programmer is one step steeper
than the curve for the single-minded implementor, and two (or
perhaps ten) steps steeper than the curve for the off-the-shelf user.

5. GLOVES Semantics
Developing a formal semantics for GLOVES has been an integral
part of our language design process. The semantics helps commu-
nicate our ideas precisely and explore the nuances of designdeci-
sions. Moreover, the semantics provides users with a tool toreason
about the feeds resulting from GLOVESdescriptions, including sub-
tleties related to synchronization, timeouts, errors and provenance.

To express locations, times, schedules and constraints, the feed
calculus depends upon ahost language, which we take to be the
simply-typed lambda calculus. Figure 11 presents its syntax, which
includes a collection of constants to simplify the semantics: strings
(w), times (t) and locations (ℓ). We assume times may be added
and compared and we let∞ represent a time later than all others.
We assume that the set of locations includes the constantnowhere,
indicating the associated data was computed rather than fetched.
We treat schedules as sets of times and use the notationt ∈ s to
refer to a timet drawn from the sets. We use a similar notation to
refer to elements of a list. The host language also includes standard



(host-language base types)
b ::= bool | string | time | loc

(host-language types)
τ ::= b | τ option | τ1 ∗ τ2 | τ1 + τ2 | τ list | τ set | τ1 → τ2

(host-language values)
v ::=

false | true booleans
| w | t | ℓ strings, times, locations
| None | Some v optional values
| (v1, v2) pairs
| inl v | inr v sum values
| [v1, . . . , vn] list values
| {v1, . . . , vn} set values
| λx:τ.e function values

(host-language expressions)
e ::=

x variables
| v data values
| None | Some e option expressions
| ... more typed lambda expressions

Figure 11. Host Language Syntax.

(feed payload types)
σ ::= τ | τ option | σ1 ∗ σ2 | σ1 + σ2 | σ list

(core feeds)
C ::=
{ src = e1; source specification
sched = e2; schedule specification
win = e3; time-out window specification
pp = e4; pre-processor
format = e5; } format specification

(feeds)
F ::=

all C all sources
| any C one of multiple sources
| ∅ empty feed
| One(ev, et) singleton feed
| SchedF(e) schedule to feed
| F1 ∪ F2 union feed
| F1 + F2 sum feed
| (F1, F2) pair feed
| [F | x← e] list comprehension feed
| {|F2 | x← F1|} feed comprehension
| filter F with e filter feed
| let x = e in F let feed

Figure 12. Feed Language Syntax.

structured types such as options, pairs, sums, lists and functions.
We omit the typing annotations from lambda expressions whenthey
can be reconstructed from the context and we use pattern matching
where convenient (e.g.,λ(x, y).e is a function over pairs).

5.1 Feed Syntax and Typing

The abstract syntax for our feed calculus and its typing rules appear
in Figures 12 and 13, respectively. The feed typing judgmenthas
the form Γ ⊢ F : σ feed, which means that in the contextΓ
mapping variables to host language typesτ , F is a feed ofσ values.

The core typing judgment, which has the formΓ ⊢ C : σ core,
conveys the same information for core feeds.

Intuitively, a feed carrying values of typeσ is a sequence of pay-
load values of typeσ. However, to record provenance information,
we pair each payload value with meta-data, so a feed is actually a
sequence of (meta-data, payload) pairs. At the top-level, meta-data
consists of a triple of the scheduled time for the payload, adepen-
dency setthat records the origin and scheduled time of any data
that contributed to the payload, and a nested meta-data fieldwhose
form depends upon the type of the payload.

Formally, we letm range over top-level meta-data,ds range
over dependency sets, andn range over “nested” meta-data:

m ::= (t, ds, n) top-level meta-data

ds ::= {(t1, ℓ1), . . . , (tn, ℓn)} dependency set

n ::= (t, ℓ, None) base meta-data (timeout)
| (t, ℓ, Some t) base meta-data (success)
| (n1, n2) pair meta-data
| inl n sum meta-data
| inr n sum meta-data
| [n1, . . . , nk] list meta-data

Given meta-datam, we writem.t, m.ds andm.nest for the first,
second and third projections (respectively) ofm. Base meta-data is
a triple of the scheduled time, the location of origin and an optional
arrival time whereNone indicates the data did not arrive in time.

As shown in Figure 12, we define the feed payload typeσ in
terms of host language types, stratified to facilitate the proof of
semantic soundness. We use the functionmeta(σ) to define the
type of meta-data associated with payload of typeσ:

meta(σ) = time ∗ ds ∗ nest(σ)
ds = (time ∗ loc) set
nest(τ ) = time ∗ loc ∗ (time option)
nest(τ option) = time ∗ loc ∗ (time option)
nest(σ1 ∗ σ2) = nest(σ1) ∗ nest(σ2)
nest(σ1 + σ2) = nest(σ1) + nest(σ2)
nest(σ list) = nest(σ) list

Feed typing depends upon a standard judgment for typing lambda
calculus expressions:Γ ⊢ e : τ .

Having covered these preliminaries, we can now discuss the
syntax and typing for each of the feed constructs in Figure 12.
Core feeds express the structure of base feeds, describing the data
sources (src), schedule (sched), window (win), preprocessing
function (pp) and file format (format). The source field describes
the set of locations from which to fetch data. It may contain pseudo-
locations that model theproc form found in the implementation.
Instead of having timeouts specified as part of schedules, aswe did
in the surface language, the calculus separates these two concepts
into distinct fields, which simplifies the semantics. If an item spec-
ified to arrive at timet by schedulee2 fails to arrive within the
window e3, the feed pretends it received the valueNone. Other-
wise, it wraps the received data string in an option. As a result, the
preprocessore4 maps astring option to a string option, where a
result ofNone indicates either a network or preprocessing error.
Finally, the formatting functione5 parses the output of the prepro-
cessor to produce a value of typeτ option, where aNone result in-
dicates a network, preprocessing or formatting error. (Forthe sake
of simplicity, we do not model the variety of error codes thatthe
implementation supports.)

The feedall C selects all the data from the core feedC. The
feedany C selects for each time in the schedule forC the first
good value to arrive from any location. It returnsNone paired with
appropriate meta-data if no such good value exists.



Γ ⊢ e1 : loc list Γ ⊢ e2 : time set Γ ⊢ e3 : time
Γ ⊢ e4 : string option→ string option

Γ ⊢ e5 : string option→ τ option

Γ ⊢ {src =e1; sched =e2; win =e3;
pp =e4; format =e5; } : τ option core

(t-core)

Γ ⊢ C : σ core

Γ ⊢ all C : σ feed
(t-all)

Γ ⊢ C : σ core

Γ ⊢ any C : σ feed
(t-any)

Γ ⊢ ∅ : σ feed
(t-empty)

Γ ⊢ ev : τ Γ ⊢ et : time

Γ ⊢ One(ev, et) : τ feed
(t-one)

Γ ⊢ e : time set

Γ ⊢ SchedF(e) : time feed
(t-schedule)

Γ ⊢ F1 : σ feed Γ ⊢ F2 : σ feed

Γ ⊢ F1 ∪ F2 : σ feed
(t-union)

Γ ⊢ F1 : σ1 feed Γ ⊢ F2 : σ2 feed

Γ ⊢ F1 + F2 : σ1 + σ2 feed
(t-sum)

Γ ⊢ F1 : σ1 feed Γ ⊢ F2 : σ2 feed

Γ ⊢ (F1, F2) : σ1 ∗ σ2 feed
(t-pair)

Γ ⊢ e : τ list Γ, x:τ ⊢ F : σ feed

Γ ⊢ [F | x← e] : σ list feed
(t-list)

Γ ⊢ F1 : σ1 feed Γ, x:meta(σ1) ∗ σ1 ⊢ F2 : σ2 feed

Γ ⊢ {|F2 | x← F1|} : σ2 feed
(t-comp)

Γ ⊢ F : σ feed Γ ⊢ e : (meta(σ) ∗ σ)→ bool

Γ ⊢ filter F with e : σ feed
(t-filter)

Γ ⊢ e : τ Γ, x:τ ⊢ F : σ feed

Γ ⊢ let x = e in F : σ feed
(t-let)

Figure 13. Feed Language Typing.

The empty feed (∅) contains no elements and may be ascribed
any feed type. The singleton feedOne(ev, et) constructs a feed
containing a single valueev at a single timeet. The schedule
feedSchedF(e) builds a feed whose elements are the times in the
schedulee. The union feed merges two feeds with the same type
into a single feed. In contrast, the sum feed takes two feeds with
(possibly) different types and injects the elements of eachfeed into
a sum before merging the results into a single feed. The pair feed,
written (F1, F2), combines the elements of the two nested feeds
synchronously, matching elements that have the samescheduled
time, regardless of when those elements actuallyarrive. The list
feed [F | x ← e], in contrast, providesn-way synchronization,
wheren is the length of the input liste. Each elementei in e defines

a feedFi = F [x 7→ ei]. For each timet with a valuevi in each
feedFi, the list feed returns the list[v1, . . . , vn] (and appropriate
meta-data). Note that if theFi feeds share a schedules, then each
feed will have a value for every time in the schedules, even in the
presence of errors, so the synchronization will succeed at each time
in the schedules.

The feed comprehension{|F2 | x ← F1|} creates a feed with
elementsF2[x 7→ v] whenv is an element ofF1. Note that the entry
v is a pair of meta-data (with typemeta(σ)) and payload data (with
typeσ). The feedfilter F with e eliminates elementsv from F
whene v is false. Finally, let feedslet x = e in F provide a
convenient mechanism for binding intermediate values.

Several of the surface language constructs presented in Sec-
tion 3 may be modeled as derived constructs in the calculus. For
instance, (foreach x in F1 create F2) can be modeled as a
{|F2 | x ← F1|}. Likewise, the surface language comprehension
{|e2 | x ← F1, e1|} can be modeled as{|One(e2, x.1.t) | x ←
filter F1 with e1|}. Whenes is a schedule andet is a function
over times, purely artificial “computed” feeds may be modeled as
{|One(et x.1.t, x.1.t) | x← SchedF(es)|}.

5.2 Feed Semantics

We give a denotational semantics for our formal feed language
in Figure 14. The principal semantic functions areC[[C]]

E U
and

F [[F ]]
E U

, defining core feeds and feeds, respectively. In these
definitions,E is anenvironmentmapping variables to values andU
is auniversemapping pairs of schedule time and location to arrival
time and a string option representing the actual data. Intuitively,
the universe models the network. WhenU(ts, ℓ) = (ta, Some w),
the interpretation is that if the run-time system requests data from
location ℓ at time ts then string dataw will be returned at time
ta. The time ta must be no earlier thants. When U(ts, ℓ) =
(∞, None), networking errors have made locationℓ unreachable.

The semantic definitions forC and F use conventional set-
theoretic notations. They depend upon a semantics for the simply-
typed host language, writtenE [[e]]E , whose definition we omit. We
assume that given environmentE with type Γ and expressione
with typeτ in Γ, E [[e]]E = v and⊢ v : τ .

The meaning of core feedC is the set of (meta-data, payload)
pairs for the feed. To construct this set, we first compute thelist
of source locationsL, the set of times in the scheduleS and the
length of the windowW . Thetimeout function checks whether
the item arrival timexat is within the windowW of the sched-
uled timext, returningNone if not. Otherwise,timeout returns
its data argumentxs, which may beNone because of other net-
working errors. Similarly, thearrival function returns the ar-
rival time Some xat if the item arrived within the window and
None otherwise. The functionmeta uses thearrival function
to construct the meta-data for the item, consisting of the sched-
uled timet, the dependency set containing the scheduled time and
source location{(t, ℓ)}, and the nested meta-data, which includes
the scheduled timet, the source locationℓ, and the actual arrival
time arrival (t, U(t, ℓ)). (This apparent redundancy goes away
with non-core feeds.) Using thetimeout function, we define an
alternate universeU ′ that retrieves data from the outside world us-
ing the original universeU , checks for a timeout, and applies the
preprocessor (E [[epp]]E). To compute the payload, theval function
applies the formatting functionE [[ef ]]

E
to the value returned by the

alternative universeU ′ at timet for locationℓ. Finally, the result
is the set of all pairs of meta-data and payload produced for each
locationℓ in the listL and timet in the scheduleS.

The semantics of theall C feed is simply the semantics of the
underlying core feed. The semantics of theany C feed selects for
each timet in the scheduleS of the core feedC the earliest good
payload value from any location if one exists, orNone otherwise.



C[[{src =esrc; = {(meta(t, ℓ), payload(t, ℓ)) | ℓ ∈ L andt ∈ S}
sched =esched; where
win =ewin; L = E [[esrc]]E
pp =epp; S = E [[esched]]

E

format =ef ; }]]
E U

W = E [[ewin]]
E

timeout = λ(xt, (xat, xs)).ifxat ≤ xt + W then xs else None

arrival = λ(xt, (xat, xs)).ifxat ≤ xt + W then Somexat else None

meta = λ(t, ℓ).(t, {(t, ℓ)}, (t, ℓ, arrival(t, U(t, ℓ))))
U ′ = λ(t, ℓ).E [[epp]]E (timeout (t, U(t, ℓ)))
payload = λ(t, ℓ).E [[ef ]]

E
(U ′(t, ℓ))

F [[all C]]
E U

= C[[C]]
E U

F [[any C]]
E U

= {((t, DSt, nestt), vt) | t ∈ S}
where A = C[[C]]

E U

S = {m.t | (m, v) ∈ A}
At = {(m, v) | (m, v) ∈ A andm.t = t}
DSt =

S

(m,v)∈At
m.ds

Gt = {(m, Some v) | (m, Some v) ∈ At}

(nestt, vt) =



(m.nest, v) where(m, v) = earliest(Gt) if |Gt| > 0
((t,nowhere, None), None) if |Gt| = 0

F [[∅]]
E U

= { }

F [[One(ev, et)]]E U
= {((E [[et]]E , { }, (E [[et]]E , nowhere, Some E [[et]]E)), E [[ev]]

E
)}

F [[SchedF(e)]]
E U

= {((t, { }, (t,nowhere, Some t)), t) | t ∈ E [[e]]
E
}

F [[F1 ∪ F2]]E U
= F [[F1]]E U

S

F [[F2]]E U

F [[F1 + F2]]E U
= {((m.t,m.ds, inl m.nest), inl v) | (m,v) ∈ F [[F1]]E U

}
S

{((m.t,m.ds, inr m.nest), inr v) | (m,v) ∈ F [[F2]]E U
}

F [[(F1, F2)]]E U
= {((m1.t, m1.ds ∪m2.ds, (m1.nest, m2.nest)), (v1, v2)) |

(m1, v1) ∈ F [[F1]]E U
and(m2, v2) ∈ F [[F2]]E U

andm1.t = m2.t}

F [[[F | x← e]]]
E U

= {((t,
S

i=1...k
mi.ds, [m1.nest, . . . , mk.nest]), [v1, . . . , vk]) |

∀i : 1 . . . k.(mi, vi) ∈ F [[F ]](E,x 7→zi) U
andmi.t = t}

where [z1, . . . , zk] = E [[e]]
E

F [[{|F2 | x← F1|}]]E U
= {((m2.t, m1.ds ∪m2.ds, m2.nest), v2) | (m1, v1) ∈ F [[F1]]E U

and(m2, v2) ∈ F [[F2]](E,x 7→(m1,v1)) U
}

F [[filter F with e]]
E U

= {(m, v) | (m, v) ∈ F [[F ]]
E U

andE [[e (m,v)]]
E

= true}

F [[let x = e in F ]]
E U

= F [[F ]](E,x 7→E[[e]]
E

) U

Figure 14. Feed Language Semantics.

It returns the set of all such valuesvt, paired with the appropriate
meta-data. To compute this set, the function first computes the
meaningA of the core feedC. It extracts the scheduleS from
the meta-data inA. For each timet in the schedule, it computes
the setAt of (meta-data, payload) pairs fetched at timet. For each
such set, it computes the dependency setDSt, which collects the
dependencies of all the items fetched at timet. The setGt collects
all the good items fromAt. If this set is non-empty, we use the
function earliest to choose the (meta-data, payload) pair(m, v)
with the earliest arrival time fromGt. (We assume that there is
always one such earliest item.) In this case, we set the nested meta-
datanestt to be the nested meta-data ofm, and the payload value
vt to be v. If the set of good values is empty, then we set the
nested meta-data to indicate that at timet, we created (location =

nowhere) a payload value that had no actual arrival time. In this
case, the payload valuevt is justNone.

The meaning of the empty feed is the empty set. The meaning of
the singleton feedOne(ev, et) is a single pair, the payload portion
of which is the meaning ofev. The meta-data indicates the sched-
uled time is the meaning ofet, the dependency set is empty, the data
came fromnowhere (a dummy location indicating the value was
generated internally), and the arrival time matched the scheduled
time. A schedule feedSchedF(e) yields a feed with one payload
value for eacht in the meaning of the schedulee. The correspond-
ing meta-data follows the same pattern as for the singleton feed.
The union feed is the set-theoretic union of its constituentfeeds.
The sum feed injects the elements of its constituent feeds into a
sum and likewise takes their union. It constructs compound meta-
data from the meta-data of the constituent feeds in the obvious way.



The pair feed(F1, F2) is formed by finding for each timet all
elements ofF1 at a timet (including erroneous elements) and all
elements ofF2 at timet (again including erroneous elements) and
generating their Cartesian product. Notice that if the schedules do
not intersect, the pair feed will empty. The meta-data is constructed
by combining the meta-data for the paired feeds. The semantics of
the list feed[F | x← e] is similar to that of the pair feed except the
synchronization isn-way instead of pairwise, wheren is the length
of the liste.

The feed comprehension{|F2 | x ← F1|} contains payload
valuesv2 taken from the meaning of feedF2 whenx is mapped
to (meta-data, payload) pairs drawn from the meaning of feedF1.
The dependency set for the feed comprehension includes the de-
pendency sets ofbothF1 andF2. The filter feedfilter F with e
selects those (meta-data, payload) pairs from the meaning of F that
satisfy the predicatee. Finally, the let feedlet x = e in F returns
the meaning of feedF whenx is mapped to the meaning ofe.

5.3 Feed Properties

We have used our semantics to prove two key properties of our cal-
culus. The first property,Type Soundness, serves as an important
check on the basic structure of our definitions: Do the sets ofval-
ues given by the denotational semantics have the types ascribed by
our typing rules? The second property,Dependency Correctness,
guarantees the semantics adequately maintains provenancemeta-
data. To be more specific, it demonstrates that a feed item depends
exclusively on the locations and times mentioned in its dependency
set. This theorem is crucial for users who need to track down prob-
lems in their distributed system – when they find their incoming
data is bad, they need to know exactly where (and when) to lookto
find malfunctioning equipment or software.

Type Soundness. The type soundness theorem states that values
contained in the semantics of each feed are (meta-data, payload)
pairs with the appropriate type. More specifically, if the feed typing
rules give feedF typeσ feed, then its data has typeσ and its meta-
data has typemeta(σ). A similar statement is true of core feeds.

Theorem 1 (Type Soundness)
• If Γ ⊢ C : σ core and for allx in dom(Γ), ⊢ E(x) : Γ(x)

and⊢ U : time ∗ loc → time ∗ (string option) then for all
(m, v) ∈ C[[C]]

E U
, ⊢ (m, v) : meta(σ) ∗ σ.

• If Γ ⊢ F : σ feed and for allx in dom(Γ), ⊢ E(x) : Γ(x)
and⊢ U : time ∗ loc → time ∗ (string option) then for all
(m, v) ∈ F [[F ]]E U , ⊢ (m, v) : meta(σ) ∗ σ.

We have proven the theorem by induction on the structure of feeds.

Dependency Correctness.In order to make the principle of De-
pendency Correctness precise, we must define what it means for
two universes to be equal relative to a dependency setds. Intu-
itively, this definition simply states that the universes are equal at
the times and locations inds and unconstrained elsewhere.

Definition 2 (Equal Universes Relative to a Dependency Set)
U1 =ds U2 if and only if for all (t, ℓ) ∈ ds, U1(t, ℓ) = U2(t, ℓ).

Now, we need a similar definition of feed equality. In the following
definitions, letS1, S2 range over denotations of core feeds and
feeds.

Definition 3 (Feed Subset Relative to a Dependency Set)
S1 ⊆ds S2 if and only if for all (m, v) ∈ S1 such thatm.ds ⊆ ds,
(m, v) ∈ S2.

Definition 4 (Feed Equality Relative to a Dependency Set)
S1 =ds S2 if and only if S1 ⊆ds S2 andS2 ⊆ds S1

Finally, Dependency Correctnessstates that if two universesU1

andU2 are identical at locations and times inds (but arbitrarily
different elsewhere) then the elements of any feedF that depend
upon the locations and times inds do not change whenF is inter-
preted in universeU1 as opposed to inU2. We prove Dependency
Correctness by induction on the structure of feeds.

Theorem 5 (Dependency Correctness)
• If U1 =ds U2 thenC[[C]]

E U1
=ds C[[C]]

E U2
.

• If U1 =ds U2 thenF [[F ]]
E U1

=ds F [[F ]]
E U2

.

6. GLOVES Implementation and Evaluation
The GLOVES implementation has three parts: the compiler, the
runtime system, and the built-in tools library. We describethese
parts in turn and then evaluate the overall system performance and
design.

The Compiler. The GLOVES compiler consists oftcc , the tool
configuration compiler for .tc files, andfmlc , the compiler for feed
declarations (.fml files). Both compilers convert their sources into
OCAML code, which is then compiled and linked to the runtime
libraries. We implemented both tools withCamlp4 , the OCAML
preprocessor.

The fmlc compiler performs code generation in two steps.
First, the code generator emits the type declarations for each feed.
Second, it generates representations for each feed description. The
compiler constructs these representations by extracting elements
from the concurrently generatedPADS/ML libraries and using poly-
morphic combinators to build structured descriptions.

The Runtime System. We implement each GLOVES feed as a lazy
list of feed items. Following the semantics in Section 5, a feed item
is a (meta-data, payload) pair, although the implementation has a
more refined notion of meta-data that includes more detailederror
information.

The GLOVES runtime system is a multi-threaded concurrent
system that follows the master-worker implementation strategy.
Each worker thread either fetches data from a specified location
and parses the data into an internal representation (therep), or
synthesizes its data by calling a generator function. Usingerror
conditions, location, scheduled time and arrival time, theworker
generates the appropriate meta-data, pairs it with the rep and pushes
the feed item onto a queue. The master thread pops the feed item
from the queue on demand,i.e., when the user program requests
the data. The worker thread iseager, which guarantees that all data
will be fetched and archived, but the master thread islazy, which
allows application programs to process only relevant data.

We used theOcamlnet 2 library [28] to implement the fetch-
ing engine. It batches concurrent fetch requests into groups of 200,
a size which balances maximizing throughput with avoiding over-
whelming the operating system with too many open sockets.

Tools Library. As explained in Section 4, we implemented the
GLOVES off-the-shelf tool suite using our generic tool framework.
Some tools depend upon auxiliary tools. For instance, the feed se-
lector calls a data selector built using thePADS/ML generic tool
framework [11] for base feeds. Other tools depend upon external li-
braries. For instance, thefeed2rrd tool requires the RRD round-
robin database [22] and thefeed2rss tool uses the XML-Light
package [19] for parsing and printing XML.

Experiments. To assess performance, we measure the average
time to fetch a data item (termednetwork latency), the average time
to prepare the data item for consumption after fetching it (termed
system latency), and thethroughputof the system for the CoMon
feed description in Figure 4. The throughput measures the average
number of items fetched and processed per second.
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Figure 15. Average throughput and latencies per node

All the experiments were conducted on a Mac Powerbook G4
computer with a 1.67GHz CPU and 2GB memory running Mac OS
X 10.4. In each experiment, we randomly selected 16 subsets of
PlanetLab nodes, with increasing size from 50 to 800 in increments
of 50. For each set, we applied the profiler tool for the CoMon
feed twice, once without archiving and once with it, to measure
the throughput and latencies as the system fetched from these node
lists. We repeated the experiment ten times and calculated the
average values.

Figure 15 shows the average throughput and the average net-
work and system latencies. The throughput is maximized when
fetching from 200 nodes because the system supports up to 200
concurrent fetches. Archiving adds to the overhead of the system
and hence reduces the throughput and increases network and sys-
tem latencies. Note that while network latency increases with the
number of nodes, system latency remains almost constant andrel-
atively low, showing that the GLOVES runtime system adds little
overhead to the inevitable network fetching cost. Despite the ran-
dom network delays in these experiments, the network latency is
generally linear in the number of nodes. The system, which we
have not tried to optimize, was able to fetch data from 800 nodes
and archive the results in under 70 seconds, well under the 5
minute turnaround time currently supported by CoMon. Takento-
gether, these results suggest that GLOVES is capable of supporting
PlanetLab-scale monitoring.

Language or Library. A natural question that frequently arises
for domain-specific languages is whether the system is better im-
plemented as a library or as a language extension. The strongest
reason for us to implement our system as a language extensionis
that O’Caml (and C, and SML, and, in fact, most functional and
imperative languages) have poor support for generic, type-directed
programming. Unfortunately, many of our key tools, including our
parsers, printers, database loaders, selectors, etc, are generic pro-
grams defined over the types of the feeds that our specifications
generate. By defining a language extension, we are free to invoke
a compiler to assemble the code fragments comprising the needed
applications in a type-correct way.

Now, in theory, the compiler is not 100% essential to the gener-
ation of our generic programs, but in practice, it is an enormous ad-
vantage to the average programmer. After spending months study-
ing this issue, the best alternative we have devised that does not use
compiler support is to require that programmers write theirspecifi-
cation code inside of functors parameterized in the appropriate way.
These functors can then be passed off to other functors implement-
ing appropriate tool interfaces. However this functor programming
style is extremely hard to learn, to use and to explain. Avoiding
these complications by creating a language-level interface seems
to be a good, practical solution to the problem. For more insight
into the precise issues at hand, we recommend reading related work
on the construction of thePADS/ML infrastructure [11] as well as
Hinze’s work [15] on generic programming.

Two secondary issues influencing our choice of language over
library are that (1) we could choose a pleasing and concise syn-
tax for both our feed and tool specifications and (2) this approach
allows smooth integration withPADS/ML , which itself is a success-
ful language extension. On the latter point, developing a system in
which data locality, temporal availability, format and properties are
all specified in one place and in one seemlessly integrated syntax
was an important goal. We believe it improves the user program-
ming experience significantly.

7. Related Work
Because of space constraints, we survey only the most closely
related work.

Provenance. GLOVES meta-data can be seen as an instance
of provenance information, a topic of increasing interest in the
database community. Cheneyet al [8] showed how the program-
ming language idea of dependency analysis leads to a formal theory
for tracking provenance. Indeed, our Dependency Correctness The-
orem reuses the definition of dependency correctness developed in
their work. Our system differs from theirs in several ways, how-
ever. They treat provenance abstractly, as a collection of colors; we
treat it concretely, as attestation of time, source location and error-
freeness. They track provenance at the level of individual tuples in
a relational calculus; we track it at the level of files, leading to re-
duced overhead. They simply track the provenance information; we
permit programmer code to view and respond to such information.

Stream Processing. There has been a large body of work in data
stream processing and work flow management [14]. For instance,
languages such as Lustre [7], SIGNAL [4] and Functional Reac-
tive Programming (FRP) [9, 29] are designed to implement syn-
chronous systems that react to continuous or discrete signals. These
signals are time-indexed values that can be composed or decom-
posed using various combinators. Our work on GLOVES is com-
plementary to these efforts in that the primary purpose of GLOVES
is to bridge between such systems and the messy, outside world.
GLOVESprovides a way to robustly internalize external, distributed
data while tracking error conditions and maintaining provenance
in a comprehensive manner so that programmers can subsequently
use, for example, the elegant abstractions of events, behaviors and
signals from FRP.

Web Mashups. Web Mashup languages such as MashMaker [10]
and Yahoo Pipes [33] allow web programmers to extract data from
web sites and RSS feeds and recombine them, often using con-
ventional functional programming paradigms such as map andfil-
ter. The focus is on end-user programming with relatively small
amounts of data that can be displayed to a user in a web browser.
Errors are generally ignored as completeness or absolute correct-
ness of information is not critical in the domains of interest. Unlike
GLOVES, which allows users to write rich descriptions expressing



the location, format, schedule and access mode of the data, Ya-
hoo Pipes, for instance, acquires data through a fixed collection of
black boxes. For this reason, GLOVES and mashup languages also
have the potential to be complementary, with GLOVESdescriptions
serving to define new ad hoc data sources for mashups. In fact,this
idea motivated the design and implementation of the GLOVES ad
hoc-to-RSS conversion tool.

Systems monitoring. One early and widely-used protocol for sys-
tem monitoring is SNMP, the simple network management proto-
col [6], which is supported by commercial tools such as HP’s Open-
View [2] and free tools such as MRTG [23]. It provides an open
protocol format, where vendors supply management information
bases (MIBs) that provide a hierarchical description of thehard-
ware’s monitoring information. By separating the data description
into the MIB, SNMP can be more concise than XML, but it has
poor support for ad hoc data, and it is more difficult to update
with new data types or even changes to the data format. For Grid
or cluster environments, two popular monitoring tools are Gan-
glia [17] and Nagios [3]. Ganglia uses raw data in XDR for its
native fields and XML-encapsulated fields for extensions. Nagios
has no standard data format, but instead gathers all data by periodi-
cally executing user-specified commands described in a configura-
tion file. The commands use standardized return values to express
status and are typically restricted to no more than 4KB of monitor-
ing data. What distinguishes GLOVES from systems like SNMP or
Ganglia is the ability to automatically parse and monitor virtually
any kind of ad hoc data, from node-level information like that col-
lected by Ganglia or SNMP, all the way down to application-level
or even protocol-level data. These areas are the ones that are not
well served by today’s general-purpose monitoring systems. More-
over, the ability to use the same data description to automatically
build parsers, in situ tools, and monitoring systems directly from
declarative descriptions represents an ease of use not available in
other systems.

8. Conclusions
The explosive growth of the Internet has made monitoring andman-
aging data systems distributed across wide-area networks increas-
ingly important. The possibility of partial failure and theneed to
synchronize makes such code tedious and difficult to write cor-
rectly. The GLOVES system allows users to declaratively specify
their data systems and then generate a wide-variety of toolsfor ma-
nipulating the data: from stand-alone tools, to simple libraries for
writing their own analyses, to generic libraries for building new
generic tools. We precisely specify the meaning of our language
via a sound denotational semantics and show that this semantics
is dependency correct. Finally, we demonstrate experimentally that
the system has acceptable performance overheads.
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