
From Dirt to Shovels
Fully Automatic Tool Generation from Ad Hoc Data

Kathleen Fisher
AT&T Labs Research

kfisher@research.att.com

David Walker Kenny Q. Zhu
Princeton University

dpw,kzhu@CS.Princeton.EDU

Peter White
Galois Connections

peter@galois.com

Abstract
An ad hoc data sourceis any semistructured data source for which
useful data analysis and transformation tools are not readily avail-
able. Such data must be queried, transformed and displayed by
systems administrators, computational biologists, financial analysts
and hosts of others on a regular basis. In this paper, we demon-
strate that it is possible to generate a suite of useful data process-
ing tools, including a semi-structured query engine, several for-
mat converters, a statistical analyzer and data visualization rou-
tines directly from the ad hoc data itself, without any humanin-
tervention. The key technical contribution of the work is a multi-
phase algorithm that automatically infers the structure ofan ad hoc
data source and produces a format specification in thePADS data
description language. Programmers wishing to implement custom
data analysis tools can use such descriptions to generate printing
and parsing libraries for the data. Alternatively, our software infras-
tructure will push these descriptions through thePADS compiler,
creating format-dependent modules that, when linked with format-
independent algorithms for analysis and transformation, result in
fully functional tools. We evaluate the performance of our inference
algorithm, showing it scales linearly in the size of the training data
— completing in seconds, as opposed to the hours or days it takes
to write a description by hand. We also evaluate the correctness of
the algorithm, demonstrating that generating accurate descriptions
often requires less than 5% of the available data.

Categories and Subject Descriptors D.3.m [Programming lan-
guages]: Miscellaneous

General Terms Languages, Algorithms

Keywords Data description languages, grammar induction, tool
generation, ad hoc data

1. Introduction
An ad hoc data sourceis any semistructured data source for which
useful data analysis and transformation tools are not readily avail-
able. XML, HTML and CSV arenot ad hoc data sources as there
are numerous programming libraries, query languages, manuals
and other resources dedicated to helping analysts manipulate data
in these formats. However, despite the prevalence of standard for-
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mats, massive quantities of legacy ad hoc data persist in fields rang-
ing from computational biology to finance to physics to networking
to health care and systems administration. Moreover, engineers and
scientists are continuously producing new ad hoc formats —despite
the presence of existing standards— because it is often expedient
to do so. Over time, these expedient formats become difficultto
work with because of missing documentation, a lack of tools,and
corruption caused by repeated redesign, reuse and extension.

The goal of thePADS project (Fisher and Gruber 2005; Fisher
et al. 2006; Mandelbaum et al. 2007; PADS Project) is to improve
the productivity of data analysts who need to cope with new and
evolving ad hoc data sources on a daily basis. Our central technol-
ogy is a domain-specific language in which programmers can spec-
ify the structure and expected properties of ad hoc data sources,
whether they be ASCII, binary, Cobol or a mixture of formats.
These specifications, which resemble extended type declarations
from conventional programming languages, are compiled into a
suite of programming libraries, such as parsers and printers, which
are then linked to generic data processing tools including an XML-
translator, a query engine (Fernández et al. 2006), a simple statis-
tical analysis tool, and others. Hence, an important benefitof us-
ing PADS is that a single declarative description may be used to
generate many useful end-to-end data processing tools completely
automatically.

On the other hand, a significant impediment to usingPADS is
the time and expertise needed to write aPADSdescription for a new
ad hoc data source. For data experts possessing clear, unambiguous
documentation about a simple data source, writing aPADSdescrip-
tion may take anywhere from a few minutes to a few hours. How-
ever, it is relatively common to encounter ad hoc data sources that
contain valuable information, yet have little or no documentation.
Understanding the structure of the data and creating descriptions
for such sources can take days or weeks depending upon the com-
plexity and volume of the data in question. In one specific example,
Fisher spent approximately three weeks (off and on) attempting to
understand and describe an important data source used at AT&T.
One of the difficulties was that the data source suddenly switched
formats after approximately 1.5 million entries. Of course, if deal-
ing with the vagaries of ad hoc data is time-consuming and error-
prone for experts, it is even worse for novice users.

To improve the productivity of experts and to make thePADS
toolkit accessible to new users with little time to learn thespec-
ification language, we have developed an automatic format infer-
ence engine. This format inference engine reads arbitrary ASCII
data sources and produces an accurate, human-readable description
of the source. These machine-produced descriptions give experts a
running start in any data analysis task as the libraries generated
from these descriptions may be incorporated directly into an ordi-
nary C program. The inference engine is also directly connected to
the rest of thePADS infrastructure, making it possible for first-time



users, with no knowledge of thePADS domain-specific language,
to translate data into a form suitable for loading into a relational
database, to load it into an Excel spreadsheet, to convert the data
into XML , to query it in XQuery, to detect errors in additional data
from the same source, and to draw graphs of various data compo-
nents, all with just a “push of a button.”

In designing a format inference engine forPADS, we are in ter-
ritory explored in the past by the machine learning community. For
example, there have been many attempts to devise algorithmsthat
learn regular expressions, context free grammars and more exotic
language classes. These algorithms have been used to perform tasks
ranging from natural language understanding to type inference for
XML documents to information extraction from web pages. One
key difference in our work is that we target an understudied domain
(ad hoc systems data) that allows new techniques for effective in-
ference. A second key difference is that we solve a new problem by
showing how to generate an entire suite of end-to-end data process-
ing tools with no human intervention. Section 6 contains a more
in-depth analysis of related work. To summarize, this papermakes
three main contributions:

• We have developed a multi-phase algorithm that infers the for-
mat of complex, ad hoc data sources, producing compact and
accuratePADS descriptions.

• We have incorporated the inference algorithm into a modular
software system that uses sample data to generate a toolkit
of useful data processing tools, without requiring any human
intervention.

• We have evaluated the correctness and performance of our sys-
tem on a range of ASCII data sources. For many data sources,
training on 5% or less of the data results in accuracy rates
greater than 95% (often perfect). In all our benchmarks, thein-
ference algorithm scales linearly with the quantity of data.

For readers interested in seeing our system operate live, there is
an online demo illustrating its many features (http://www.
padsproj.org). The remainder of this paper describes the sub-
set of thePADS description language we attempt to infer (Sec-
tion 2), the inference algorithm itself and generated tools(Sec-
tion 3), the performance (Section 4), strengths and weaknesses of
our approach (Section 5), related work (Section 6) and conclusions
(Section 7). This paper is an extended version of a 2-page sum-
mary presented at the CAGI 2007 workshop on grammar induc-
tion (Burke et al. 2007).

2. The Internal Format Description Language
Our format inference algorithm comprises a series of phasesthat
generate and transform an internal format description language we
refer to simply as the IR. The IR is very similar to theIPADS
language we developed and formalized in previous work (Fisher
et al. 2006). Apart from syntax, the main differences are that the IR
omits recursion and function declarations; the former being beyond
the scope of our current inference techniques and the latterbeing
unnecessary during the course of the inference algorithm.

2.1 The Language

Like all languages in thePADS family, the IR is a collection of type
definitions. These “types” define both the external syntax ofdata
formatted on disk and the shape of the internal representations that
result from parsing. We rely upon both of these aspects of type
definitions to generate stand-alone tools automatically. Figure 1
summarizes the syntax of the IR and of the generated internal
representations.

The building blocks of any IR data description are the base
types b, which may be parameterized by some number of argu-

c ::= a | i | s (constants)
x (variables)
p :: = c | x (parameters)

Base typesb ::=
Pint (generic, unrefined integer)

| PintRanged (integer with min/max values)
| Pint32 (32-bit integer)
| Pint64 (64-bit integer)
| PintConst (constant integer)
| Pfloat (floating point number)
| Palpha (alpha-numeric string)
| Pstring (string; terminating character)
| PstringFW (string; fixed width)
| PstringConst (constant string)
| Pother (punctuation character)
| ComplexB (complex base type defined by regexp;

e.g.date, time,etc.)
| Pvoid (parses no characters; fails immediately)
| Pempty (parses no characters; succeeds immediately)

TypesT ::=
b(p1,...,pk) (parameterized base type)

| x:b(p1,...,pk) (parameterized base type;
underlying value named x)

| struct {T1; ... Tk;} (fixed sequence of items)
| array {T ;} (array with unbounded repetitions)
| arrayFW {T ;}[p] (array; fixed length)
| arrayST {T ;}[sep,term] (array; separator and terminator)
| union {T1; ... Tk;} (alternatives)
| enum {c1; ... ck;} (enumeration of constants)
| x:enum {c1; ... ck;} (enumeration of constants;

underlying value named x)
| option {T ;} (type T or nothing)
| switch x of
{c1 => T1; . . . ck => Tk;} (dependent choice)

Representations of parsed datad ::=
c (constant)

| ini(d) (injection into theith alternative of a union)
| (d1,. . .,dk) (sequence of data items)

Figure 1. Selected elements of the IR.

mentsp. Arguments may either be constantsc, which include char-
actersa, integersi and stringss, or variablesx bound earlier in
the description. These base types include a wide range of different
sorts of integers and strings. In its initial phases, the inference al-
gorithm uses general integerPint, alphanumeric stringPalpha
and punctuation characterPother(a) types. In later phases,
these coarse-grained base types are analyzed, merged and refined,
producing integers with rangesPintRanged(min,max), in-
tegers with known sizePint32 or Pint64, constant integers
(PintConst(i) for some integeri), or floating-point numbers
Pfloat. Likewise, later stages of our algorithm transform al-
phanumeric strings into arbitrary strings with terminating charac-
ters (Pstring(a) where a terminates the string), fixed width
strings (PstringFW(i) where i is the length of the string) or
string constantsPstringConst(s). For brevity in our descrip-
tions, we normally just write the constant strings inline in a de-
scription instead ofPstringConst(s).

In addition to these simple base types, the IR includes a col-
lection of higher-level base types commonly found in ad hoc data,
specified generally in Figure 1 asComplexB. For example, we
have implemented base types for IP addresses, email addresses,
URLs, XML tags, dates, times and a variety of others. Finally, the
typesPvoid andPempty are two special base types that are in-
troduced at various points in the inference process. The first fails
immediately; the second succeeds immediately. Neither consumes
any characters while parsing.



Crashreporter.log:

Sat Jun 24 06:38:46 2006 crashdump[2164]: Started writing crash report to: /Logs/Crash/Exit/ pro.crash.log
- crashreporterd[120]: mach_msg() reply failed: (ipc/send) invalid destination port

Sirius AT&T Phone Provisioning Data:

8152272|8152272|1|6505551212|6505551212|0|0||no_ii152272|EKRS_6|0|FRED1|DUO|10|1000295291
8152261|8152261|1|0|0|0|0||no_ii752261|EKRS_1|0|kfeosf2|DUO|EKRS_6|1001390400|EKRS_OS_10|1001476801

Figure 2. Example ad hoc data sources.

Complex descriptions are built from simpler ones using a va-
riety of type constructors. Type constructors include basic struct
typesstruct{T1; ... Tk;}, which indicate a data source should
contain a sequence of items matchingT1, ...,Tk, basic array types
array T , which indicate a data source should contain a sequence
of items of arbitrary length, each matchingT , and union types
union {T1; ... Tk;}, which indicate a data source should match
one of T1, ..., Tk. Initial phases of the inference algorithm re-
strict themselves to one of these three sorts of type constructors.
Later phases of the algorithm refine, merge and process thesesim-
ple types in a variety of ways. For example, unions may be trans-
formed into enumerations of constantsenum {c1; ...ck;} or options
option {T ;}. In addition, later phases bind variables to the re-
sults of parsing base types and enums. For example,x:b(p1,...,pk)
expresses the fact that variablex is bound to the value parsed by
base typeb(p1,...,pk). These variables express dependencies be-
tween different parts of a description.1 For example, the length of
a stringPstringFW(p) or an arrayParrayFW(p) may depend
upon either a constant or a variable and likewise for any other pa-
rameterized base type. In addition, unions may be refined into de-
pendent switch statementsswitch x of {c1 => T1; . . . ck =>
Tk;}, where the data is described byT1, ..., orTk depending on the
value associated withx, be itc1, ..., orck.

In addition to describing a parser, eachPADS types may be
interpreted as a data structure. We let metavariabled range over
such data structures. For the purposes of this paper,d may be a
constantc, an injection into theith variant of a unionini(d),
or a sequence of data items(d1, . . . , dk). The injections are used
as the representations of any sort of union type, be it a union, an
enumeration, an option or a switch. The sequences are used asthe
representations of any sort of sequence type, whether it be astruct
or one of the array variants. Our earlier work (Fisher et al. 2006)
contains a precise treatment of this secondary semantics.

2.2 Running Examples

Figure 2 presents tiny fragments of two different ad hoc data
files on which we have trained our inference algorithm. The first,
Crashreporter.log, is a Mac system file that records information
concerning process crashes.2 The second, which we call Sirius,
is an internal AT&T format used to record phone call provision-
ing information. We use the Crashreporter.log data source as our
main example throughout the paper; periodically we refer tothe
Sirius data source to illustrate particular aspects of the inference
algorithm.

Figure 3 presents a hand-written description of the Crashre-
porter.log file in the IR syntax. This description is most easily read
from the bottom, starting with the definition of thesource type.
This definition specifies that the data source is an array of structs

1 We assume every bound variable is distinct from every other that appears
in a description. Roughly speaking, the scope of such variables extends as
far as possible to the right through the description.
2 For expository purposes we have made a minor alteration to the Crashre-
porter.log format to allow us to explain more concepts with asingle exam-
ple. The evaluation section reports results on both the completely unmodi-
fied Crashreporter.log and the modified version.

dumpReport =
union {

struct {
"Started writing crash report to: ";
file:Ppath;

};
...

};

reporterReport =
struct {

function: Ppath; " reply failed: ");
failuremsg: Pstring_(’\n’);

};

dateOption =
union {

"- ";
struct {

day: PDate; " ";
time: PTime; " ";
year: Pint32; " ";

};
};

source =
arrayST {

struct {
date: dateOption;
kind: enum {"crashdump";

"crashreporterd";}; "[";
dumpid: Pint32; "]: ";
report:

switch kind of {
"crashdump" => dumpReport
"crashreporterd" => reporterReport

};
}[’\n’,EOF];

Figure 3. Hand-written IR Crashreporter.log description.

separated by newline characters and terminated by the end offile
marker. In other words, the data source is a sequence of lines, with
the struct in question appearing on each line. The struct itself in-
dicates each line is a sequence ofdateoption, kind, dumpid
andreport fields. The description also specifies that the delimiter
"[" appears between thekind anddumpid fields, and the delim-
iter "]: " appears between thedumpid andreport fields.

Most of the variable names associated with fields (e.g.date,
dumpid, etc.) merely serve as documentation for the reader. How-
ever, thekind field is different – it is used later in the description
and hence illustrates adependency. To be specific, the form of the
report field depends upon the contents of thekind field. If its
value is"crashdump", then thereport is a dumpReport
type, while if the kind field is "crashreporterd", the
report is areporterReport type.

Figure 3 contains three other definitions aside fromsource.
These definitions specify the structure of thedumpReport,
reporterReport anddateOption types.
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2.3 Connections with Regular Expressions

From a parsing perspective, the subset ofPADS that we consider in
this paper is connected to regular expressions: struct types roughly
correspond to concatenation, array types to Kleene star andunion
types to unions. Some dependencies may also be translated to
regular expressions. For example, the typeT :

struct {x: enum {c_1; c_2;};
T_0;
switch x of {c_1 => T_1; c_2 => T_2;};}

may be translated to a regular expressionR = (c1·T0·T1)+(c2·T0·
T2). However,PADSprogrammers tend to preferT overR sinceT
clearly identifies the tag that determines the branch of the union and
it avoids repeatingT0 (which becomes increasingly problematic as
the number of alternatives grows). We describe existing approaches
to learning regular expressions in Section 6.

3. The Inference Algorithm
Figure 4 gives an overview of our automatic tool generation ar-
chitecture. The process begins with raw data, shown in blue (or
grey) at the top left, which we pipe into the format inferenceen-
gine (circumscribed by dotted lines in the picture). This engine pro-
duces a syntactically correctPADS description for the data through
a series of phases: chunking and tokenization, structure discovery,
information-theoretic scoring, and structure refinement.The sys-
tem then feeds the generatedPADS description into thePADS com-
piler. The compiler generates libraries, which the system then links
to generic programs for various tasks including a data analysis tool
(a.k.a.,theaccumulator) and an ad-hoc-to-XML translator. At this
point, users can apply these generated tools to their original raw
data or to other data with the same format. The following subsec-
tions describe the main components of the inference algorithm in
more detail. We illustrate the effect of each phase on our running
examples and present the output of some of the generated tools.

3.1 Chunking and Tokenization

The learning system first divides the input data, which we refer to
as thetraining set, into chunksas specified by the user. Intuitively,
a chunk is a unit of repetition in the data source. It is primarily by
analyzing sequences of such chunks for commonalities that we are

able to infer data descriptions. Our tool currently supports chunking
on a line-by-line basis as well as on a file-by-file basis.

We use a lexer to break each chunk into a series ofsimple tokens,
which are intuitively atomic pieces of data such as numbers,dates,
times, alpha-strings, or punctuation symbols. Every simple token
has a corresponding base type in the IR, though the converse is not
true – there are base types that are not used as tokens. Nevertheless,
since simple tokens have a very close correspondence with base
types, we often use the wordtokeninterchangeably withbase type.

Parenthetical syntax, including quotation marks, curly braces,
square brackets, parentheses andXML tags, often provides very
important hints about the structure of an ad hoc data file. There-
fore, whenever the lexer encounters such parentheses, it creates a
meta-token, which is a compound token that represents the pair of
parentheses and all the tokens within.3 For example, in Crashre-
porter.log, the syntax[2164] will yield the meta-token[*] in-
stead of the sequence of three simple tokens[, Pint, and]. The
structure-discovery algorithm eliminates all meta-tokens during its
analysis; whenever it encounters a context consisting of matching
meta-tokens, it cracks open the meta-tokens so it can analyze the
underlying structure.

Our learning system has a default tokenization scheme skewed
toward systems data, but users may specify a different scheme for
their own domain through a configuration file. For example, com-
putational biologists may want to add DNA stringsCATTGTT...
to the default tokenization scheme. The configuration file isessen-
tially a list of name, regular expressions pairs. The systemuses the
configuration file to generate part of the system’s lexer, a collec-
tion of new IR base types, and a series of type definitions thatare
incorporated into the finalPADSspecification.

3.2 Structure Discovery

Given a collection of tokenized chunks, the goal of the structure-
discovery phase is to quickly find a candidate description “close”
to a good final solution. The rewriting phase then analyzes, refines
and transforms this candidate to produce the final description. The
high-level form of our structure-discovery algorithm was inspired
by the work of Arasu and Garcia-Molina (2003) on information
extraction from web pages; however, the context, goals and algo-
rithmic details of our work are quite different.

Structure Discovery Basics. Our algorithm operates by analyz-
ing the collection of tokenized chunks and guessing what thetop-
level type constructor should be. Based on this guess, it partitions
the chunks and recursively analyzes each partition to determine the
best description for that partition. Figure 5 outlines the overall pro-
cedure in Pseudo-ML. Theoracle function, whose implementa-
tion we hide for now, does most of the hard work by conjuring one
of four different sorts of prophecies.

The BaseProphecy simply reports that the top-level type
constructor is a particular base type.

TheStructProphecy specifies that the top-level description
is a struct withk fields. It also specifies a list, call itcss, with k
elements. Theith element incss is the list of chunks correspond-
ing to theith field of the struct. The oracle derives these chunk
lists from its original input. More specifically, if the oracle guesses
there will bek fields, then each original chunk is partitioned intok
pieces. Theith piece of each original chunk is used to recursively
infer the type of theith field of the struct.

TheArrayProphecy specifies that the top-level structure in-
volves an array. However, predicting exactly where an arraybegins
and ends is difficult, even for the magical oracle. Consequently, the
algorithm actually generates a three-field struct, where the first field

3 If parenthetical elements are not well-nested, the meta-tokens are dis-
carded and replaced with ordinary sequences of simple tokens.



allows for slop prior to the array, the middle field is the array itself,
and the last field allows for slop after the array. If the slop turns out
to be unnecessary, the rewriting rules will clean up the messin the
next phase.

Finally, theUnionProphecy specifies that the top-level struc-
ture is a union type withk branches. Like aStructProphecy,
theUnionProphecy carries a chunks list, with one element for
each branch of the union. The algorithm uses each element to re-
cursively infer a description for the corresponding branchof the
union. Intuitively, the oracle produces the union chunks list by “hor-
izontally” partitioning the input chunks, whereas it partitions struct
chunks “vertically” along field boundaries.

As an example, recall the Crashreporter.log data from Figure 2.
Assuming a chunk is a line of data, the two chunks in the example
consist of the token sequences (recall[*] and (*) are meta-
tokens):

Pdate ’ ’ Ptime ’ ’ Pint ’ ’ Palpha [*] ’:’ ...
’-’ ’ ’ Palpha [*] ’:’ ’ ’ Palpha (*) ’ ’ ...

Given these token sequences, the oracle will predict that the top-
level type constructor is a struct with three fields: one for the tokens
before the token[*], one for the[*] tokens themselves, and
one for the tokens after the token[*]. We explain how the oracle
makes this prediction in the next section. The oracle then divides
the original chunks into three sets as follows.

Pdate ’ ’ Ptime ’ ’ Pint ’ ’ Palpha (set 1)
’-’ ’ ’ Palpha

[*] (set 2)
[*]

’:’ ... (set 3)
’:’ ’ ’ Palpha (*) ’ ’ ...

On recursive analysis of set 1, the oracle again suggests a struct is
the top-level type, generating two more sets of chunks:

Pdate ’ ’ Ptime ’ ’ Pint ’ ’ (set 4)
’-’ ’ ’

Palpha (set 5)
Palpha

Now, since every chunk in set 5 contains exactly one base type
token, the recursion bottoms out with the oracle claiming ithas
found the base typePalpha. When analyzing set 4, the ora-
cle detects insufficient commonality between chunks and decides
the top-most type constructor is a union. It partitions set 4into
two more sets, with each group containing only 1 chunk (either
{Pdate ’ ’ ...} or {’-’ ’ ’}). The algorithm analyzes
the first set to determine the type of the first branch of the union
and the second set to determine the second branch of the union.
With no variation in either branch, the algorithm quickly discovers
an accurate type for each.

Having completely discovered the type of the data in set 1, we
turn our attention to set 2. To analyze this set, the algorithm cracks
open the[*] meta-tokens to recursively analyze the underlying
data, a process which yieldsstruct {’[’; Pint; ’]’;}.
Analysis of Set 3 proceeds in a similar fashion.

As a second example, consider the Sirius data from Figure 2.
Here the chunks have the following structure:

Pint ’|’ Pint ’|’ ... ’|’ Pint ’|’ Pint
Pint ’|’ Pint ’|’ ... ’|’ Palpha Pint ’|’ Pint

The oracle prophecies that the top-level structure involves an array
and partitions the data into sets of chunks for the array preamble,
the array itself, and the array postamble. It does this partitioning

type description (* an IR description *)
type chunk (* a tokenized chunk *)
type chunks = chunk list

(* A top-level description guess *)
datatype prophecy =

BaseProphecy of description
| StructProphecy of chunks list
| ArrayProphecy of chunks * chunks * chunks
| UnionProphecy of chunks list

(* Guesses the best top-level description *)
fun oracle : chunks -> prophecy

(* Implements a generic inference algorithm *)
fun discover (cs:chunks) : description =
case (oracle cs) of
BaseProphecy b => b

| StructProphecy css =>
let Ts = map discover css in
struct { Ts }

| ArrayProphecy (csfirst,csbody,cslast) =>
let Tfirst = discover csfirst in
let Tbody = discover csbody in
let Tlast = discover cslast in
struct { Tfirst; array { Tbody }; Tlast; }

| UnionProphecy css =>
let Ts = map discover css in
union { Ts }

Figure 5. A generic structure-discovery algorithm in Pseudo-ML.

to cope with “fence-post” problems in which the first or the last
entry in an array may have slightly different structure. In this case,
the preamble chunks all have the form{Pint ’|’} while the
postamble chunks all have the form{Pint}, so the algorithm
easily determines their types. The algorithm discovers thetype of
the array elements by analyzing the residual list of chunks

Pint ’|’
...
Pint ’|’
Pint ’|’
...
Palpha Pint ’|’

The oracle constructs this chunk list by removing the preamble
and postamble tokens from all input chunks, concatenating the
remaining tokens, and then splitting the resulting list into one chunk
per array element. It does this splitting by assuming that the chunk
for each array element ends with a’|’ token.

So far so good, but how does the guessing work? Why does the
algorithm decide the Sirius data is basically an array but Crashre-
porter.log is a struct? After all, the Sirius chunks all haveaPint,
just as all the Crashreporter.log chunks have a bracket meta-token
[*]. Likewise, Crashreporter.log contains many occurrences of the
’ ’ token, which might serve as an array separator as the’|’ to-
ken does in the Sirius data.

The Magic. To generate the required prophecy for a given list
of chunks, the oracle computes a histogram of the frequencies of
all tokens appearing in the input. More specifically, the histogram
for token t plots the number of chunks (on they-axis) having a
certain number of occurrences of the token (on thex-axis). Figure 6
presents a number of histograms computed during analysis ofthe
Crashreporter.log and Sirius chunk lists.

Intuitively, tokens associated with histograms with highcover-
age, meaning the token appears in almost every chunk, andnarrow



distribution, meaning the variation in the number of times atoken
appears in different chunks is low, are good candidates for defining
structs. Similarly, histograms with high coverage andwide distri-
bution are good candidates for defining arrays. Finally, histograms
with low coverage or intermediate width represent tokens that form
part of a union.

Concretely, consider histogram (a) from Figure 6. It is a per-
fect struct candidate– it has a single column that covers 100% of
the records. Indeed, this histogram corresponds to the[*] token in
Crashreporter.log. Whenever the oracle detects such a histogram, it
will always prophecy a struct and partition the input chunksaccord-
ing to the associated token. All of the other top-level histograms for
Crashreporter.log contain variation and hence are less certain indi-
cators of data source structure.

As a second example, consider the top-level histograms (f),(b)
and (g) for tokensPalpha, Pint andPwhite, respectively, and
compare them with the corresponding histograms (h), (i) and(j)
computed for the same tokens from chunk set 1, defined in the
previous subsection. The histograms for chunk set 1 have farless
variation than the corresponding top-level histograms. Inparticular,
notice that histogram (h) for tokenPalpha is a perfect struct his-
togram whereas histogram (f) for tokenPalpha contains a great
deal of variation. This example illustrates the source of the power of
our divide-and-conquer algorithm– if the oracle can identify even
one tokenat a given level as defining a good partition for the data,
the histograms for the next level down become substantiallysharper
and more amenable to analysis.

As a third example, consider histogram (k). This histogram
illustrates the classic pattern for tokens involved in arrays– it has
a very long tail. And indeed, the| token in the Sirius data does act
like a separator for fields of an array.

To make the intuitions discussed above precise, we must define
a number of properties of histograms. First, a histogramh for a
tokent is a list of pairs of natural numbers(x, y) wherex denotes
the token frequency andy denotes the number of chunks with that
frequency. All first elements of pairs in the list must be unique.
Thewidth of a histogram (width(h)) is the number of elements in
the list excluding the zero-column (i.e. excluding element(0, y)).
A histogramh̄ is in our normal form when the first element of the
list is the zero column and all subsequent elements are sorted in
descending order by they component. For example, ifh1 is the
histogram[(0, 5), (1, 10), (2, 25), (3, 15)] thenwidth(h1) is 3 and
its normal formh̄1 is [(0, 5), (2, 25), (3, 15), (1, 10)].

We often refer toy as themassof the element(x, y), and given
a histogramh, we refer to the mass of theith element of the list
using the notationh[i]. For instance,h1[3] = 15 andh̄1[3] = 10.
Theresidual mass(rm) of a columni in a normalized histogramh
is the mass of all the columns to the right ofi plus the mass of the
zero-column. Mathematically,rm(h̄, i) = h̄[0] +

P

width(h̄)
j=i+1 h̄[j].

For example,rm(h̄1, 1) = 5 + 15 + 10 = 30. The residual mass
characterizes the “narrowness” of a histogram. Those histograms
with low residual mass of the first column (i.e., rm(h̄1, 1) is small)
are good candidates for structs because the corresponding tokens
occur exactly the same number of times in almost all records.

To distinguish between structs, arrays and unions, we also need
to define thecoverageof a histogram, which intuitively is the
number of chunks containing the corresponding token. Mathemat-
ically, it is simply the sum of the non-zero histogram elements:
coverage(h̄) =

P

width(h̄)
j=1 h̄[j].

Finally, our algorithm works better when the oracle considers
groups of tokens with similar distributions together because with
very high probability such tokens form part of the same type con-
structor. To determine when two histograms aresimilar, we use
a symmetric form ofrelative entropy(Lin 1991). The (plain) rel-

ative entropy of two normalized histograms̄h1 and h̄2, written
R(h̄1 || h̄2), is defined as follows.

R(h̄1 || h̄2) =

width(h̄1)
X

j=1

h̄1[j] ∗ log(h̄1[j]/h̄2 [j])

To create a symmetric form, we first find the average of the two his-
tograms in question (writtenh1 ⊕ h2) by summing corresponding
columns and dividing by two. This technique prevents the denom-
inator from being zero in the final relative entropy computation.
Using this definition, the symmetric relative entropy is:

S(h̄1 || h̄2) =
1

2
R(h̄1 || h̄1 ⊕ h̄2) +

1

2
R(h̄2 || h̄1 ⊕ h̄2)

Now that we have defined the relevant properties of histograms,
we can explain how the oracle prophecies given a list of chunks.

1. Prophecy a base type when each chunk contains the same sim-
ple token. If each chunk contains the same meta-token, then
prophecy a struct with three fields: one for the left paren, one
for the body, and one for the right paren.

2. Otherwise, compute normalized histograms for the input and
group related ones into clusters using agglomerative cluster-
ing: A histogramh1 belongs to groupG provided there ex-
ists another histogramh2 in G such thatS(h̄1 || h̄2) <
ClusterTolerance. whereClusterTolerance is a parameter of
the algorithm. We do not require all histograms in a cluster to
have precisely the same histogram to allow for errors in the data.
A histogram dissimilar to all others will form its own group.We
have found aClusterTolerance of 0.01 is effective.

3. Determine if a struct exists by first ranking the groups by the
minimum residual mass of all the histograms in each group.
Find the first group in this ordering with histogramsh satisfying
the following criteria:

• rm(h) < MaxMass

• coverage(h) > MinCoverage

where constantsMaxMass andMinCoverage are parameters
of the algorithm. This process favors groups of histograms with
high coverage and narrow distribution. If histogramsh1, . . . ,hn

from groupG satisfy the struct criteria, the oracle will prophecy
some form of struct. It uses the histogramsh1, . . . , hn and
the associated tokenst1, . . . , tn to calculate the number of
fields and the corresponding chunk lists. We callt1, . . . , tn the
identifiedtokens for the input. Intuitively, for each input chunk,
the oracle puts all tokens up to but not including the first token
t from the set of identified tokens into the chunk list for the
first field. It putst in the chunk list for the second field. It puts
all tokens up to the next identified token into the chunk list for
the third field and so on. Of course, the identified tokens need
not appear in the same order in all input chunks, nor in fact must
they all appear at all. To handle this variation when it occurs, the
oracle prophecies a union instead of a struct, with one branch
per token ordering and one branch for all input chunks that do
not have the full set of identified tokens.

4. Identify an array by sorting all groups in descending order by
coverage of the highest coverage histogram in the group. Find
the first group in this ordering with any histograms that satisfy
the following minimum criteria:

• width(h) > 3

• coverage(h) > MinCoverage

This process favors histograms with wide distribution and high
coverage. If histogramsh1, . . . ,hn with corresponding tokens
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Figure 6. Histograms (a), (b), (c), (d), (e), (f) and (g) are generatedfrom top-level analysis of Crashreporter.log tokens. The corresponding
tokens are (a)[*], (b) Pint, (c) PDate, (d) PTime, (e) -, (f) Palpha and (g)Pwhite. Histograms (h)Palpha, (i) Pint, and (j)
Pwhite are generated from analysis of Crashreporter.log from set 1(the second level of recursion). Histogram (k) is generatedfrom top-
level analysis of the| token from the Sirius data. Note that several of these histograms have many bars of very small height, including (f)
with 7, (g) with 8, and (k) with 17.

t1, . . . , tn satisfy the array criteria, the oracle will prophecy
an array. It will partition each input chunk into (1) a preamble
subsequence that contains the first occurrence of each identi-
fied token, (2) a set of element subsequences, with each subse-
quence containing one occurrence of the identified tokens, and
(3) a postamble subsequence that contains any remaining tokens
from the input chunk.

5. If no other prophecy applies, identify a union. Partitionthe input
chunks according to the first token in each chunk.

3.3 Information-Theoretic Scoring

We use an information theoretic scoring function to assess the
quality of our inferred descriptions and to decide whether to apply
rewriting rules to refine candidate descriptions. Intuitively, a good
description is one that is bothcompactand precise. There are
trivial descriptions of any data source that are highly compact (e.g.,
the description that says the data source is a string terminated
by end of file) or perfectly precise (e.g., the data itself abstracts
nothing and therefore serves as its own description). A goodscoring
function balances these opposing goals. As is common in machine
learning, we have defined a scoring function based on theMinimum
Description Length Principle(MDL), which states that a good
description is one that minimizes the cost (in bits) of transmitting
the data (Grünwald 2007). Mathematically, ifT is a description and
d1, . . . , dk are representations of thek chunks in our training set,
parsed according toT , then the total cost in bits is:

COST(T, d1, . . . , dk) = CT(T ) + CD(d1, . . . , dk | T )

where CT(T ) is the number of bits to transmit the description and
CD(d1, . . . , dk | T ) is the number of bits to transmit the datagiven
the description.

Intuitively, the cost in bits of transmitting a descriptionis
the cost of transmitting the sort of description (i.e., struct,
union, enum, etc.) plus the cost of transmitting all of its sub-
components. For example, the cost of transmitting a struct type
CT(struct{T1; . . . ; Tk; }) is CARD +

Pk

i=1 CT(Ti) where
CARD is the log of the number of different sorts of type construc-
tors (24 of them in the IR presented in this paper). We have defined
the recursive cost function mathematically in full, but space limita-
tions preclude giving that definition here.

The cost of encoding data relative to selected types is shownin
Figure 7. The top of the figure defines the cost of encoding all data
chunks relative to the typeT ; it is simply the sum of encoding each
individual chunk relative toT .

In the middle of the figure, we define the cost of encoding a
chunk relative to one of the integer base types; other base types
are handled similarly. Notice that the cost of encoding an inte-
ger relative to the constant typePintConst is zero because the
type itself contains all information necessary to reconstruct the
integer– no data need be transmitted. The cost of encoding data

Cost of encoding all training data relative to a type:

CD(d1, . . . , dk | T ) =
Pk

i=1 CD’(di | T )

Cost of encoding a single chunk relative to selected base types:

CD’(i | PintConst(p)) = 0
CD’(i | Pint32) = 32
CD’(i | Pint64) = 64
CD’(i | PintRanged(pmin, pmax)) = ∞

Cost of encoding a single chunk relative to selected types:

CD’((d1, . . . , dk) | struct{T1; . . . Tk ; })

=
Pk

i=1 CD’(di | Ti)

CD’(ini(d) | union{T1; . . . Tk ; })
= log(k) + CD’(d | Ti)

CD’(ini(c) | enum{c1; . . . ck; })
= log(k)

CD’(ini(d) | switch x of{c1=>T1; . . . ck=>Tk; })
= CD’(d | Ti)

Figure 7. Cost of transmitting data relative to a type, selected rules

relative toPint32 or Pint64 types is simply 32 or 64 bits,
respectively. Finally, we artificially set the cost of ranged types
PintRanged(pmin, pmax) to be infinity because our experi-
ments reveal that attempting to define integer types with minimum
and maximum values usually leads to overfitting of the data.4

The last section of Figure 7 presents the cost of encoding
data relative to selected type constructors. The cost of encoding
astruct is the sum of the costs of encoding its component parts.
The cost of encoding aunion is the cost of encoding the branch
number (log(k) if the union hask branches) plus the cost of en-
coding the branch itself. The cost of encoding anenum is the cost
of encoding its tag only – given the tag, the underlying data is de-
termined by the type. The cost of encoding aswitch is the cost
of encoding the branch only – the tag need not be encoded because
it is determined by the type and earlier data.

3.4 Structure Refinement

The goal of the structure-refinement phase is to improve the struc-
ture produced by the structure-discovery phase. We formulate the
structure-refinement problem as a generalized search through the
description space starting with the candidate produced by structure
discovery. The objective of the search is to find the description that
minimizes the information-theoretic scoring function.

4 We nevertheless retainPintRanged types in our IR to encode the range
of values found during the value-space analysis. During therewriting phase,
we use this range information to rewritePintRanged into other integer
types. Since the cost of encodingPintRanged is so high, the appropriate
rewriting is guaranteed to be applied. In the future, we may emit this range
information as comments in the generated descriptions.



Rewriting rules. To move around in the description space, we
define a number of rewriting rules, the general form of which is

T ⇒ T ′, if some constraint p(T ) is satisfied,

whereT is a type in the candidate description andT ′ is its re-
placement after the rewriting. Some rules are unconditional and
thus free of constraints. There are two kinds of rewriting rules: (1)
data-independent rules which transform a type based exclusively on
the syntax of the description; and (2) data-dependent ruleswhich
transform a type based both on the syntax of the description and
on properties of the training data parsed by typeT . In general, the
data-independent rules try to rearrange and merge portionsof the
description while the data dependent rules seek to identifycon-
stant fields and enumerations, and to establish data dependencies
between different parts of the description.

Figure 8 presents a selection of the rewriting rules used in the
refinement phase. We have omitted many rules and have simplified
others for succinctness. WhenT [[X]] appears in a pattern on the
left-hand side of a rewriting rule,X is bound to the set of data
representations resulting from usingT to parse the appropriate part
of each chunk from the training set. Furthermore, letcard(X) be
the cardinality of the setX, and letX(i) be the data representation
resulting from parsing theith chunk in the training set. Finally,
given a union valueinj(v), we definetag(inj(v)) to bej.

(* rewriting rules *)
type rule : description -> description
val rules : rule list

(* measure the score for a type *)
fun score : description -> float

(* find the type with best score from a list *)
fun best: description list -> description

(* improve the given type by one rewriting rule *)
fun oneStep (T:description) : description =
let all = map (fn rule => rule T) rules in
let top = best all in
if (score top) < (score T) then oneStep top
else T

(* main function to refine an IR description *)
fun refine (T:description) : description =

let T’ = case T of
base b => b

| struct { Ts } => struct { map refine Ts }
| union { Ts } => union { map refine Ts }
| switch x of { vTs } =>

switch x of
{ map (fn (v, t) => (v, refine t)) vTs }

| array { T } =>
array { refine T }

| option { T } => option { refine T } in
oneStep T’

Figure 9. Generic local optimization algorithm in Pseudo-ML

The Search. The core of the rewriting system is a recursive,
depth-first, greedy search procedure. By “depth-first,” we mean
the algorithm considers the children of each structured type before
considering the structure itself. When refining a type, the algorithm
selects the rule that wouldminimizethe information-theoretic score
of the resulting type and applies this rule. This process repeats until
no further reduction in the score is possible, at which pointwe say
the resulting typeT is stable.

The rewriting phase applies the algorithm given in Figure 9
three times in succession. The first time, the algorithm quickly sim-
plifies the initial candidate description usingonlydata-independent

rules. The second time, it uses the data-dependent rules to refine
base types to constant values and enumerations,etc., and to intro-
duce dependencies such as switched unions. This stage requires
the value-space analysis described next. The third time, the algo-
rithm re-applies the data-independent rules because some stage two
rewritings (such as converting a base type to a constant) enable fur-
ther data-independent rewritings.

Value-space analysis. We perform a value-space analysis prior
to applying the data-dependent rules. This analysis first generates
a set of relational tables from the input data. Each row in a table
corresponds to an input chunk and each column corresponds to
either a particular base type from the inferred description, or to
a piece of meta-data from the description. Examples of meta-data
include the tag number from union branches and the length of
arrays. We generate asetof relational tables as opposed to a single
table as the elements of each array occupy their own separatetable
(a description with no arrays will have only one associated table).

We analyze every column of every table to determine proper-
ties of the data in that column such as constancy and value range.
To find inter-column properties, we have implemented a simpli-
fied variant of the TANE algorithm (Huhtala et al. 1999), which
identifies functional dependencies between columns in relational
data. Because full TANE is too expensive (possibly exponential in
the number of columns), and produces many false positives when
invoked with insufficient data, our simplified algorithm computes
only binary dependencies. We use the result of this dependency
analysis to identify switched unions and fixed-size arrays.

Running example. To illustrate the refinement process, we walk
through a few of the steps taken to rewrite the Crashreporter.log
description. The first part of the candidate description generated by
the structure-discovery algorithm appears below.

struct {
union {

struct {
Pdate; Pwhite; Ptime; Pwhite; Pint;
Pwhite; (*)

};
struct {

"-";
Pwhite; (*)

};
}
Palpha; "["; Pint; "]";
union { ... };

};

In the first data-independent stage of rewriting, the commontrailing
white space marked(*) is pulled out of the union branches into
the surrounding struct using the “common postfix in union” rule.
This transformation leaves behind the single-element struct marked
(**) in the result below; rewriting rules in stage three will trans-
form this verbose form into the more compact constant string"-".
This first rewriting stage also pulls colon and whitespace characters
out of the trailing union (not shown in the candidate description).

struct {
union {

struct { Pdate; Pwhite; Ptime; Pwhite; Pint; };
struct { "-" }; (**)

}
Pwhite; (*)
Palpha; "["; Pint; "]"; ":"; Pwhite;
union { ... };

};

In the second rewriting stage, data-dependent rules 1 and 2
convert appropriate base types into constants and enums. Moreover,



Data independent rules
1. Singleton structs and unions

struct{T} ⇒ T union{T} ⇒ T

struct{} ⇒ Pempty union{} ⇒ Pvoid

2. Struct and union clean-up
struct{pre types; Pvoid; post types} ⇒ Pvoid

struct{pre types; Pempty; post types} ⇒
struct{pre types; post types}

union{pre types; Pvoid; post types} ⇒
union{pre types; post types}

3. Uniform struct to fixed-length array
struct{T1; . . . ; Tn} ⇒ arrayFW{T1}[n]
if n ≥ 3 and∀i ∈ [1, n], j ∈ [1, n] : Ti = Tj .

4. Common postfix in union branches
union{struct{pre types1; T};

struct{pre types2;T}} ⇒
struct{union{struct{pre types1};

struct{pre types2}}; T}

union{struct{pre types;T};T} ⇒
struct{option{struct{pre types}}; T}

5. Combine adjacent constant strings
struct{pre types; PstringConst(c1 );

PstringConst(c2 ); post types} ⇒
struct{pre types; PstringConst(c1@c2); post types}

Data dependent rules
1. Base type with unique values to constant

Pint[[X]] ⇒ PintConst(c)
if ∀x ∈ X : x = c.

Palpha[[X]] ⇒ PstringConst(c)
if ∀x ∈ X : x = c.

Pstring[[X]] ⇒ PstringConst(c)
if ∀x ∈ X : x = c.

Pother[[X]] ⇒ PstringConst(c)
if ∀x ∈ X : x = c.

2. Refine enums and ranges
Pstring[[X]] ⇒ enum{s1; . . . ; sk}
if ∀x ∈ X : x ∈ {s1, . . . , sk}.

Pint[[X]] ⇒ Pint32

if ∀x ∈ X : 0 ≤ x < 232 .
3. Union to switch

struct{pre types; enum{c1; . . . ; cn}[[X]]; mid types;
union{T1; . . . ; Tn}[[Y ]]; post types}

⇒
struct{pre types, z : enum{c1; . . . ; cn}; mid types;

switch(z){c1 ⇒ TΠ(1); . . . ; cn ⇒ TΠ(n)}; post types}
where z is a fresh variable, and there exists a permutationΠ, s.t.
∀i ∈ [1, card(X)], Π(tag(X(i))) = tag(Y (i)).

Figure 8. Selected and simplified rewriting rules

TANE discovers a data dependency between the newly introduced
enumeration involving"crashdump" and "mach msg", and
the structure of the following message. Hence, we introducea
switched union. Notice that the switched union branches on a
different enum than the hand-written IR in Figure 3 because the
inference algorithm found a different way of structuring the data.
Nonetheless, both of these descriptions are accurate.

struct {
union {
struct { Pdate; " "; Ptime; " "; 2006; };
struct { "-" };

};
" "; enum {"crashreporterd", "crashdump"};
"["; PintRanged [120...29874]; "]"; ":"; " ";
x19:enum {"crashdump", "mach_msg", "Finished",

"Started", "Unable", "Failed"};
switch x19 of { ... };

};

In the third and final stage, data independent rule 5 combines
constants and rule 1 flattens the singleton struct, resulting in the
final IR description:

struct {
union {
struct { Pdate; " "; Ptime; " "; 2006; };
"-";

};
" "; enum {"crashreporterd", "crashdump"};
"["; Pint32; "]: ";
x19:enum {"crashdump", "mach_msg", "Finished",

"Started", "Unable", "Failed"};
switch x19 of { ... };
};

};

The information-theoretic complexity of the final description
relative to the data in our training set is 304538 bits. The candi-
date description produced by the structure-discovery phase had a
complexity of 416156 bits. The absolute values of these quantities
are relatively unimportant, but the fact that the final complexity is
substantially smaller than the original suggests that our search pro-
cedure optimized the description effectively.

3.5 End Products

The previous subsections outline the central technical elements
of our algorithms. The main tasks remaining include converting
the internal representation into a syntactically correctPADS de-
scription, feeding the generated description to thePADS compiler
and producing a collection of scripts that conveniently package
the freshly-generated libraries with thePADS run-time system and
tools. At the end of this process, users have a number of program-
ming libraries and many powerful tools at their disposal. Perhaps
the most powerful tools are thePADX query engine (Fernández
et al. 2006) and theXML converter, which allow users to write ar-
bitrary XQueries over the data source or to convert the data to XML
for use by other software. Other useful tools include the accumula-
tor tool mentioned earlier, converters to translate data into a form
suitable for loading into a relational database or Excel spreadsheet,
and a custom graphing tool that pushes data intognuplot for data
visualization. Figure 10 gives snapshots of the output of a couple
of these tools.

4. Experimental Evaluation
We conducted a series of experiments to study the correctness and
performance of our format inference algorithm. Table 1 lists the
data sources we used in the experiments; they range from system
logs to application outputs to government statistics. Except for sir-
ius.1000, which is a proprietary format, the files are all available
from www.padsproj.org/learning.html. The size of the



Tiny fragment of XML output from crashreporter.log:

<Struct_114>
<var_7>
<var_6>

<var_0><val>Sat Jun 24</val></var_0>
<var_2><val>06:38:46</val></var_2>
<var_4><val>2006</val></var_4>

</var_6>
</var_7>
<var_11><val>crashdump</val></var_11>
<var_14><val>2164</val></var_14>

...

Graph generated from ai.3000 web transaction volume at different
times of the day (00:00-8:55 and 19:00-24:00):
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Figure 10. End products of automatically generated tools.

Data source KB/Chunks Description
1967Transactions.short 70/999 transaction records
MER T01 01.cvs 22/491 comma-sep records
ai.3000 293/3000 webserver log
asl.log 279/1500 log file of Mac ASL
boot.log 16/262 Mac OS boot log
crashreporter.log 50/441 original crash log
crashreporter.log.mod 49/441 modified crash log
sirius.1000 142/999 AT&T phone

provision data
ls-l.txt 2/35 Stdout from Unix

command ls -l
netstat-an 14/202 output from netstat
pagelog 28/354 printer logs
quarterlypersonalincome 10/62 spread sheet
railroad.txt 6/67 US rail road info
scrollkeeper.log 66/671 application log
windowserverlast.log 52/680 log from

LoginWindow
server on Mac

yum.txt 18/328 log from pkg install

Table 1. Benchmark profile including filename, size in KB, num-
ber of chunks and brief description.

Data source SD(s) Ref(s) Tot(s) HW(h)
1967Transactions.short 0.20 2.32 2.56 4.0
MER T01 01.csv 0.11 2.80 2.92 0.5
ai.3000 1.97 26.35 28.64 1.0
asl.log 2.90 52.07 55.26 1.0
boot.log 0.11 2.40 2.53 1.0
crashreport.log 0.12 3.58 3.73 2.0
crashreport.log.mod 0.15 3.83 4.00 2.0
sirius.1000 2.24 5.69 8.00 1.5
ls-l.txt 0.01 0.10 0.11 1.0
netstat-an 0.07 0.74 0.82 1.0
pagelog 0.08 0.55 0.65 0.5
quarterlypersonalincome 0.07 5.11 5.18 48
railroad.txt 0.06 2.69 2.76 2.0
scrollkeeper.log 0.13 3.24 3.40 1.0
windowserverlast.log 0.37 9.65 10.07 1.5
yum.txt 0.11 1.91 2.03 5.0

Table 2. Execution times. SD: time for structure-discovery phase;
Ref: time for scoring and refinement; Tot: end-to-end time for
complete inference algorithm; HW: time takenin hours to hand-
write the corresponding description.

benchmarks varies from a few thousand lines to just a few dozen.
Most of the data files are “line based,” meaning that every line be-
comes a chunk for the purposes of learning the format. One ex-
ception is netstat-an, in which chunks comprise multiple lines. We
include two versions of crashreporter.log: the original “crashre-
porter.log” and the slightly modified “crashreporter.log.mod” that
we used as an example in this paper. We include both to demon-
strate that our minor modifications were simply for expository pur-
poses.

Performance. Our first set of experiments measures the time re-
quired to infer a description from example data. In all our experi-
ments, we used an Apple PowerBook G4 with a 1.67 GHz Proces-
sor and 512 MB DDR RAM running on Mac OSX 10.4 Tiger. Ta-
ble 2 presents the execution times for the structure-discovery phase
(SD), the refinement phase (Ref) and the total (Tot) end-to-end time
of the algorithm including printingPADS descriptions and other
overhead, all measured in seconds. For accurate timing measure-
ments, we ran the algorithm 10 times, and found the average after
removing the best and the worst times.

There are two main lessons to take away from this initial set of
benchmarks. First, the overall time to infer the structure of any our
example files was less than a minute, and was less than 10 seconds
except on a couple of the larger files. Hence, although we have
spent very little time optimizing our algorithm, it alreadyappears
perfectly capable of being used in real time by a programmer
wishing to understand and process small ad hoc data files. Second,
discovery of an initial format is usually very fast, taking less than
3 seconds in all cases. Most of the algorithm’s time is spent in
format rewriting, which often takes a factor of 10 or more time than
structure discovery. Moreover, most of the rewriting time is taken
in the data analysis phase (numbers not shown). Consequently, if
format rewriting (particularly the data analysis phase) istaking
too long, the user may abort it to produce a slightly less refined
description that may nevertheless be perfectly sufficient.

To give a very rough idea of how using the inference system
compares with programming descriptions by hand, we also mea-
sured the time it took for a person to write descriptions of all of the
data sources (See Table 2 again). Initially, our programmer(a Ph.D.
in computer science) knew very little about how thePADS system
worked in practice, having only read a few of our conference pa-
pers. Consequently, writing the first description took a long time,
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Figure 11. Execution times of training sets

approximately 48 hours (two days of working at an “ordinary”
pace) for quarterlypersonalincome. While different people with dif-
ferent backgrounds will clearly learn at different rates, there is little
doubt that the format inference algorithm is a tremendous benefit to
novices, particularly to those data analysts without a Ph.D. in com-
puter science, who are uninterested in learning some new data de-
scription language. After some practice, our programmer was able
to write most descriptions in 1 to 2 hours, so generating descrip-
tions in a few seconds still has great benefit, even to experts.

To understand the scaling behavior of our algorithm, we ran-
domly selected 5%, 10%, 15%, ..., 80% of the chunks in every data
source and measured the performance of the algorithm on eachsub-
set of the data that was selected. Figure 11 plots the execution time
against the percentage of each data source selected. These exper-
iments suggest that once a format is fixed, the cost of inference
grows linearly with the amount of data. However, it is also clear
that the raw size of the data is not the only factor determining per-
formance. The nature and complexity of the format is also a signif-
icant factor. For instance, windowserverlast.log is only one third
the size of sirius.1000, but takes substantially longer forthe infer-
ence algorithm to process.

Correctness. To evaluate the correctness of our algorithm, we
again selected random subsets of each data source, trained our algo-
rithm on those subsets and measured the error rate of the inferred
parser on the remaining data. Figure 12 graphs the percentage of
successfully parsed records versus the percentage of the data used
in training. Note that accuracy does not uniformly improve.This
variation is caused by the randomness in our data selection and the
fact that in some cases, we have very small absolute quantities of
data relative to the underlying complexity of the formats. For in-
stance, at 5% training size, ls-l.txt is just one line of data.

To understand the correctness properties of our algorithm from
a different angle, we record the minimum training sizes in percent-
ages required to achieve 90% and 95% accuracy for all the bench-
marks in Table 3. This table also reports the normalized costof a
description (NCT), which we compute by dividing the first compo-
nent of the information-theoretic score in Section 3.3 by the number
of bits in the data. NCT gives a rough indication of the complexity
of the data source. The higher the normalized score, the morecom-
plicated the data, and the greater the fraction of data is needed to
learn an accurate description. The rows of of Table 3 are sorted in
ascending NS score. From the table, one can see that ls-l.txtand
railroad.txt have high NS scores. This is because they are quite
small data sources (2KB and 6KB respectively), yet have relatively
complicated formats. Consequently, it takes a substantialportion
of the data to learn an accurate parser. For most of the other data
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Figure 12. Success rates of training sets

Data source NCT 90% 95%
sirius.1000 0.0001 5 10
1967Transactions.short 0.0003 5 5
ai.3000 0.0004 5 10
asl.log 0.0012 5 10
scrollkeeper.log 0.0020 5 5
pagelog 0.0032 5 5
MER T01 01.csv 0.0037 5 5
crashreporter.log 0.0052 10 15
crashreporter.log.mod 0.0053 5 15
windowserverlast.log 0.0084 5 15
netstat-an 0.0118 25 35
yum.txt 0.0124 30 45
quarterlypersonalincome 0.0170 10 10
boot.log 0.0213 45 60
ls-l.txt 0.0461 50 65
railroad.txt 0.0485 60 75

Table 3. Correctness measures. NCT: normalized cost of descrip-
tion; Min Training size (%) to obtain required accuracy

sources, a substantially smaller percentage of the data is required to
achieve high accuracy. Overall, for 11 of 16 benchmarks, less than
15% of the data is needed to achieve 95% accuracy or more.

5. Discussion
Dealing with errors. In 1967, Gold (1967) proved that learning a
grammar for any remotely sophisticated class of languages,includ-
ing regular languages, is impossible if one is only given positive
example data.5 Given this negative theoretical result, and the prac-
tical fact that it is hard to be sure that training data is sufficiently
rich to witness all possible variation in the data, errors ininference
are inevitable. Fortunately, detecting and recovering from errors in
ad hoc data is one of the primary strengths of thePADS system.

To determine exactly how accurate an inferred description is on
any new data source, a user may run the accumulator tool. Thistool
catalogs exactly how many deviations from the description there

5 A positive example is a data source known to be in the grammar to be
learned. A negative example is one knownnot to be in the target gram-
mar. Perfect learning with both positive and negative examples is possible.
Unfortunately, data analysts are unlikely to have access toa sufficient col-
lection of relevant ad hoc data that they knowdoes notsatisfy the format
they are interested in learning, we are forced to tackle the more difficult
problem of learning from positive examples only.



were overall in the data source as well as the error rate in every
individual field. Hence, using this tool, a programmer can immedi-
ately and reliably determine the effectiveness of inference for their
data. If there is a serious problem, the user can easily edit the gen-
erated description by hand – identification of a problem field, a
minor edit and recompilation of tools might just take 5 minutes.
Hence, even imperfectly-generated descriptions have great value in
terms of improving programmer productivity. Moreover, allPADS-
generated parsers and tools have error detection, representation and
recovery techniques. For instance, when converting data toXML ,
errors encountered are represented explicitly in theXML document,
allowing users to query the data for errors if they choose. Before
graphing ad hoc data, an analyst may use the accumulator toolto
check if any errors occur in the fields to be graphed. If not, there is
no reason to edit the description at all – graphing the correct fields
may proceed immediately.

Future work. Discovering tokens like “IP address” and “date” is
highly beneficial as such tokens act as compact, highly descriptive,
human-readable abstractions. Unfortunately, these tokens are also
often mutually ambiguous. For instance, an IP address, a floating
point number and a phone number can all be represented as some
number of digits separated by periods. At the moment, we disam-
biguate between them in the same way that lex does, by taking
the first, longest match. In select cases, when we cannot disam-
biguate in the tokenization phase, we try to correct problems using
domain-specific rewriting rules in the structure refinementphase.
To improve tokenization in the future, we plan to look at learning
probabilistic models of a broad range of token types. We alsoin-
tend to explore finding new tokens from the data itself, possibly by
identifying abrupt changes in entropy (Hutchens and Alder 1998).

6. Related Work
Researchers have been studyinggrammar induction, the process of
inferring descriptions of text-based data, for decades. Nevertheless,
the work we present in this paper represents an important andnovel
contribution to the field for three key reasons:

1. Our system solvesa new end-to-end problemnot treated in past
work — the problem of generating an extensible suite of fully
functional data processing tools directly from ad hoc data.Gen-
erating this suite requires the combination of three elements:
grammar induction, automatic intermediate representation gen-
eration and type-directed programming. A key contributionof
this work is the conception, development and evaluation of this
end-to-end system.

2. Past work on grammar induction has focused primarily on ei-
ther (1) theoretical problems, (2) natural language processing,
(3) web page analysis, or (4) XML typing. Our work tackles an
understudied domain, that of complex system logs and other ad
hoc data sources. Since ad hoc data has different characteristics
from the previously studied domains, naive adaptations of the
existing algorithms are unlikely to be effective.

3. From a technical standpoint, we developed a new top-down
structure-discovery algorithm and showed how to combine that
productively with a classic bottom-up rewriting system based
on the minimum description length principle. We demonstrate
that our new algorithm has good practical properties on ad hoc
data sources: it usually infers correct descriptions on a small
amount of training data and its performance scales linearly
relative to the amount of training data used.

In the rest of this section, we analyze the most closely related work
in more depth.

Traditional Grammar Induction. Classic grammar induction al-
gorithms (Vidal 1994) can be divided into two classes: thosethat
require both positive and negative examples to discover a gram-
mar and those that only require positive examples. The problem
our system solves is the latter; negative examples of ad hoc data
sources are not available in practice. Consequently, effective theo-
retical algorithms for learning from both positive and negative ex-
amples such as RPNI (Oncina and Garcia 1992) are not applicable
in our context.

Unfortunately, an early result by Gold (1967) showed that per-
fect grammar induction is impossible for any superfinite class of
languages when the algorithm has no access to negative examples.
A superfiniteclass of languages is any set of languages that in-
cludes all finite languages and at least one infinite language. Hence,
all the most familiar classes of languages, including regular expres-
sions, context free grammars and PADS are superfinite. Thereare
two main tactics one can use to avoid this negative result: (1) use
domain knowledge to explicitly limit the class of languagesto a
non-superfinite class, or (2) give up on perfect language identifi-
cation and instead settle forapproximate identification(Wharton
1974) through the use of probabilistic language models.

Examples of non-trivial, non-superfinite language classeswith
known inference algorithms include k-reversible languages (An-
gluin 1982), SOREs and CHAREs (Bex et al. 2006). None of these
languages and the associated algorithms are a good fit for infer-
ring PADS descriptions (even the regular subset of PADS with-
out dependencies and constraints). For example, ad hoc datais un-
likely to be reversible and hence k-reversible languages are not rel-
evant. SOREs are a subset of the k-testable regular languages with
a linear-size translation from automata to regular expressions, but
they carry the restriction that each symbol in the regular expression
appear at most once. A cursory glance at our hand-written PADS
descriptions reveals that many such descriptions include repeated
use of the same symbol. Finally, it appears that CHAREs restrict
the nesting of regular expression operators too severely tobe of
much use to us. For example, whena, b, andc are atomic symbols,
even the simple expression(ab + c)∗ is not a CHARE.

Given the difficulty of finding useful non-superfinite language
classes, it is reasonable to turn to algorithms for approximate infer-
ence that use probabilistic models. Classic examples of such pro-
cedures include work by Stolcke and Omohundro (1994) and Hong
(2002). These and a number of other algorithms operate by repeat-
edly rewriting a candidate grammar (or set of candidate grammars)
until an objective function is optimized. If the training data for the
learning system is the stringss1, s2, . . ., sn, these algorithms nor-
mally start their process using the grammars1 + s2 + · · · + sn.
Consequently, an enormous number of different rewrites mayap-
ply to the initial candidate grammar. Our structure refinement phase
avoids these problems because it is preceded by a highly effi-
cient histogram-based structure-discovery algorithm that identifies
a good candidate grammar from which to start the search.

Another category of algorithms are those that learn various
kinds of automata as opposed to regular expressions or gram-
mars (Denis et al. 2004; Oncina and Garcia 1992; Raeymaekers
et al. 2005). One difficulty with adapting these algorithms to our
task is that we would need to convert the inferred automata into
a grammatical representation so that we can present the result to
users and funnel it to our tool-generation infrastructure.Unfortu-
nately, in theory, conversion from automata into regular expressions
can result in an exponential blowup in the size of the representation.
Moreover, a substantial blowup appears to be relatively common in
practice (Bex et al. 2006). Consequently, these algorithmsare not
appropriate for our domain.

Information Extraction. The basic goal of an information extrac-
tion system is to find and separate the interesting and relevant bits



of information (the needles) from a haystack of data. Such systems
are fundamentally different from ours, in that they choose which
bits of information to extract, while we learn a descriptionof the
entirety of a data source, leaving the choice about which pieces are
interesting to down-stream applications. Of course, this option is
only feasible because we target ad hoc data, which is fairly struc-
tured and dense in useful information, rather than web pagesor free
text, which are the usual targets for information extraction systems.

A common approach to information extraction involves an in-
ductive learning process in which a user manually tags the relevant
data in sample documents. An example might be highlighting prod-
uct names and prices on a collection of shopping web pages from a
particular site. The learning system then uses these labelled docu-
ments in two ways: first, to decide which bits of information should
be extracted from the page (i.e., product names and prices), and
second, to construct awrapperfunction to extract those bits of in-
formation from similar pages. Soderland’s WHISK system (1999)
is an example of such an extraction system. It is particularly gen-
eral as it makes few assumptions about the form of the source text,
operating over structured data, stylized text such as Craig’s List de-
scriptions, or free-form text. WHISK differs from our system in that
it requires user labeling and then only extracts a collection of tuples
from the data source rather than returning the complete structure of
the data source.

Kushmerick and colleagues (1997; 1997) focus on more struc-
tured data to reduce the amount of labeling required during train-
ing. In particular, this work assumes the labelled pages conform to
one of six different templates, the most well-developed of which
has the form of a header, followed by a sequence of K-tuples each
of which is flanked by a pair of begin and end tags, followed by a
trailer. For such documents, the system generates a wrapperto ex-
tract the K-tuples. The use of fixed templates and the primaryfocus
on relational data makes this work quite different from ours.

Muslea et al. (2003) tackle a similar problem, but strive to re-
duce the amount of labeling by having the learning system chose
which documents to have the user label, selecting documentsby
their probative value. Borkar et al. (2001) uses hand-labelled train-
ing examples and a user-specified set of desired features to train
Hidden Markov Models to select the desired features from simi-
lar documents. This work is quite successful at learning to select
the relevant features of addresses and bibliographic citations from
a variety of input formats. In general, systems that depend upon la-
beling are unlikely to be helpful in our context; rather thanspending
time explicitly labeling documents, the user might as well write a
PADS description by hand.

More closely related are various efforts to identify tabular data
either from free-form text (Ng et al. 1999; Pinto et al. 2003)or from
web pages (Lerman et al. 2004). These approaches typically use
hand-labelled examples to train machine learning systems to iden-
tify the tables. They then use heuristics specific to tabulardata to
extract the tuples contained within those tables. The portion of this
work related to identifying structured data from within more free-
form documents is complementary to ours. The portion responsible
for deconstructing the identified tables uses more specific domain-
knowledge related to the form of tables than we do.

Web pages generated in response to queries tend to be formed
by sloting the resulting tuples into a standard template. Another
line of work aims to separate such templates from the payload
data (Arasu and Garcia-Molina 2003; Crescenzi et al. 2001).Arasu
and Garcia-Molina use a top-down grammar induction algorithm
somewhat similar to our rough structure-inference phase (though it
does not use histograms), but has no description-rewritingengine.
This algorithm exploits the hierarchical nesting structure of XML
documents in essential ways and so cannot be applied directly to
ad hoc data.

XML Type Inference. Many researchers have studied the prob-
lem of learning a schema such as a DTD or XSchema from a col-
lection of XML documents (Bex et al. 2006, 2007; Fernau 2001;
Garofalakis et al. 2000). At a high level, this task is similar to the
format inference component of our system. However, the details
differ because XML has different characteristics from ad hoc data.
One difference is that XML documents come in a well-nested tree
shape, with obvious delimiters defining the structure. A second im-
portant difference is that the appropriate tokenization for a given ad
hoc data source is often not known in advance. In contrast, tokens
in XML documents are clearly demarcated using angle bracketsyn-
tax. As a result of these differences, XML inference algorithms
cannot be used “off-the-shelf” for understanding the structure of ad
hoc data. They must be modified, tuned and empirically evaluated
on this new task.

One line of research on schema inference for XML makes use
of the observation that 99% of the content models for XML nodes
are defined as SOREs or CHAREs (Martens et al. 2006). This ob-
servation allows Bex et al. (2006) to define an efficient algorithm
for inferring concise DTDs. Later Bex et al. (2007) build on this
work by showing how to inferk-local XML Schema definitions
also based on SORES. Ak-local definition allows node content to
depend on the parent tag, grandparent tag, etc. (up tok levels for
some fixedk). As mentioned earlier, hand-written PADS descrip-
tions do not generally obey the SOREs or CHAREs restriction,nor
are they generally arranged with a nesting structure that suggestsk-
local inference will be particularly useful. The successful applica-
tion of these techniques to XML data reinforces the idea thatthe ad
hoc data we analyze has quite different characteristics from XML,
and therefore the ad hoc data inference problem merits studyinde-
pendent of the XML inference problem.

XTRACT (Garofalakis et al. 2000) is another system for infer-
ring DTDs for XML documents. It operates in three phases: gen-
eralization, factoring and MDL optimization. The first phase plays
a role similar to our structure discovery phase in that it generates a
collection of candidate structures from a series of XML examples.
This generalization phase searches for patterns in XML data; it is
tuned using the authors’ knowledge of common DTD structures.
Factoring decreases the size of generated candidate DTDs; some of
the factoring rules resemble our rewriting rules. Finally,they tackle
the MDL optimization problem by mapping the problem into an in-
stance of the NP-complete Facility Location Problem, whichthey
solve using a quadratic approximation algorithm. Our MDL-guided
rewriting problem considers a more general set of rewritingrules
and hence we cannot reuse their technique.

Other work. Potter’s Wheel (Raman and Hellerstein 2001) is
a system that attempts to help users find and purge errors from
relational data sources. It does so through the use of a spread-
sheet style interface, but in the background, a grammar inference
algorithm infers the structure of the input data, which may be “ad
hoc,” somewhat like ours. This inference algorithm operates by
enumerating all possible sequences of base types that appear in the
training data. Since Potter’s Wheel is aimed at processing relational
data, they only inferstruct types as opposed to enumerations,
arrays, switches or unions.

The TSIMMIS project (Chawathe et al. 1994) aims to allow
users to manage and query collections of heterogeneous, ad hoc
data sources. TSIMMIS sits on top of the Rufus system (Shoens
et al. 1993), which supports automatic classification of data sources
based on features such as the presence of certain keywords, magic
numbers appearing at the beginning of files and file type. Thissort
of classification is materially different from the syntactic analysis
we have developed.



7. Conclusions
Managing ad hoc data is a tedious, error-prone and costly enter-
prise. By augmenting thePADS data processing language and sys-
tem with an efficient format inference engine, we have effectively
cut the generation time for useful data analysis and transformation
tools from hours or days to seconds. Now, within moments of re-
ceiving a new ad hoc data source, programmers can write complex
semi-structured queries to extract information, produce informative
graphs of key statistics, convert the data into a format amenable
to easy loading into Excel or translate toXML for processing with
other standard programming libraries and systems. Systemsadmin-
istrators, computational scientists, financial analysts,industrial data
management teams and everyday programmers will all benefit sub-
stantially from this new capability to translate dirt into useful shov-
els for ad hoc data processing.
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