
Forest: A Language and Toolkit for
Programming with Filestores

Kathleen Fisher
Tufts University

Nate Foster
Cornell University

David Walker
Princeton University

Kenny Q. Zhu
Shanghai Jiao Tong University

Abstract
A filestore is a structured collection of data files housed in a conven-
tional hierarchical file system. Many applications use filestores as
a poor-man’s database, and the correct execution of these applica-
tions requires that the collection of files, directories, and symbolic
links stored on disk satisfy a variety of precise invariants. More-
over, all of these structures must have acceptable ownership, per-
mission, and timestamp attributes. Unfortunately, current program-
ming languages do not provide support for documenting assump-
tions about filestores, detecting errors in them, or safely loading
from and storing to them.

This paper describes the design, implementation, and semantics
of Forest, a new domain-specific language for describing filestores.
The language uses a type-based metaphor to specify the expected
structure, attributes, and invariants of filestores. Forest generates
loading and storing functions that make it easy to connect data
on disk to an isomorphic representation in memory that can be
manipulated as if it were any other data structure. Forest also
generates metadata that describes the degree to which the structures
on the disk conform to the specification, making error detection
easy. In a nutshell, Forest extends the rigorous discipline of typed
programming languages to the untyped world of file systems.

We have implemented Forest as an embedded domain-specific
language in Haskell. In addition to generating infrastructure for
reading, writing and checking file systems, our implementation
generates type class instances that make it easy to build generic
tools that operate over arbitrary filestores. We illustrate the utility of
this infrastructure by building a file system visualizer, a file access
checker, a generic query interface, description-directed variants of
several standard UNIX shell tools and (circularly) a simple Forest
description inference engine. Finally, we formalize a core fragment
of Forest in a semantics inspired by classical tree logics and prove
round-tripping laws showing that the loading and storing functions
behave sensibly.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design, Theory

Keywords Data description languages, file systems, filestores,
domain-specific languages, ad hoc data, Haskell, bidirectional
transformations, generic programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

1. Introduction
Databases are an effective, time-tested technology for storing struc-
tured and semi-structured data. Nevertheless, many computer users
eschew the benefits of structured databases and store important
semi-structured information in collections of files and directories
in a conventional file system instead. For example, the Princeton
Computer Science Department stores records of undergraduate stu-
dent grades in a structured set of directories and uses scripts to com-
pute averages and study grading trends. Similarly, Michael Freed-
man collects sets of log files from CoralCDN, a distributed content
distribution network [11, 12]. The logs are organized in hierarchical
directory structures based on machine name, time and date. Freed-
man mines the logs for information on system security and perfor-
mance. At Harvard, physics professor Vinothan Manoharan stores
his experimental data in sets of files and extracts information using
python scripts. At AT&T, vast structured repositories contain net-
work monitoring information, phone call records, and billing data.
Many software code bases, including Haskell and its associated Ca-
bal libraries, require that specific files exist in particular formats at
precise locations described in other files. Similarly, version control
systems like cvs utilize the file system to store revision informa-
tion. Web sites require various types of files to exist in particular
directories according to content type, and security considerations
often require particular permissions on these files. Many other ex-
amples exist across the computational sciences and social sciences,
in computer systems research, in computer systems administration
and in industry.

Users choose to implement ad hoc databases in this manner for
a number of reasons. A key factor is that using databases often
requires paying substantial up-front costs such as: (1) finding and
evaluating the appropriate database software (and possibly paying
for it); (2) learning how to load data into the database; (3) writing
programs to transform the raw data for loading into the database;
(4) learning how to access the data once it is in the database;
and (5) interfacing the database with a conventional programming
language to support applications that use the data. Finally, it may be
the case that the database optimizes for a pattern of use not suited
to the actual application, which makes the overhead of the database
system even less desirable.

Rather than paying these costs, programmers often store data
in the file system, using a combination of directory structure, file
names, file contents, and symbolic links to organize the data. We
call such a data representation a filestore. The “query language”
for a filestore is often a shell script or conventional programming
language.

Unfortunately, despite their initial convenience, using filestores
can have a number of negative consequences. First, there is gener-
ally no documentation, which means it can be hard to understand
the data and its organization. New users struggle to learn the struc-
ture, and if the system administrator leaves, knowledge of the data
organization may be lost. Second, the structure of the filestore tends
to evolve: new elements are added and old formats are changed,

292

sometimes accidentally. Such evolution can cause hacked-up data
processing tools to break or return erroneous results; it also further
complicates understanding the data. Third, there is often no sys-
tematic means for detecting errors even though data errors can be
immensely important. For example, for filestores containing moni-
toring information, errors can signal that some portion of the mon-
itored system is broken. Fourth, analyses tend to be built from
scratch. There is no auxiliary query or tool support and no help with
debugging. Tools tend to be “one-off” efforts that are not reuseable.
Fifth, dealing with large data sets, which are common in this set-
ting, imposes extra difficulties. For example, standard shell tools
such as ls fail when more than 256 files appear on the command
line. Hence, programmers must break up their data and process it
in smaller sets, a tedious task.

We propose a better way: A type-based specification language,
programming environment and toolkit for describing and manag-
ing filestores. This language, called Forest, is implemented as an
embedded domain-specific language in Haskell. Forest allows pro-
grammers to describe the expected shape of a filestore and to ma-
terialize it as typed, format-specific Haskell data structures. Con-
versely, given data structures with the appropriate type, Forest
makes it straightforward to dematerialize these structures and write
them out to disk.

The first benefit of the Forest system is that Forest descrip-
tions provide executable documentation that can be used to check
whether a given filestore conforms to its specification. For exam-
ple, Unix file systems should be laid out according to the informal
standard set forth by the Filesystem Hierarchy Standard Group [3],
which requires, among other things, that certain directories only
contain certain files, presumably for security reasons. Forest pro-
vides a language for expressing standards precisely and for check-
ing that given file systems conform to them. As another example,
the Pads website [25] contains a complex set of scripts and data
files to implement an online demo. Unless all of the required data
files, directories, and symbolic links are configured correctly, the
web demo fails with an inscrutable error message. Forest allows
the Pads webmaster to precisely document all of these requirements
and to detect specification violations, making it easy to find and re-
pair errors. And, of course, if the current webmaster were to leave
her post, her successor could use the Forest description to help un-
derstand the system.

As well as serving as executable documentation, Forest pro-
vides substantial additional support for programmers. The goal is
for programmers to obtain a whole range benefits by writing one
simple, compact file system specification. The automatically gen-
erated auxiliary support includes: (1) a set of type declarations to
represent the filestore in memory; (2) a set of type declarations that
capture errors and file system attributes for the filestore; (3) a load-
ing function to populate these in-memory structures; (4) a storing
function to push possibly updated structures back out to disk; (5)
type class instance declarations that make it possible for program-
mers to query, analyze, and transform filestore data using generic
functions; and (6) a set of useful generic functions/scripts that op-
erate over instances of these type classes.

The main contribution of this work is conceptual: We propose
the idea of extending a modern programming language with tightly
integrated linguistic features for describing and manipulating file-
stores. To demonstrate the potential of this idea, the following sec-
tions flesh out our proposal in greater depth:

• Section 2 begins with two concrete motivating examples, drawn
from the authors’ day-to-day experience managing computer
systems. While there are just two central examples in this paper,
the Forest web site [9] contains a number of further examples
and case studies.

• Section 3 describes a concrete language design. The design is
characterized by a simple, intuitive and compositional syntax
that is tightly integrated with Haskell, our host language. The
design is also tightly integrated with Pads/Haskell, a domain-
specific language for describing individual files (as opposed to
entire filestores), inspired by past work on related data descrip-
tion languages [5, 6, 7, 22]. This tight integration was a crucial
design goal as it allows programmers to transition seamlessly
between ordinary Haskell data structures, file internals and file
collections, all in a uniform syntax.
• Section 4 explains how to write Haskell programs that operate

over filestores described in Forest. The goal of this section is to
provide a sense of how easy it is to write simple filestore scripts
or queries.
• Section 5 shows that it is possible to use Forest to make the

management of filestores even easier by developing generic
tools capable of operating over any filestore. We have developed
several such tools including a generic query interface, a file sys-
tem visualization tool, an access-control permission checker,
and a series of UNIX-like scripting tools. We have also built
a simple description-inference tool to help users write a new
description for an existing file system. These tools are interest-
ing in their own right and also as case studies of putting generic
programming techniques into practice. In addition, they pro-
vide evidence that our design is effectively integrated into the
Haskell ecosystem.
• Section 6 explains our implementation, which is complete and

may be downloaded at the Forest web site [9]. In addition to
delivering a useful tool, our engineering work has the auxiliary
benefit of serving as a case study in domain-specific language
implementation. In fact, it has already had significant impact
as such: the Haskell team modified and extended Haskell’s
quasiquoting mechanism in response to our needs.
• Section 7 describes the formal semantics for core Forest and

states theorems demonstrating that the mappings between the
filestore and in-memory structures behave correctly. These
theorems are inspired by the “round-tripping” laws for well-
behaved lenses [10], but are significantly more complicated as
the load and store functions have to deal with inconsistencies
stemming from dependencies, duplication, and invalid data.
• Section 8 contains a discussion of related work. There has been

much past work on domain-specific languages for describing,
parsing and printing individual data files. Examples include
Lex, Yacc, Antlr [26], Parsec [19] and Pads [7], to name just
a few. However, Forest differs substantially from any of these
systems because it focuses on technology for describing entire
filestores. A key difference is that simple filestores are trees and
complex ones with symbolic links are graphs, whereas files are
sequences (of characters or tokens). Consequently, the language
design, formal systems, semantic issues, and underlying imple-
mentation technology are all entirely different.

2. Example Filestores
In this section, we present two example filestores. We use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information to decide on undergraduate awards and to track grading
trends. Its format has changed over time—something that is typical
for ad hoc filestores. Naturally, any description needs to cope with
the variations introduced as formats evolve.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are

293

CS

README

classof11

classof12

graduates

BSE11

AB11

LEBDA.txt

MACDONALD.txt

APPS.txt

BSE12

AB12

TRANSFER

WITHDREW

BOZAK.txt

KESSEL.txt

KADRI.txt

MACARTHER.txt

ORR.txt

BEAUCHEMIN.txt

VERSTEEG.txt

finger.txt

classof07

classof10

BSE07

AB07

TRANSFER

WITHDRAWN

clark.txt

gilmour.txt

borschevski.txt

macoun.txt

rouse.txt

mccabe.txt

allison.txt

sweatt.txt
BSE10

AB10

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. A shaded node denotes denotes an error; in this
case, missing files.

three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the two
degree subdirectories ABYY and BSEYY as the computer science
department gives out both Arts and Science (AB) and Engineering
(BSE) degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
degree directory may also contain a template file named sss.txt
or sxx.txt for creating new students.

The second filestore contains log files for CoralCDN [11, 12].
To monitor the performance and security of the system, the hosts
participating in CoralCDN periodically send usage statistics back
to a central server. These statistics are collected in a filestore sim-
ilar to the one depicted in Figure 2. The filestore has a top-level
directory named dat, which contains a set of subdirectories, one
for each host. Each of those directories contain another set of direc-
tories, labeled by date and time. Finally, each of the date/time direc-
tories contain one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period. In addition to
exploring this primary filestore, we also explore a secondary, de-
rived filestore. This secondary store, named stats, contains files
that store statistics generated by Forest/Haskell scripts that analyze
and summarize the raw CoralCDN server data. These system-wide
summaries are representative of the statistics reported by Freedman
in his CoralCDN report [11].

dat

planetlab-2.stanford.edu

planetlab3.williams.edu

2005_08_14-00_33

2005_08_14-00_01

coralwebsrv.log.gz

probed.log.gz

corald.log.gz

coralwebsrv.log.gz

corald.log.gz

2009_09_16-00_01

2008_08_15-00_01

coralwebsrv.log.gz

coraldnssrv.log.gz

coralwebsrv.log.gz

corald.log.gz

Figure 2. Coral system log data.

3. Forest Design
Data stored in filestores shares many characteristics of data stored
in ordinary, in-memory data structures. Consequently, Forest uses
the same sort of language to describe filestores as one uses to de-
scribe ordinary data structures — the language of types. Simple
base types describe individual file system objects1 and more com-
plex types describe organized collections of file system objects.
This idea forms the basis for our design.

Embedding Forest in Haskell. In order to write lightweight
scripts, programmers must be able to manipulate and transform
file system objects side-by-side with ordinary data structures. Con-
sequently, a language like Forest must be embedded within a more
general host programming language. We chose Haskell as the host
language primarily because of its rich support for type-directed
programming, which facilitates the construction of generic tools
that can operate over any Forest description. As a bonus, Haskell’s
quasiquoting mechanism [21] proved a useful way to implement
Forest. It enabled tight integration of the two languages while ad-
mitting fine-grained control over Forest syntax.

To introduce new Forest declarations within a Haskell pro-
gram, the programmer simply opens the Forest sublanguage using
quasiquoting notation:

[forest| ... forest declarations ... |]

When processing such a quasiquote, the Haskell compiler invokes
the Forest compiler, which converts the given Forest declarations
into a sequence of plain Haskell declarations that collectively im-
plement the Forest declarations.

Forest Structure and Interpretations. Once within the Forest
sublanguage, the programmer writes declarations that resemble
extended Haskell type declarations. Each such type declaration has
three primary semantic interpretations:

1. An interpretation as an expected on-disk shape of a file system
fragment.

2. An interpretation as an ordinary Haskell type for the in-memory
representation that will be constructed when the file system
fragment is loaded into a Haskell program.

3. An interpretation as an ordinary Haskell type for the in-memory
metadata that will be generated when the file system fragment
is loaded.

All three interpretations are used by the tool that loads data from
the filestore into memory as specified by a Forest description. When

1 We use the term file system object or more simply object to denote either
a file, a directory, or a symbolic link.

294

supplied with a current path, the loader uses the first interpretation
to validate that the filestore rooted at that path has the correct shape.
If the expected shape is complicated, possibly involving several
nested subshapes (and hence traversal through several subdirecto-
ries), the semantics of Forest dictates how the loader should adjust
the current path as it goes. When validation (also called matching)
succeeds, we say the filestore fragment matches the description.
The second interpretation is used when the loader lazily pulls the
on-disk data into memory. The in-memory data structure is guar-
anteed to have the Haskell type given by the second interpretation.
The third interpretation provides a type for the metadata structure
generated by the loader. Such metadata includes error information
(missing file, insufficient permissions, etc.) as well as file system
attributes (owner, size, etc.).

The effectiveness of the Forest language comes in part from the
fact that these three interpretations all arise from a single com-
pact description. Moreover, to aid the programmer in navigating
between interpretations, we align the syntax of Forest with the syn-
tax of Haskell where possible. For example, if the Haskell types for
the in-memory representation and metadata are record types, then
the Forest syntax is designed to look similar to a Haskell record
type. Likewise, if the Haskell types for the in-memory representa-
tion and metadata are Maybe types then the Forest syntax is de-
signed to look similar to a Haskell Maybe type. Many of these
high-level design considerations were adopted from earlier work
on Pads [5, 7, 22], although the semantics of Forest (which oper-
ates over graph-based filestores) is substantially different from the
semantics of Pads (which operates over sequence-based strings).

Errors. As with Pads [5, 7, 22], we do not assume that a given
filestore conforms perfectly to its associated Forest description.
Instead, when loading data, we check that a filestore conforms and
mark discrepencies in the metadata. This design allows users to
respond in application-specific ways to errors. It also allows Forest
to check the arbitrarily complex conditions that may be specified
by Forest’s dependent types.2 Because Forest loads data lazily, this
choice means errors will not be detected unless the user program
needs to touch the portion of the filestore with the error. The user
can force a complete conformance check by accessing the top-
level error count. It is possible for the filestore to change during
or after this check. For the filestores we have seen in practice, there
are extra-linguistic procedures in place to prevent such concurrent
modifications; we leave to future work the possibility of using
operating system support to monitor and/or prevent such changes
automatically.

Onward. In the remainder of this section, we discuss the specific
type constructors that constitute the Forest language and illustrate
their use in our running examples.

3.1 Base Types: Files
Forest provides a small collection of base types for describing indi-
vidual files: TextFile for ASCII files, BinaryFile for binary
files, and AnyFile for arbitrary files. As with all Forest types,
each of these types specifies a representation type, a metadata type,
and loading and storing functions. For all three file types, the repre-
sentation type is a ByteString. Similarly all three share a meta-
data type, which pairs file-system metadata with metadata describ-
ing properties of the file contents. The file-system metadata has

2 Validation that a filestore obeys a Forest specification is akin to type
checking. However, it is akin to type checking closed, zero-order values
(trees and graphs) as opposed to type checking parameterized, higher-order
values (functions). Consequently, even though Forest has dependent types,
type checking is not algorithmically challenging. For example, Forest does
not have to decide equivalence of expressions with free variables as one
must do when type checking a dependent lambda calculus.

data Forest_md = Forest_md
{ numErrors :: Int
, errorMsg :: Maybe ErrMsg
, fileInfo :: FileInfo }

data FileInfo = FileInfo
{ fullpath :: FilePath
, owner :: String
, group :: String
, size :: COff
, access_time :: EpochTime
, mod_time :: EpochTime
, read_time :: EpochTime
, mode :: FileMode
, isSymLink :: Bool
, kind :: FileType }

Figure 3. Forest metadata types.

type Forest_md, shown in Figure 3. This structure stores two
kinds of information:

1. the number and kind of any errors that occurred during loading

2. the attributes associated with the file (fileInfo)

File-content metadata describes errors within the file. For these
three file types, there is no meaningful content metadata and so
this type is the unit type. Leveraging Haskell’s laziness, the loading
functions create the in-memory representations and set the meta-
data on demand. The storing functions, which are described in more
detail in Section 4, do the inverse.

Although useful, these three base types are not sufficient for de-
scribing the wide range of files used in practice, including XML
documents, Makefiles, source files in various languages, shell
scripts, etc. The appropriate representation and content metadata
types for each such file varies. To support such files, Forest pro-
vides a plug-in architecture, allowing third-party users to define
new file types by specifying a representation type, a metadata type,
and corresponding loading and storing functions.

A common class of files are ad hoc data files containing
semi-structured information, an example of which is the Prince-
ton student record file format. In such cases, Forest can leverage
the Pads/Haskell [8] data description language to define format-
specific in-memory representations, content metadata, and loading
and storing functions. Pads/Haskell is a recently developed version
of Pads [5, 7, 22]. Like Forest, Pads/Haskell is embedded in Haskell
using quasiquotation. For example, the following code snippet be-
gins the Pads specification of the Princeton student record format:

[pads| data Student(name::String) = Student
{ person :: Line (Person name)
, Header
, courses :: [Line Course]
, Trailer
}

... |]

This description is parameterized by the name of the student whose
data is in the file; the complete description appears in the compan-
ion technical report [4]. From this specification, the Pads compiler
generates an in-memory representation type Student, a content
metadata type Student_md, and parsing and printing functions.

Forest provides the File type constructor to lift Pads types to
Forest file types. For example, the declaration

[forest| type SFile(n::String) = File(Student n) |]

introduces a new file type named SFile whose format is given
by the Pads type Student. As with the Pads type, SFile is
parameterized by the name of the student.

295

Using Pads/Haskell descriptions in Forest not only helps spec-
ify the structure of ad hoc data files, but it also generates a struc-
tured in-memory representation of the data, allowing Haskell pro-
grammers to traverse, query and otherwise manipulate such data.
We designed Pads/Haskell and Forest to work seamlessly together.
From the perspective of the Haskell programmer traversing a re-
sulting in-memory data structure, there is effectively no difference
between iterating over files in a directory or structured sequences
of lines or tokens within a file.

While Pads/Haskell is independently interesting, this paper fo-
cuses on Forest. Henceforth, any unadorned declarations occur
within the Forest scope [forest|...|] unless otherwise noted.
Any declarations prefixed by > are ordinary Haskell declarations.

3.2 Base Type: Symbolic Links
When symbolic links occur in a described filestore, Forest follows
the symbolic link to its target, mimicking standard shell behavior.
However, Forest allows programmers to specify explicitly that a
particular file is a symbolic link using the base type SymLink.
The in-memory representation for an explicit symbolic link is the
path that is the target of the link. It is possible to use constraints
(Section 3.6) to specify desired properties of the link target, such
as requiring it to be to a specific file.

In Forest, any file system object may be described in multiple
ways. Hence, in the case of a symbolic link, it is possible to use
one declaration to specify that the object is a symbolic link and a
second to specify the type of the link target. We will see an example
of such a specification in Section 3.4

3.3 Maybe: Optional File System Objects
Sometimes, a given file (or directory or symbolic link) may or may
not be present in the file system, and either case is valid. To handle
this situation, we leverage the idea of an option type by providing
a Forest-level Maybe type constructor that maps the optional file
system object to a Maybe type in Haskell. In particular, if T is a
Forest type, then Maybe T is the Forest type denoting an optional
T. The type Maybe T succeeds and returns representation None
when the current path does not exist in the file system. Maybe T
also succeeds and returns Just v for some v of type T when the
current path exists and matches T. Maybe T registers an error in
the metadata when the current path exists but the corresponding
object does not match T.

3.4 Records: Directories
Forest directories are record-like datatype constructors that allow
users to specify directory structures. For example, to specify the
root directory of the student repository in Figure 1, we might
use the following declaration. This declaration assumes that we
have already defined Class y, a parameterized description that
specifies the structure of a directory holding data for the class of
year y, and Grads, a description that specifies the structure of the
directory holding all graduated classes.

type PrincetonCS_1 = Directory
{ notes is "README" :: TextFile
, seniors is "classof11" :: Class 11
, juniors is "classof12" :: Class 12
, grads is "graduates" :: Grads }

Each field of the record describes a single file system object.
It has three components: (1) an internal name (e.g., notes or
seniors) that must be a valid Haskell record label, (2) an exter-
nal name specified as a value of type String (e.g., "README" or
"classof11") that gives the name of the object on disk, and (3)
a Forest description of the object (e.g., TextFile or Class 11).

When the external name is itself a valid Haskell label, users may
omit it, in which case Forest uses the label as the on-disk name:

type PrincetonCS_2 = Directory
{ notes is "README" :: TextFile
, classof11 :: Class 11
, classof12 :: Class 12
, graduates :: Grads }

We could not abbreviate the notes field because labels must start
with a lowercase letter in Haskell.

Matching. For a file system object to match a directory descrip-
tion, the object must be a directory and each field of the record must
match. A field f matches when the object whose path is the con-
catenation of the current path and the external name of f matches
the type of f.

It is possible for the same file system object to match multiple
fields in a directory description at the same time. For example, if
"README" were actually a symbolic link, it is possible to docu-
ment that fact by mentioning it twice in the directory description,
once as a text file and once as a symbolic link:

type PrincetonCS_3 = Directory
{ link is "README" :: SymLink
, notes is "README" :: TextFile
, ... }

It is also possible for a directory to contain objects that are
unmatched by a description. We allow extra items because it is
common for directories to contain objects that users do not care
about. For example, a directory structure may contain extra files
or directories related to a version control system, and a description
writer may not want to clutter the Forest specification with that
information. We will see shortly that it is possible to specify the
absence of file system objects using constraints.

As suggested by the syntax, the in-memory representation of
a directory is a Haskell record with the corresponding labels. The
type of each field is the representation type of the Forest type for
the field. The metadata has a similar structure. The metadata for
each field has two components: file-system attribute information
of type Forest_md and field-specific metadata whose type is
derived from the Forest type for the field. In addition, the direc-
tory metadata contains an additional value of type Forest_md
that summarizes the errors occurring in directory components and
stores the FileInfo structure for the directory itself. When load-
ing a directory, Forest constructs the appropriate in-memory rep-
resentation for each field that matches and puts the corresponding
metadata in the metadata structure. For fields that do not match,
Forest constructs default values and marks the metadata with suit-
able error information.

Computed Paths The above descriptions are a good start for our
application, but they are not ideal. Every year, the directory for
graduating seniors (i.e., classof11) is moved into the graduates
directory, the juniors are promoted to seniors and a new junior
class is created. As it stands, we would have to edit the description
every year. An alternative is to parameterize the description with
the current year and to construct the appropriate file names using
Haskell functions:

> toStrN i n = (replicate(n - length(show i)) ’0’)
> ++ (show i)
> mkClass y = "classof" ++ (toStrN y 2)

type PrincetonCS (y::Integer) = Directory
{ notes is "README" :: TextFile
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkclass (y+1)|> :: Class <|y+1|>
, graduates :: Grads }

The bracket syntax <|...|> provides an escape so that we may
use Haskell within Forest code to specify arbitrary computations.
When an expression is a constant or variable, it may be supplied

296

directly. When an argument is more complex, however, it must be
written in brackets to escape to Haskell. This example also illus-
trates abstraction: any Forest declaration may be parameterized by
specifying a legal Haskell pattern and its type. The types of the
fields for seniors and juniors illustrate the use of parameter-
ized descriptions.

Approximate Paths As filestores evolve, naming conventions
may change. Additionally, directory structures with multiple in-
stances may have minor variations in the names of individual files
across instances. For example, in each Princeton class directory,
there may (or may not) be some number of students that have with-
drawn from the program, transferred to a different program, or
gone on leave. Over the years, slightly different directory names
have been used to represent these situations.

To accommodate this variation, Forest includes the matching
construct to approximate file names. We can use this mechanism to
describe the class directory:

> transRE = RE "TRANSFER|Transfer"
> leaveRE = RE "LEAVE|Leave"
> wdRE = RE "WITHDRAWN|WITHDRAWAL|Withdrawn"

type Class (y::Integer) = Directory
{ bse is <|"BSE" ++ (toString y)|> :: Major
, ab is <|"AB" ++ (toString y)|> :: Major
, trans matches transRE :: Maybe Major
, withd matches wdRE :: Maybe Major
, leave matches leaveRE :: Maybe Major }

A field with the form <label> matches <regexp> :: T
finds the set of paths in the files system that match currentPath/
<regexp>. If there are zero or one such files, the matches form
acts just as the is form. If more than one file matches, one of the
matches is selected non-deterministically, a multiple match error
is registered in the metadata, and matching continues as it would
with the is form. In addition to regular expressions, the matching
construct also allows glob patterns, (i.e., patterns such as *.txt),
to specify the names of files on disk. An example appears in the
next subsection.

3.5 Lists
Just as Haskell has both records and lists, so too does Forest.
Records allow programmers to specify a fixed number of file sys-
tem objects, each with its own type. Lists, on the other hand, allow
programmers to specify an arbitrary number of file system objects,
each with the same type. As an example, we can use a list to specify
the Grads directory from Figure 1. We borrow Haskell’s notation
for list comprehensions to specify the names of the file system ob-
jects:

> getYear s =
> toInteger $ reverse $ take 2 $ reverse s
> cRE = RE "classof[0-9][0-9]"

type Grads =
[c :: Class <|getYear c|> | c <- matches cRE]

In this specification, Grads is a directory fragment containing
a number of Class subdirectories with names c that match the
regular expression cRE. The Haskell function getYear extracts
the last two digits from the name of the directory, converts the
string digits to an integer year, and passes the year to the underlying
Class specification. More generally, Forest lists have the form
[path :: T | id <- gen, pred] where id is bound in
turn to each of the file names generated by gen, which may be
a matches clause (used to match against the files at the current
path as in the previous section) or a list computed in Haskell. These
generated ids are filtered by the optional predicate pred. For each

such legal id, there is a corresponding expression path, which
Forest interprets as extending the current path. The object at each
such path should have the Forest type T. The identifier id is in
scope in pred, path, and T.

The in-memory representation of a Forest list is a Haskell list
containing pairs of the name of a matching object and its represen-
tation. The metadata is a list of the metadata of the matching objects
paired with a summary metadata structure of type Forest_md.

Representation Transformations. Although the list representa-
tion for comprehensions is useful, it can be desirable to use a more
sophisticated data structure to represent such collections. To sup-
port this usage, Forest allows programmers to prefix a list compre-
hension with any type constructor that belongs to a Forest-defined
container type class. This type class contains functions that specify
how to convert between the list representation and the desired con-
tainer representation. We have provided such instance declarations
for Haskell’s Map and Set type constructors.

As an example, consider the specification of the Major direc-
tory. Each such directory contains a list of student files and an ad-
ditional template file named either sss.txt or sxx.txt. The
declaration below specifies the collection of student files by match-
ing with a glob pattern and filtering to exclude template files. It
uses the Map type constructor to specify that the data and metadata
should be collected in a Map rather than a list.

> template s = s ‘elem‘ ["sss.txt", "sxx.txt"]
> txt = GL "*.txt"

type Major = Map
[s :: File (Student <|dropExtension s|>)
| s <- matches txt, <|not (template s)|>]

3.6 Dependent Types: Attributes and Constraints
Every file system object has a number of attributes associated with
it, such as its owner, group, permissions, and size. In general, if
a Forest identifier id refers to a path, then the identifier id_att
refers to the corresponding attributes. This attribute identifier has
type Forest_md, shown in Figure 3. Forest defines helper func-
tions to access these attributes, some of which are listed in Figure 4.

Constrained types are a simple form of dependent types that
allow users to specify required attributes. For example, the type
PrivateFile specifies a text file accessible only by its owner.

type PrivateFile = TextFile
where <|get_modes this_att == "-rw-------"|>

The keyword where introduces a constraint on the underlying
type. The load function for the type PrivateFile checks this
constraint during loading. If the constraint is false, it records that
fact in the metadata. Within constraints, the special identifier this
refers to the representation of the underlying object, this_att
refers to its attributes and this_md to its complete metadata.

Using attributes, we can write a universal directory description,
which is sufficiently general to describe any directory:

type Universal = Directory
{ asc is [f :: TextFile

| f <- matches <| GL "*" |>,
<| get_kind f_att == AsciiK |>]

, bin is [b :: BinaryFile
| b <- matches <| GL "*" |>,
<| get_kind b_att == BinaryK |>]

, dir is [d :: Universal
| d <- matches <| GL "*" |>,
<| get_kind d_att == DirectoryK |>]

, sym is [s :: SymLink
| s <- matches <| GL "*" |>,
<| isJust (get_symLink s_att) |>] }

297

function name information
get_group object group
get_kind the sort of file or directory
get_modes permission string
get_owner object owner
get_size object size

Figure 4. Selected file attribute functions.

When a directory is loaded using the Universal description, all
the ASCII files will end up the in asc field, all the binary files
in bin, all the directories in dir, and all the symbolic links in
sym. Note that the description uses recursion to describe nested
directories. In the case that a symbolic link creates a cycle in
the file system by pointing to a parent directory, the Haskell in-
memory representation is a (lazy) infinite data structure. We view
the fact that it is possible to write such a universal description in
Forest as evidence that the language is appropriately expressive.
This description also serves as an example of how to describe a
filestore by its structure rather than its names.

We can also use constraints to specify that certain files do not
appear in certain places. As an example, we might want to require
that no binaries appear in a directory given to an untrusted user as
scratch space. The description below flags an error during loading
if a binary file exists in the directory.

type NoBin =
[b :: BinaryFile | b <- matches <| GL "*" |>,

<| get_kind b_att == BinaryK |>]
where <|length this == 0|>

3.7 Specialized Constructors: Gzip and Tar
Some files need to be processed before they can be used. A typ-
ical example is a compressed file such as the gzipped log files in
CoralCDN. Forest provides processing-specific type constructors
to describe such files. For example, if CoralLog is a Pads/Haskell
description of a CoralCDN log file then

type Info = Gzip (File CoralLog)

describes a gzipped log file. Likewise, suppose logs.tar.gz
is a gzipped tar file and that the type ManyLogs describes the
directory of log files that logs.tar expands to when untarred.
Such a situation can be described using a combination of the Tar
and Gzip type constructors:

type MoreInfo = Gzip (Tar ManyLogs)

3.8 Putting it all together
The preceding subsections give an overview of Forest’s design. Fig-
ures 5 and 6 give the specifications for the two running examples,
minus the associated Pads/Haskell and Haskell declarations. The
complete descriptions of these filestores and additional descriptions
are available in a technical report [4], including descriptions of the
Pads website, a Gene Ontology filestore, and CVS repositories.

4. Programming with Forest
Many Forest programs work in two phases. In the first phase they
use Forest to load relevant portions of the file system into memory,
and in the second phase they use an ordinary Haskell function to
traverse the in-memory representation of the data (or its associated
metadata) and compute the desired result. Some Forest programs
add a third phase in which they store updated structures back to the
filestore.

[forest|
data PrincetonCS (y::Integer) = Directory
{ notes is "README" :: TextFile
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkclass (y+1)|> :: Class <|y+1|>
, graduates :: Grads }

data Class (y::Integer) = Directory
{ bse is <|"BSE" ++ (toString y)|> :: Major
, ab is <|"AB" ++ (toString y)|> :: Major
, trans matches transRE :: Maybe Major
, withd matches wdRE :: Maybe Major
, leave matches leaveRE :: Maybe Major }

type Grads =
[c :: Class <|getYear c|> | c <- matches cRE]

type Major = Map
[s :: File (Student <|dropExtension s|>)
| s <- matches txt, <|not (template s)|>] |]

Figure 5. Forest description of Princeton filestore.

[forest|
type Stats = Directory
{ last :: File Last, topk :: File Topk }

type Dat = [s :: Site | s <- matches site]
type Site = [d :: Log | d <- matches time]
data Log = Directory
{ log is coralwebsrv :: Gzip (File CoralLog) } |]

Figure 6. Forest description of CoralCDN filestore.

Representation Types:

newtype Stats = Stats {last :: Last, topk :: Topk}
newtype Dat = Dat [(String, Site)]
newtype Site = Site [(String, Log)]
data Log = Log {log :: CoralLog}

Metadata Types:

type Stats_md = (Forest_md, Stats_inner_md)
data Stats_inner_md = Stats_inner_md

{last_md :: (Forest_md, Last_md),
topk_md :: (Forest_md, Topk_md)}

type Dat_md = (Forest_md, [(String, Site_md)])
type Site_md = (Forest_md, [(String, Log_md)])
type Log_md = (Forest_md, Log_inner_md)
data Log_inner_md = Log_inner_md

{log_md :: (Forest_md, CoralLog_md)}

Load Functions:

stats_load :: FilePath -> IO (Stats, Stats_md)
dat_load :: FilePath -> IO (Dat, Dat_md)
site_load :: FilePath -> IO (Site, Site_md)
log_load :: FilePath -> IO (Log, Log_md)

Store Functions:

stats_manifest :: (Stats, Stats_md) -> IO Manifest
dat_manifest :: (Dat, Dat_md) -> IO Manifest
site_manifest :: (Site, Site_md) -> IO Manifest
log_manifest :: (Log, Log_md) -> IO Manifest

storeAt :: FilePath -> Manifest -> IO ()
store :: Manifest -> IO ()

Figure 7. Artifacts generated from the CoralCND description.

298

To facilitate this style of programming, the Forest compiler gen-
erates several Haskell types and functions from every Forest decla-
ration. Collectively, these types and functions define an instance of
the Forest type class:

class (Data rep, ForestMD md)
=> Forest rep md | rep -> md where

load :: FilePath -> IO(rep, md)
manifest :: (rep,md) -> IO Manifest
...

In this type class, the type rep is the generated in-memory rep-
resentation type of the corresponding on-disk data. The type md
is the generated type for the associated metadata. The ForestMD
type class provides operations for manipulating Forest metadata;
all generated metadata types belong to this type class.

The generated load function lazily traverses the file system and
reads the files, directories, and symbolic links mentioned in the de-
scription into a pair of the in-memory representation and its meta-
data. To reverse the process of reading data in to memory, Forest
also generates a manifest function, which reads an in-memory data
structure, writes its contents out to disk in a temporary space, and
prepares a manifest log. The manifest log records inconsistencies
detected during this process as well as the sequence of operations
necessary to move data from the temporary space to its final resting
point. Inconsistences can arise when a programmer creates an er-
roneous in-memory representation of a filestore. The dependencies
that may be present in Forest descriptions mean that not all such
inconsistencies can be detected statically by the Haskell type sys-
tem. After creating a manifest, a programmer may analyze it and
decide whether to execute the generic store or storeAt func-
tions, which move a manifest (inconsistencies and all) to its rightful
position on disk. Details concerning the semantics of storing, espe-
cially where it concerns inconsistencies, are explained in further
depth in Section 7.

As an example, consider the CoralCDN logs described in Fig-
ure 6. The corresponding load and store functions, the represen-
tation types, and the metadata types appear in Figure 7.3 Note
that the structure of each of these artifacts mirrors the structure of
the Forest description that generated them. This close correspon-
dence makes it easy for programmers to write programs using these
Forest-generated artifacts.

For instance, consider the Dat description in Figure 6. The
dat_load function takes a path as an argument and produces the
representation and metadata obtained by loading each of the site
directories contained in the directory at that path:

(rep,md) <- dat_load "/var/log/coral/dat"

Because Dat is a Forest list, the rep is a Haskell list. More
specifically, rep has the form

Coral [("planetab2.eecs.wsu.edu", Site [...]),
("planetlab3.williams.edu",Site [...]),...]

where the list contains pairs of names of subdirectories and repre-
sentations for the data loaded from those directories. The metadata
is a pair consisting of a generic header of type Forest_md and a
list of pairs of names of subdirectories and their associated meta-
data. The header collects information about errors encountered dur-
ing loading and it stores the file system attributes of each file, direc-
tory, or symbolic link loaded from the file system. The following is
the pretty-printed version of such a structure:

3 In the following examples, for the sake of clarity, we use type-specific
names such as dat_load and dat_manifest, rather than the over-
loaded names load and manifest.

Forest_md
{ numErrors = 0,
errorMsg = Nothing,
fileInfo = FileInfo
{ fullpath = /var/log/coral/dat,
owner = alice, group = staff, size = 102,
access_time = Fri Nov 19 01:47:09 2010,
mod_time = Thu Nov 18 20:42:37 2010,
read_time = Fri Nov 19 01:47:28 2010,
mode = drwxr-xr-x, isSymLink = False,
kind = Directory } },

[("planetlab2.eecs.wsu.edu", Forest_md {...}),
("planetlab3.williams.edu", Forest_md {...}), ...]

Using these functions and types, it is easy to formulate many
useful queries as simple Haskell programs. For instance, to count
the number of sites we can simply compute the length of the nested
list in rep:

num_sites = case rep of Dat l -> List.length l

More interestingly, since the internals of the web log are specified
using Pads/Haskell (see the technical report [4] for details), it is
straightforward to dig in to the file data and combine it with file
metadata or attributes in queries. For example, to calculate the time
when statistics were last reported for each site, we can zip the
lists in rep and md together and project out the site name and the
mod_time field from each element in the resulting list of pairs:

get_site = fst
get_mod (_,(f,_)) = mod_time . fileInfo $ f
sites_mod () =
case (rep,md) of (Dat rs, (_,ms)) ->
map (get_site *** get_mod) (zip rs ms)

As this example shows, Forest blurs the distinction between
data represented on disk and in memory. After writing a suitable
Forest description, programmers can write programs that work
on file system data as if it were in memory. Moreover, because
Forest uses Haskell’s lazy I/O operations, many simple programs
do not require constructing an explicit representation of the entire
directory being loaded in memory—a good thing as the directory
of CoralCDN logs contains approximately 1GB of data! Instead,
the load functions only read the portions of the file system that are
needed to compute the result—in this case, only the site directories
and not the gzipped log files contained within them.

As a final analysis example, consider a program that computes
the top-k requested URLs from all CoralCDN nodes by size. The
CoralCDN administrators compute this statistic periodically to help
monitor and tune the performance of the system [11]. We define
the analogous function in Haskell using helper functions such as
get_sites to project out components of rep:

topk k =
take k $ sortBy descBytes $ toList $
fromListWith (+)
[(get_url e, get_total e)
| (site,sdir) <- get_sites rep,
(datetime,ldir) <- get_dates sdir,
e <- get_entries ldir,
is_incoming e]

Reading this program inside-out, we see that it first uses a list com-
prehension to iterate through rep, collecting the individual log en-
tries corresponding to incoming requests using the is_incoming
predicate. It then projects out the URL requested and the total size
of the request. It then sums the sizes of all requests for the same
URL using the fromListWith function from the Data.Map
module. Next, it sorts the entries in descending order. Finally, it
returns the first k entries of the list as the final result.

Having implemented these analyses, a programmer may wish
to store their results. She may do so via the following code, which

299

uses stats_manifest to generate a manifest and store to
copy it over to the stats directory. In addition, the code uses
stats_defaultMd, a function that constructs default metadata
for stats structures (a useful function in situations that require
storing newly constructed data).

let result = Stats { last = sites_mod ()
, topk = topk 10 }

manifest <- stats_manifest
(result
, stats_defaultMd result "/var/log/coral/stats")

store manifest

Overall, the main thing to take away from this section is how
Forest and its tight integration with Haskell facilitates exploratory
data analysis, enabling remarkably terse queries over the combina-
tion of file contents, file attributes and directory structures.

5. Generic Tools
Third-party developers can use generic programming [18] to gen-
erate tools that will work for any filestore that has a Forest descrip-
tion. An advantage of these tools compared to tools that work di-
rectly on the untyped file system is that they are specific to the
fragment of the file system relevant to the filestore. This fragment
can be difficult to specify when using conventional tools since it
can rely on the contents of configuration files, file naming conven-
tions, file system attributes, etc. It is precisely these relationships
that Forest descriptions capture concisely; tools written to use For-
est specifications can leverage that information.

As a proof of concept, we have written a number of such tools,
which we describe in this section.

5.1 Generic Querying
One simple application of generic programming is querying meta-
data to find files with a particular collection of attributes. The
findFiles function

findFiles :: (ForestMD md) =>
md -> (FileInfo -> Bool) -> [FilePath]

takes as input any Forest metadata value (i.e., any value of type
md where md belongs to the Forest metadata class ForestMD)
and a predicate on FileInfo structures, and returns the list of
all FilePaths anywhere in the input metadata whose associated
FileInfo satisfies the predicate. For example, if cs_md is the
metadata associated with the Princeton computer science depart-
ment filestore, then the code

dirs = findFiles cs_md (\(r::FileInfo) ->
(kind r) == DirectoryK)

other = findFiles cs_md (\(r::FileInfo) ->
(owner r) /= "bwk")

binds dirs to the list of all directories in the data set and other
to all the directories and files not owned by user "bwk".

To implement the findFiles function, we use the generic
Haskell function listify:

findFiles md pred = map fullpath (listify pred md)

The return type of the polymorphic listify function is instan-
tiated to match the argument type of its predicate argument. We
map the fullpath function over the resulting list of FileInfo
structures to return only the FilePaths.

5.2 File System Visualization
ForestGraph generates a graphical representation of any direc-
tory structure that matches a Forest specification. We generated the
graphs in Figures 1 and 2 using this tool. In the default configu-
ration, ForestGraph uses boxes to denote directories and ovals

to denote files. Borders of varying thickness distinguish between
ASCII and binary files. Dashed node boundaries indicate symbolic
links and shaded nodes flag errors.

The core functionality of ForestGraph lies in the Haskell
function mdToPDF:

mdToPDF :: ForestMD md =>
md -> FilePath -> IO (Maybe String)

The function takes as input any metadata value and a filepath that
specifies where to put the generated PDF file. It optionally returns
a string (Maybe String); if the option is present, the string
contains an error message. The IO type constructor indicates that
there can be side effects during the execution of the function. A use
of this function to generate the graph for the Princeton computer
science department filestore looks like:

do { (cs_rep,cs_md) <- CS_load "facadm"
; mdToPDF cs_md "Output/CS.pdf" }

Note that this code needs only the metadata to generate the graph;
laziness means Forest will not load the representation in this case.

The related function mdToPDFWithParams takes an addi-
tional argument that allows the user to specify how to draw the
nodes and edges in the output graph. Among other things, this pa-
rameter specifies how to map a value of type Forest_md into
GRAPHVIZ [13, 14] attributes. By appropriately setting the pa-
rameter, a user can customize the formatting of each node ac-
cording to its owner, group, or permissions, etc., as well as spec-
ify global properties of the graph such as its orientation and size.
ForestGraph uses the Haskell binding of the GRAPHVIZ library
to lay out and render the graphs, so all customizations provided by
GRAPHVIZ are available.

The listify function is at the heart of the implementation
of this tool; we use it to convert the input metadata to the list of
FileInfos in the metadata. We then convert this list into a graph
data structure suitable for use with the GRAPHVIZ library.

5.3 Permission Checker
The permission tool is designed to check the permissions on the
files and directories in a Forest description on a multi-user machine.
In particular, it enables one user to determine which files a second
user can read, write, or execute. If the second user cannot access a
file in a particular way, the tool also reports the names of the files
and directories whose permissions have to change to allow the ac-
cess. The tool is useful when trying to share files with a colleague.
It helps the first user ensure that all the necessary permissions have
been set properly to allow the second user access. The key to the
implementation of this tool is again applying the listify func-
tion to the metadata for the Forest description.

5.4 Shell Tools
We have implemented analogs of many shell tools that work over a
file system fragment defined by a Forest description:

ls :: (ForestMD md) => md -> String -> IO String
grep :: (ForestMD md) => md -> String -> IO String
tar :: (ForestMD md) => md -> FilePath -> IO ()
cp :: (ForestMD md) => md -> FilePath -> IO ()

All of these functions work by extracting the relevant file names
from the argument metadata structure using listify and then
calling out to a shell tool to do the work. For ls, the second argu-
ment gives the command-line arguments to pass to the shell version
of ls, and the result is the resulting output. The implementation
uses xarg to lift the restriction on the number of files that can be
passed to ls. For grep, the second argument is the search string
and result is the output of the shell version of grep. For tar, the
second argument specifies the location for the resulting tarball. The

300

implementation uses a file manifest to allow tar to work regard-
less of the number of files involved. The cp tool uses the tar tool
to move the files mentioned in the metadata to the location specified
by the second argument while retaining the same directory struc-
ture. The module that implements these tools is approximately 80
lines of Haskell code.

5.5 Description Inference Tool
This tool allows the user to generate a Forest description from the
contents of the file system. The function

getDesc :: FilePath -> IO String

takes as an argument the path to the root of the directory structure to
infer. It returns a string containing the generated representation. For
example, below we show a fragment of the results when getDesc
is invoked on the classof11 directory:

data classof11 = Directory {
aB11 is "AB11" :: aB11,
bSE11 is "BSE11" :: bSE11,
tRANSFER is "TRANSFER" :: tRANSFER,
wITHDREW is "WITHDREW" :: wITHDREW }

data tRANSFER = Directory {
bEAUCHEMINtxt is "BEAUCHEMIN.txt" :: File Text,
vERSTEEGtxt is "VERSTEEG.txt" :: File Text }

...

The description is not perfect: the label names are generated from
the file name, for example. Nevertheless, the tool improves pro-
grammer productivity as it is easier for a programmer to edit a gen-
erated description than to start from scratch. Our first tool in this
vein is simple; a more sophisticated variant would collapse records
of files into lists when a width limit was exceeded or other criteria
were met. Another variant might collapse deeply nested directories
into a universal directory description when a depth limit was ex-
ceeded. The getDesc function works by using the universal de-
scription to load the contents of the file system starting from the
supplied path. It then walks over the resulting metadata to generate
a Forest parse tree, which it then pretty prints.

6. Implementation
The current implementation of Forest is available from the project
web site: forestproj.org.

Haskell provides powerful language features and libraries that
greatly facilitated implementation of Forest. The most obvious
of these features is the quasiquotation mechanism [21] that we
used to embed Forest into Haskell. This mechanism provided the
benefits of being an embedded domain-specific language without
having to sacrifice the flexibility of defining our own syntax. To
use quasiquoting, we defined a Haskell value forest of type
QuasiQuoter which specifies how to convert an input string
representing a sequence of Forest declarations into the Template
Haskell [27] data structures that represent the syntax of the corre-
sponding collection of Haskell declarations. The Haskell compiler
calls the forest “compilation” function during the compilation
of any Haskell source file containing a Forest quasiquotation. The
quasiquoted syntax [forest| <input> |] is legal anywhere
the identifier forest is in scope. When the Haskell compiler pro-
cesses this declaration, it first passes <input> as a string to the
forest quasiquoter, and then it compiles the resulting Template
Haskell data structures as if the corresponding Haskell code had
appeared in the input at the location of the quasiquote. Early ver-
sions of quasiquoting supported quoting only expression and pat-
tern forms. Simon Peyton Jones extended the mechanism to permit
declaration and type quasiquoting partly to enable the Forest imple-
mentation. We used this same approach to implement Pads/Haskell,
which we built concomitantly.

Note that in implementing Forest, we had to use Template
Haskell rather than any of the other libraries that support generic
programming, both because that is what the quasiquote library ex-
pects and because we need to generate type and datatype decla-
rations (and to do so at compile time). Other available generic li-
braries do not support the latter functionality.

Parsing. We used the parsec 3.1.0 parser combinator library [19]
to implement the Forest parser. One key element of the Forest de-
sign is to allow arbitrary Haskell expressions in various places in-
side Forest descriptions. We did not want to reimplement the gram-
mar for Haskell expressions, which is quite complicated. Instead,
we structured the Forest grammar so we could always determine
the extent of any embedded Haskell code. We then used the Haskell
Source Extension package [15] to parse these fragments. The data
structure that this library returns is unfortunately not the data struc-
ture that Template Haskell requires, so we used yet another library,
the Haskell Source Meta package [16], that does this translation.

Type checking. We would like to give users high-quality error
messages if there are type errors in their Forest declarations. At the
moment, typechecking occurs, but only after the Forest declarations
have been expanded to the corresponding Haskell code. Although
these error messages can be quite informative, it is sub-optimal to
report errors in terms of generated code. Type checking the Forest
source is complicated by the embedded fragments of Haskell. As
with the syntax, we do not want to reimplement the Haskell type-
checker! There is an active proposal [29] to extend the Template
Haskell infrastructure with functions that would enable us to ask
the native Haskell typechecker for the types of embedded expres-
sions and to extend the current type environment with type bindings
for new identifiers. With this combination of features, we would be
able to type check Forest sources directly.

Runtime. Although Forest facilitates treating the file system as a
persistent store, it does not provide the ACID guarantees familiar
from databases. None of the filestores we have encountered in prac-
tice are implemented in a system that provides such support; users
instead have extra-linguistic mechanisms to make sure they do not
corrupt their data with ill-timed concurrent reads and writes. That
said, the Forest language does not preclude an implementation from
providing such guarantees. We consider this issue very interesting
future work.

Forest uses Haskell’s unsafeInterleaveIO to load each
portion of a filestore only when needed by an application program.
We have not systematically measured the performance overhead
of using Forest. However, we have used our mostly-unoptimized
implementation to manipulate filestores on the order of many giga-
bytes and found the performance acceptable for many applications.

The running time of storing operations is proportional to the
“footprint” of the described filestore. However, the Forest compiler
generates load and manifest functions for each named type in
a description. Thus, updates may be made at any granularity for
which there is a named type, which is typically at the level of in-
dividual files. We plan to investigate better support for incremental
updates in future work.

7. Core Calculus
This section presents a core calculus for Forest, which formalizes
the essential features of the language in a simple setting. The
calculus is based on classical (i.e., not separating, substructural,
or ambient) unordered tree logics, but has a number of features
tailored to file systems. We used it to study various features of
Forest as we were developing it, and to prove key theorems like
the round-tripping properties described at the end of the section.

301

forestproj.org

Basic definitions

Integers n ∈ Z
Strings u ∈ Σ∗

Values v ::= n | u | r | True | False | () | (v1, v2)
| Just v | Nothing | [v1, .., vn]

Types τ ::= String | Int | Path | Bool | () | (τ1, τ2)
| Maybe τ | [τ]

Environments E ::= ∅ | E , x 7→ v

Expressions e ::= x | λx. e | e1 e2 | . . .

Forest definitions

Paths r ::= · | r /u

Attributes a ::= v

Contents T ::= File u | Link r | Dir {u1, .., un}
File systems F ::= {|r1 7→ (a1, T1), .., rn 7→ (ak, Tn) |}

Specifications s ::= kτ2τ1 | e::s | 〈x:s1, s2〉 | [s | x ∈ e] | P(e) | s?

Figure 8. Forest calculus syntax.

7.1 Data Model
Forest calculus specifications manipulate instances of a simple file
system model, which is given in Figure 8. A path r is a sequence
of strings u,4 and a file system F is a finite map from paths to pairs
(a, T) of attributes a and file system contents T . We do not specify
the syntax of attributes precisely, but expect that they will contain
the usual fields including owner, group, permissions, modification
date and time, etc. A special attribute adefault contains default values
for all fields. The contents T of a node in the file system is either
a file File u, where u is the string contents of the file; a symbolic
link Link r, where r is the path pointed to by the link; or a directory
Dir {u1, .., un}, where u1 to un are the names of the elements of
the file system located below the node. We write dom(F) for the
set of paths F is defined on, F (r) for the contents at r, F (r) = ⊥
when r is not in dom(F), and F [r := (a, T)] or F [r := ⊥] for the
file systems obtained from F by overwriting the mapping for r to
(a, T) or deleting the mapping for r respectively.

A file system F is well-formed if it encodes a tree with directo-
ries at the internal nodes and files and symbolic links at the leaves.
More formally, F is well-formed if the following conditions hold:

• dom(F) is prefix-closed,
• F (r) = (a,Dir {u1, .., un}) implies r /ui ∈ dom(F) for all i

from 1 to n, and
• F (r) = (a,File u) or F (r) = (a, Link r′) implies r /u′ 6∈

dom(F) for all u′.

Note that although these conditions imply that the structure of
a well-formed file system F must be tree-shaped, cycles can be
expressed using symbolic links that point “up” in the file system.

7.2 Specifications
The syntax of specifications s is given in Figure 8. The calculus
models the most important features of the full Forest language
in the simplest possible way, using orthogonal, independent con-
structs. The set of specifications is parameterized over a collection

4 For simplicity, we do not model special path elements such as “..” and “.”.
It would be easy to add these at the cost of complicating the semantics.

of constants kτ2τ1 , where τ1 is the type of the generated representa-
tion and τ2 is the type of the generated metadata. We omit the type
annotations in examples. For the purpose of illustration, we will
assume that constants for describing files File, directories Dir, and
symbolic links Link all exist, as well as constants Adhoc(p) param-
eterized on Pads/Haskell descriptions p for describing the contents
of files in more detail. Path specifications e::s are parameterized on
an expression e, which must evaluate to a string (to be appended
to the current path), and a specification s that describes the frag-
ment of the file system at the extended path. We leave the syntax
of expressions e abstract but assume that it contains the features
of a simple functional language (of course, in the full Forest lan-
guage, expressions can be arbitrary fragments of Haskell code).
We assume a semantic function [[e]]Eτ that evaluates e in environ-
ment E , yielding a value v of type τ . Dependent pairs are written
〈x:s1, s2〉 where s1 and s2 are specifications that describe possibly
overlapping fragments of the file system. When a dependent pair
is evaluated, the variables x and xmd are bound to the value and
metadata computed for s1 and may be used in s2. Comprehensions
are written [s | x ∈ e], where e is an expression that evaluates to
a set of values, and s is a specification that describes a fragment of
the file system for each value of x. Predicates P(e) succeed when
the expression e evaluates to True and fail when it evaluates to
False under the current environment. Finally, the specification s?
describes either a filesystem that is undefined at the current path, or
a file system containing the current path and satisfying s.

To develop some intuitions about these constructs, let us encode
a few of the more complicated features of the full Forest language
in the calculus. In the full language, records and paths are specified
using a single construct:

Directory
{ c is "c.txt" :: C,
d is "d.txt" :: D c,
e is "e.bin" :: E d }

The calculus, however, only has dependent pairs, not full-blown
records, and has a separate construct for describing paths. Thus, to
encode the specification above, we use the following specification:

〈c : ("c.txt"::C) , 〈d :("d.txt"::D c) ,"e.bin"::E d〉〉
Similarly, a comprehension written as

[c :: C | c <- matches <| GL "*" |>]

in the full language is encoded in the calculus as

〈d:Dir , [c::C | c ∈ d]〉
The value returned by the Dir constant is the set of names of the
immediate children of the directory. Finally, in the full language,
constraints are written as

s where e

but are encoded in the calculus as a dependent pair and predicate:

〈this:s,P(e)〉
When evaluated, the predicate encodes the success or failure of the
constraint expressed by e in the metadata for the second component
of the pair.

7.3 Semantics
The semantics of the Forest calculus is organized into four separate
definitions, one for each of the major artifacts generated by the
compiler. These artifacts include a type for the representations,
a type for metadata, a function load for loading data from the
file system, and a function store for storing it back. They are
carefully designed to fit together in a particular way—e.g., the load
and store functions manipulate representations and metadata of

302

the appropriate type and are guaranteed (under certain precisely
identified circumstances) to preserve data on round trips.

Types. The definitions of the types for the representations (R[[s]])
and metadata (M[[s]]) generated for each specification s appear
in Figure 10. The representation type for constants kτ2τ1 is simply
read off from τ1. For other specifications, representation types are
built out of the types for sub-specifications in the obvious way—
e.g., for pairs 〈x:s1, s2〉, the type is a product (R[[s1]],R[[s2]]). The
types for metadata are more interesting. In the Forest calculus we
represent metadata using structured datatypes containing a boolean
value at each level of structure. Intuitively, this value indicates
whether there were any errors during loading. The Md constructor
provides a uniform representation for these structures,

MdHeader = Bool
Md τ = (MdHeader , τ),

and the function valid(d) extracts the boolean value, returning
True if there are no errors in the structure, and False otherwise.
Each of the the load functions generated from specifications main-
tain the invariant that the the boolean value at each level of struc-
ture is True if and only if all of the nested values are also True .
Thus, one can test for errors during loading simply by examining
the top-level boolean value. Note that it would be simple to aug-
ment this structure with additional information, such as the number
of errors, an optional error message, or file system attributes, as in
Figure 3; one would simply have to change the MdHeader type
and the valid(d) function.

Load Functions. The most common use of Forest is as a tool for
loading data from the file system into an in-memory representation.
The functions defined by the inference rules in Figure 10 (a) imple-
ment this task. Formally, the judgment E ; r; s ` load F B (v, d)
holds if loading the specification s from the file system F at path
r in environment E yields a pair (v, d) of representation and meta-
data. This judgment may be seen as describing a total function from
E , r, s and F to (v, d). The fact that the load function is total is
useful—it allows the programmer to explore fragments of the file
system that do not match s exactly. When F does not match s, the
function puts default values in the representation v and records an
error in the metadata d.

Let us examine the inference rules that define the load functions
in detail. We assume that each constant kτ2τ1 has an associated loadk
function. For example, the load function for the File construct,
which describes any file (but not symbolic links or directories),
takes an environment E , a file system F , and a path r as arguments,
and either returns the contents and attributes of the file at path r, or
“ ” and default attributes if F (r) is undefined or not a file.

loadFile (E , F, r) =

(
(u, (True, a)), ifF (r) = (a,File u)

(“ ”, (False, adefault)), otherwise

The load function for symbolic links is similar:

loadLink (E , F, r) =

(
(r′, (True, a)), ifF (r) = (a, Link r′)

(·, (False, adefault)), otherwise

Note that this function only returns the path r′ contained in the link
and not the directory or file pointed to by it. To access the contents
of the file system at r′, the programmer could bind the path value
returned by Link to a variable, and use the path construct to navigate
to that path, as in the following specification:

〈x : Link , (x::File) 〉

Alternatively, one could design another constant for symbolic links
that implements a “deep” lookup in the file system.

The load function for path specifications e::s evaluates the ex-
pression r/e to a path r′, and invokes the load function for s from
r′. The load function for dependent pairs 〈x:s1, s2〉 first invokes
the load function for s1, yielding a representation v1 and metadata
d1, and then invokes the load function for s2 in an extended envi-
ronment where x is bound to v1 and xmd to d1, yielding v2 and
d2. It returns (v1, v2) and (valid(d1) ∧ valid(d2), (d1, d2)) as the
result. The load function for comprehensions [s | x ∈ e] is similar.
It evaluates the expression e to a list [w1, .., wn], invokes the load
function for s n times, in a series of environments with x bound
to each wi, and collects up the results into lists of representations
[v1, .., vn] and metadata [d1, .., dn].

The load function for predicates P(e) tests whether the expres-
sion e is holds in the environment E . It returns () as the repre-
sentation and (b, ()) as the metadata, where b is [[e]]Ebool . The final
load function, for options, s? is defined using two inference rules.
The first handles the case where the current path r exists in the
file system. It uses s’s load function to obtain a representation and
metadata and injects both into the Maybe type using the Just con-
structor. The second handles the case where r does not exist in
the file system. It returns Nothing for both the representation and
metadata.

Store Functions. Just as they can be used for loading from the
file system, Forest specifications can also be used to store data
back to the file system. The inference rules in Figure 10 (b) define
the judgment E ; r; s ` store (F, v, d) B (F ′, φ′), which holds
if storing (v, d) into F at r using specification s with respect to
E yields a modified file system F ′ and a validator φ′. This last
element, the validator, is a predicate on file systems that tests for
inconsistencies during storing — it will be described in greater
detail momentarily. As with load functions, the store judgment may
be read as a total function; it maps E , r, s, F , and (v, d) to (F ′, φ′).

Intuitively, it should be obvious that there are numerous ways
that storing data back to the file system could go wrong. For ex-
ample, the representation v and metadata d might not be consistent
with the existing information on the file system, or with each other.
Even worse, storing v and d back to F could involve overwriting
the same file (or link, or directory) with multiple pieces of data—a
conflict. Thus, to reliably use store functions to manipulate the file
system, we need a way way to track the intricate constraints on the
data in the representation, metadata, and file system implied by the
specification.

The validator φ′ produced by the store function does exactly
this—it keeps track of the conditions needed to ensure that storing
the representation and metadata back to F will accurately reflect
all of the information they contain. As a simple example that shows
why validators are necessary, consider a specification s defined as
〈x:File,File〉 and suppose that we invoke s’s load function with E ,
F , and r where F (r) is (a,File u). According to the semantics of
the load functions described above, the representation v will be a
pair (u, u) containing two copies of the file contents at r and the
metadata d will also be a pair ((True, a), (True, a)) containing
two copies of the attributes associated to that file. Now suppose that
we change the representation to (u, u′), where u 6= u′, and store
the result back to the file system. Because this new representation
does not satisfy the dependency between the two components of
the pair implied by s, the store function cannot produce a new file
system containing the information in both u and u′. It must store
one of the strings and discard the other. The validator φ′ detects
this inconsistency. In this case, the validator will be equivalent to
the following predicate on file systems:

λF ′. (F ′(r) = (a,File u)) ∧ (F ′(r) = (a,File u′),

which is clearly not satisfiable unless u = u′.

303

The store functions also use validators to detect internal incon-
sistencies between the representation and metadata. For example,
consider the specification s defined as s1?, and suppose that invok-
ing s’s load function with E , F , r where F (r) is undefined. The
representation and metadata will be Nothing and (True,Nothing)
respectively. Now suppose that we change the representation to
Just u ′, and invoke s’s store function. Even though the pair
(Just u ′, (True,Nothing)) would never be produced by s’s load
function, the store function must still do something reasonable
with it. A reasonable choice—the one used in our semantics—is
to update the file system contents by passing (File u′, adefault) to
s’s store function, but produce a validator φ′ = λF ′. False that
records the inconsistency between the representation and metadata.
This informs the programmer that if they invoke the load function
on the new file system, the representation and metadata may not be
preserved—e.g., loading using s1 could result in an error.

Now let us examine the inference rules in detail. We assume that
each constant defines a storek function. The store function for File
is defined as follows:

storeFile (E , F, r, v, d) =8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(F [r := (a,File v)],
λF ′. (F ′(r) = (a,File v)))

if d = (True, a)

(F [r := ⊥],
λF ′. (v = “ ” ∧ a = adefault ∧ F ′(r) 6= (,File)))

if d = (False, a) ∧ F (r) = (,File)

(F,
λF ′. (v = “ ” ∧ a = adefault ∧ F ′(r) 6= (,File)))

if d = (False, a) ∧ F (r) 6= (,File)

It overwrites the contents of the file system F at path r with
(a,File v) if d is valid, deletes the contents of F at r if d is not
valid but F (r) contains a file, and returns F unchanged otherwise.
The validator φ′ also has three cases: in the first, it tests whether
F ′(r) is (a,File v); in the second and third cases it tests whether
F ′(r) is not a file and (v, a) is the default (“ ”, adefault) generated
by the load function. These constraints are necessary to prove the
round-tripping properties described at the end of this section.

The rule for path specifications e::s simply passes off control
to the store function for s after replacing the current path r with
[[r / e]]Epath . The rule for dependent pairs 〈x:s1, s2〉 is more interest-
ing. Given a pair (v1, v2) as the representation and (b, (d1, d2)) as
the metadata, it invokes the store function for s1 on (v1, d1), yield-
ing an updated file system F ′1 and validator φ′1, and then invokes
the store function for s2 on (v2, d2) in an extended environment
where x is bound to v1 and xmd is bound to d1, yielding another
updated file system F ′2 and validator φ′2. It combines the updated
file systems using the right-biased file system concatenation opera-
tor defined as follows:

(F1++F2)(r) =8>>><>>>:
(a2,Dir (U1 ∪ U2)) if F1(r) = (a1,Dir U1) ∧

F2(r) = (a2,Dir U2)

F1(r) if F2(r) = ⊥
F2(r) otherwise

Finally, it conjoins the two validators φ′1 and φ′2. The result is a file
system that contains the consistent changes made to the file system
by the store functions for s1 and s2 as well as a validator that
checks for the consistency of all the changes. The store function
for comprehensions is similar.

The store function for predicates P(e) returns the input file
system F unchanged and a validator φ′ that checks whether e
evaluates to b, the boolean value stored in the metadata. The store

s R[[s]] M[[s]]

kτ2τ1 τ1 Md τ2
e::s R[[s]] M[[s]]

〈x:s1, s2〉 (R[[s1]],R[[s2]]) Md (M[[s1]],M[[s2]])

[s | x ∈ e] [R[[s]]] Md [M[[s]]]

P(e) () Md ()

s? Maybe R[[s]] Md (MaybeM[[s]])

Figure 9. Forest calculus representation and metadata types.

function for options s1? is defined by three inference rules. The
first handles the case where the representation is Just v1 and the
metadata is Just d1 by simply unpacking the encapsulated values
and invoking s1’s store function. The second handles the case
where the representation is Nothing . It deletes the file and returns
a validator that checks whether the metadata d is also Nothing and
the file system is undefined on the path r. The third rule handles
the case where the representation is Just v1 and the metadata is
Nothing . It invokes s1’s store function on v1 and default metadata
and returns a validator that always evaluates to False , reflecting the
inconsistency in the representation and metadata.

7.4 Formal Properties
The semantics of Forest calculus specifications is carefully de-
signed to ensure some essential correctness properties. The first is
a basic type safety property, which states that the load function for
specifications s generates representations and metadata belonging
toR[[s]] andM[[s]] respectively.

Proposition 1 (Load Type Safety)
If E ; r; s ` load F B (v, d) and R[[s]] = τR andM[[s]] = τM
then ` v : τR and ` d : τM,

This property demonstrates that our type definitions are properly
aligned with the semantics of loading.

To ensure that the semantics of loading is aligned with the
semantics of storing, we also prove the following pair of round-
tripping properties.

Theorem 2 (LoadStore)
Let E be an environment, F a file system, r a path, s a specification,
v a representation, and d metadata. If

E ; r; s ` load F B (v, d)
E ; r; s ` store (F, v, d) B (F ′, φ)

then F = F ′ and φ′(F ′).

Theorem 3 (StoreLoad)
Let E be an environment, F and F ′ file systems, r a path, s
a specification, v a representation, d and d′ metadata, and φ′ a
validator. If

E ; r; s ` store (F, v, d) B (F ′, φ′) φ′(F ′)
E ; r; s ` load F ′ B (v′, d′)

then (v′, d′) = (v, d).

The first theorem states that loading from a file system F and im-
mediately storing the resulting representation and metadata yields
the original file system and, moreover, that this file system will sat-
isfy the validator produced by the store function. This guarantees
that the store function will not disturb information in the file system
if possible, such as the information outside of the fragment of the

304

E ; r; s ` load F B (v, d)

E ; r; kτ2τ1 ` load F B (loadk(E , F, r))

E ; [[r / e]]EPath ; s ` load F B (v, d)

E ; r; e::s ` load F B (v, d)

E ; r; s1 ` load F B (v1, d1)
(E , x 7→ v1, xmd 7→ d1); r; s2 ` load F B (v2, d2)

b = valid(d1) ∧ valid(d2)

E ; r; 〈x:s1, s2〉 ` load F B ((v1, v2), (b, (d1, d2)))

[[e]]E[τ] = [w1, .., wk]
∀i ∈ {1, .., k}. (E , x 7→ wi); r; s ` load F B (vi, di)

b =
Vk
i valid(di) vs = [v1, .., vk] ds = [d1, .., dk]

E ; r; [s | x ∈ e] ` load F B (vs, (b, ds))

b = [[e]]EBool

E ; r; P(e) ` load F B ((), (b, ()))

r 6∈ dom(F)

E ; r; s1? ` load F B (Nothing , (True,Nothing))

r ∈ dom(F) E ; r; s1 ` load F B (v1, d1)

E ; r; s1? ` load F B (Just v1 , (valid(d1), Just d1))

E ; r; s ` store (F, v, d) B (F ′, φ′)

E ; r; kτ2τ1 ` store (F, v, d) B (storek(E , F, r, v, d))

E ; [[r / e]]EPath ; s ` store (F, v, d) B (F ′, φ′)

E ; r; e::s ` store (F, v, d) B (F ′, φ′)

E ; r; s1 ` store (F, v1, d1) B (F ′1, φ
′
1)

(E , x 7→ v1, xmd 7→ d1); r; s2 ` store (F, v2, d2) B (F ′2, φ
′
2)

φ′ = λF ′. (b = valid(d1) ∧ valid(d2)) ∧ φ′1(F ′) ∧ φ′2(F ′)

E ; r; 〈x:s1, s2〉 ` store (F, (v1, v2), (b, (d1, d2))) B (F ′1++F ′2, φ
′)

vs = [v1, .., vj] ds = [d1, .., dl]

[[e]]E[τ] = [w1, .., wm] k = min (j, l,m)
∀i ∈ {1, .., k}. (E , x 7→ wi); r; s ` store (F, vi, di) B (F ′i , φ

′
i)

φ′ = λF ′. (j = l = m) ∧ (b =
Vk
i valid(di)) ∧ (

Vk
i φ
′
i(F
′))

E ; r; [s | x ∈ e] ` store (F, vs, (b, ds)) B (F ′1++..++F ′k, φ
′)

φ′ = λF ′. (b = [[e]]EBool)

E ; r; P(e) ` store (F, (), (b, ())) B (F, φ′)

E ; r; s1 ` store (F, v1, d1) B (F ′, φ′1)
φ′ = λF ′. (b = valid(d1)) ∧ (r ∈ dom(F ′)) ∧ φ′1(F ′)

E ; r; s1? ` store (F, Just v1 , (b, Just d1)) B (F ′, φ′)

φ′ = λF ′. (d = Nothing) ∧ b ∧ r 6∈ dom(F ′)

E ; r; s1? ` store (F,Nothing , (b, d)) B (F [r := ⊥], φ′)

E ; r; s1 ` store (F, v1, d
s1
default) B (F ′, φ′1)

φ′ = λF ′. False

E ; r; s1? ` store (F, Just v1 , (b,Nothing)) B (F ′, φ′)

(a) (b)

Figure 10. Forest calculus semantics for (a) loading and (b) storing.

file system described by the specification. It also establishes that
the validator is not the trivial predicate on file systems that always
returns false.

The second theorem states that storing an arbitrary representa-
tion and then loading the resulting file system yields the same rep-
resentation and metadata, provided the stored file system satisfies
the validator. This theorem ensures that the store function reflects
all of the information contained in the representation in the updated
file system.

These properties are based on the general correctness conditions
that have been proposed for bidirectional transformations in the
context of lenses [10], but are generalized here to accommodate
the inconsistencies that can arise when working with imperfect,
ad hoc data. The proofs of these theorems can be found in the
accompanying technical report.

8. Related Work
The work in this paper builds upon ideas developed in the Pads
project [5, 7]. Pads uses extended type declarations to describe
the grammar of a document and simultaneously to generate types
for parsed data and a suite of data-processing tools. The obvious
difference between Pads (and other parser generators) and Forest

is that Pads generates infrastructure for processing strings (the
insides of a single file) whereas Forest generates infrastructure for
processing entire filestores. In addition, Forest (and Pads/Haskell)
is architecturally superior to previous versions of Pads in the tight
integration with its host language and in its support for third-party
generic programming and tool construction.

More generally, Forest shares high-level goals with other sys-
tems that seek to make data-oriented programming simpler and
more productive. For example, Microsoft’s LINQ [20] extends the
.NET languages to enable querying any data source that supports
the IEnumerable interface using a simple, convenient syntax.
LINQ differs from Forest in that it does not provide support for
declaratively specifying the structure of, and then ingesting, file-
stores. As a second example, Type Providers [28], an experimental
feature of F#, help programmers materialize standard data sources
equipped with predefined schemas (such as XML documents or
databases) in memory in an F# program. Type Providers do not
themselves provide a new means for describing data sources (as
Forest does).

Several XML-based languages for specifying file formats, file
organization and file locations have been proposed. One example of
such a language is XFiles [1]. XFiles uses RDF specifications to de-

305

scribe the location, permissions, ownership, and other attributes of
files, as well as the name of an application capable of parsing spe-
cific files. The key difference between XFiles and Forest is that For-
est is tightly integrated into a general-purpose, conventional pro-
gramming language. Forest declarations generate types, functions
and data structures that materialize the data within a surrounding
Haskell program while XFiles does not interoperate directly with a
conventional programming language.

A recent MSc thesis by Ntzik proposes using an extension
of context logic [2] to reason about the effects of updates made
to file systems using standard POSIX commands [24]. The core
goal of Ntzik’s work is to create a new kind of Hoare Logic, and
consequently, it is quite different from Forest.

The round-tripping properties that core Forest programs obey
are based on laws that have been proposed in the context of well-
behaved bidirectional transformations, often called lenses [10]. As
far as we are aware, lenses for file systems have not been developed
but some of the same fundamental issues that arise in core Forest
have been studied by Hu and his colleagues, including languages
that handle data with internal dependencies [23] and ones that
handle graph structures [17].

9. Conclusions
In this paper, we propose the idea of extending a modern, high-
level programming language with tightly integrated features for
processing coherent file system fragments, which we call filestores.
To demonstrate the potential of this idea, we designed Forest, a
domain-specific language embedded in Haskell for describing and
managing filestores.

The Forest design has been informed by both theoretical analy-
sis and practical experience. On the theoretical side, we developed
a formal calculus that models the core Forest functionality and we
proved that our calculus obeys round-tripping laws derived from
previous work on bi-directional programming paradigms. On the
practical side, we illustrated the utility of our design by describing
several example filestores, and showing how to use these descrip-
tions to build simple Haskell scripts that query, analyze, and trans-
form the example data in useful ways. We also provided evidence
that Forest has effective support for building generic, description-
directed tools by implementing a number of such tools ourselves,
including a filestore visualizer, a generic query interface, an access
control checker, and (circularly) a simple description inference en-
gine. An ancillary benefit of this engineering work is that it serves
as an extensive case study in domain-specific language design, and,
as such, inspired changes in the design of Template Haskell.

For further information about Forest, we direct readers to the
Forest web site [9], where they may find our open source imple-
mentation and a number of additional examples.

Acknowledgments
We wish to thank Simon Peyton Jones for extending Haskell’s
quasiquoting mechanism to support the Forest design and for as-
sisting us in its use, John Launchbury for helping us design and
implement Pads/Haskell, and the anonymous ICFP reviewers for
many insightful comments and suggestions.

This work was supported in part by the NSF under grant CCF-
1016937, the ONR under grant N00014-09-1-0652, and the NSFC
under grant 6103302. Any opinions, findings, and recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of these agencies.

References
[1] S.-C. Buraga. An XML-based semantic description of distributed file

systems. In RoEduNet, pages 41–48, 2003.

[2] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update.
In POPL, pages 271–282, 2005.

[3] Filesystem Hierarchy Standard Group. Filesystem hierarchy standard.
http://www.pathname.com/fhs/, 2004.

[4] K. Fisher, N. Foster, D. Walker, and K. Q. Zhu. Forest 1.0: A Language
and Toolkit for Programming with Filestores. Technical Report TR-
904-11, Princeton University, June 2011.

[5] K. Fisher and R. Gruber. PADS: A domain specific language for
processing ad hoc data. In PLDI, pages 295–304, June 2005.

[6] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data descrip-
tion languages. In POPL, Jan. 2006.

[7] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data descrip-
tion languages. JACM, 57:10:1–10:51, February 2010.

[8] K. Fisher and D. Walker. The PADS project: An overview. In Pro-
ceedings of the 14th International Conference on Database Theory,
ICDT ’11, pages 11–17, New York, NY, USA, 2011. ACM.

[9] Forest: A language and toolkit for programming with file system
fragments. http://forestproj.org, 2010.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view update problem. TOPLAS, 29(3), May
2007.

[11] M. J. Freedman. Experiences with CoralCDN: A five-year operational
view. In NSDI, pages 7–7, 2010.

[12] M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing
content publication with Coral. In NSDI, pages 18–18, 2004. See
also http://www.coralcdn.org/.

[13] E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Softw. Pract. Exper.,
30:1203–1233, September 2000.

[14] Haskell Graphviz Package. http://hackage.haskell.org/
package/graphviz.

[15] Haskell Source Extensions Package. http://hackage.
haskell.org/package/haskell-src-exts.

[16] Haskell Source Meta Package. http://hackage.haskell.
org/package/haskell-src-meta.

[17] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. In ICFP, pages 205–216,
2010.

[18] R. Lämmel and S. P. Jones. Scrap your boilerplate: A practical design
pattern for generic programming. In TLDI, pages 26–37, 2003.

[19] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combina-
tors for the real world. Technical Report UU-CS-2001-27, Department
of Computer Science, Universiteit Utrecht, 2001.

[20] LINQ: .NET language-integrated query. http://msdn.
microsoft.com/library/bb308959.aspx, Feb. 2007.

[21] G. Mainland. Why it’s nice to be quoted: Quasiquoting for Haskell. In
Haskell Workshop, pages 73–82, 2007.

[22] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernández, and A. Gleyzer.
PADS/ML: A functional data description language. In POPL, Jan.
2007.

[23] S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-
directional updating. In APLAS, pages 2–20, Nov. 2004.

[24] G. Ntzik. Local reasoning for filesystems. Master’s thesis, Imperial
College, Sept. 2010.

[25] PADS project. http://www.padsproj.org/, 2007.
[26] T. J. Parr and R. W. Quong. ANTLR: A predicated–LL(k) parser

generator. Softw. Pract. Exper., 25(7):789–810, July 1995.
[27] T. Sheard and S. P. Jones. Template meta-programming for Haskell.

In Haskell Workshop, pages 1–16, 2002.
[28] D. Syme. Looking Ahead with F#: Taming the Data Deluge. Presen-

tation at the Workshop on F# in Education, Nov. 2010.
[29] Template Haskell Extension Proposal. hackage.haskell.org/

trac/ghc/blog/Template%20Haskell%20Proposal.

306

http://www.pathname.com/fhs/
http://forestproj.org
http://www.coralcdn.org/
http://hackage.haskell.org/package/graphviz
http://hackage.haskell.org/package/graphviz
http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-src-exts
http://hackage.haskell.org/package/haskell-src-meta
http://hackage.haskell.org/package/haskell-src-meta
http://msdn.microsoft.com/library/bb308959.aspx
http://msdn.microsoft.com/library/bb308959.aspx
http://www.padsproj.org/
hackage.haskell.org/trac/ghc/blog/Template%20Haskell%20Proposal
hackage.haskell.org/trac/ghc/blog/Template%20Haskell%20Proposal

	Introduction
	Example Filestores
	Forest Design
	Base Types: Files
	Base Type: Symbolic Links
	Maybe: Optional File System Objects
	Records: Directories
	Lists
	Dependent Types: Attributes and Constraints
	Specialized Constructors: Gzip and Tar
	Putting it all together

	Programming with Forest
	Generic Tools
	Generic Querying
	File System Visualization
	Permission Checker
	Shell Tools
	Description Inference Tool

	Implementation
	Core Calculus
	Data Model
	Specifications
	Semantics
	Formal Properties

	Related Work
	Conclusions

