TYPE INFERENCE (II)
Example (Recap)

fun map (f, l) =
 if null (l) then
 nil
 else
 cons (f (hd l), map (f, tl l))
fun map (f, l) =
 if null (l) then
 nil
 else
 cons (f (hd l), map (f, tl l))

library functions
argument type is ‘a list

library function
argument type is (‘a * ‘a list)
result type is ‘a list

result type is ‘a
result type is ‘a list
Step 1: Add Type Schemes

```ocaml
fun map (f : a, l : b) : c =
    if null (l) then
        nil
    else
        cons (f (hd l), map (f, tl l)))
```
Step 2: Generate Constraints

fun map (f : a, l : b) : c =
if null (l) then
nil
else
cons (f (hd l), map (f, tl l)))
Step 3: Solve Constraints

- Constraint solution provides all possible solutions to type scheme annotations on terms

```
final constraints
b = b' list
b = b'' list
b = b''' list
a = a
...
```

```
solution
a = b → c'
b = b' list
c = c' list
```

```
map (f : b' → c' 
x : b' list)
: c' list
=
...
```
Step 4: Generate Types

- Generate types from type schemes
 - Option 1: pick an instance of the most general type when we have completed type inference on the entire program
 - map : ((int \to int) \times int list) \to int list
 - Option 2: generate polymorphic types for program parts and continue (polymorphic) type inference
 - map : \forall (a,b) ((a \to b) \times a list) \to b list
Solving Constraints

- A **solution** to a system of type constraints is a substitution S
 - a **function** from *type variables* to *type schemes*
 - substitutions are defined on all type variables (a total function), but only some of the variables are actually changed:
 - $S(a) = a$ (for almost all variables a)
 - $S(a) = s$ (for some a and some type scheme s)
 - $\text{dom}(S) = \text{set of variables s.t. } S(a) \neq a$
Given a substitution S, we can define a function S^* from type schemes (as opposed to type variables) to type schemes:

- $S^*(\text{int}) = \text{int}$
- $S^*(s_1 \rightarrow s_2) = S^*(s_1) \rightarrow S^*(s_2)$
- $S^*(a) = S(a)$

For simplicity, next I will write $S(s)$ instead of $S^*(s)$

s denotes type schemes, whereas a, b, c denote type variables

This function replaces all type variables in a type scheme.
Composition of Substitutions

- **Composition** \((U \circ S) \) applies the substitution \(S \) and then applies the substitution \(U \):
 - \((U \circ S)(a) = U(S(a)) \)

- We will need to compare substitutions
 - \(T \leq S \) if \(T \) is “more specific” than \(S \)
 - \(T \leq S \) if \(T \) is “less general” than \(S \)
 - Formally: \(T \leq S \) if and only if \(T = U \circ S \) for some \(U \)
COMPOSITION OF SUBSTITUTIONS

Examples:
- example 1: any substitution is less general than the identity substitution I:
 - $S \leq I$ because $S = S \circ I$
- example 2:
 - $S(a) = \text{int}, S(b) = c \rightarrow c$
 - $T(a) = \text{int}, T(b) = c \rightarrow c, T(c) = \text{int}$
 - we conclude: $T \leq S$
 - if $T(a) = \text{int}, T(b) = \text{int} \rightarrow \text{bool}$ then T is unrelated to S
 (neither more nor less general)
SOLVING A CONSTRAINT

- Judgment format: $S \models q$
 (S is a solution to the constraints q)

\[
\begin{align*}
\text{S(s1) = S(s2)} & \quad \text{S \models q} \\
\hline
\text{S \models \{\}} & \quad \text{S \models \{s1 = s2\} \cup q}
\end{align*}
\]

any substitution is a solution for the empty set of constraints

a solution to an equation is a substitution that makes left and right sides equal
Most General Solutions

- **S** is the **principal** (most general) solution of a set of constraints \(q \) if
 - \(S \models q \) (\(S \) is a solution)
 - if \(T \models q \) then \(T \leq S \) (\(S \) is the most general one)

Lemma: If \(q \) has a solution, then it has a most general one

- We care about principal solutions since they will give us the most general types for terms (polymorphism!)
EXAMPLES

Example 1

- \(q = \{a=\text{int}, \ b=a\} \)
- principal solution \(S \):
 - \(S(a) = S(b) = \text{int} \)
 - \(S(c) = c \) (for all \(c \) other than \(a,b \))
EXAMPLES

Example 2

- \(q = \{a=\text{int}, b=a, b=\text{bool}\} \)
- principal solution \(S \):
 - does not exist (there is no solution to \(q \))
principal solutions give rise to most general reconstruction of typing information for a term:

- fun f(x:a):a = x
 - is a most general reconstruction

- fun f(x:int):int = x
 - is not
Unification

Unification: An algorithm that provides the principal solution to a set of constraints (if one exists)

• If one exists, it will be principal
Unification

- **Unification**: Unification systematically simplifies a set of constraints, yielding a substitution.
- **During simplification, we maintain** \((S, q)\)
 - \(S\) is the solution so far
 - \(q\) are the constraints left to simplify
 - Starting state of unification process: \((I, q)\)
 - Final state of unification process: \((S, \{\})\)

Identity substitution is most general.
UNIFICATION MACHINE

- We can specify unification as a transition system:
 - \((S, q) \rightarrow (S', q')\)
- Base types & simple variables:

\[
\begin{align*}
(S, \{\text{int} = \text{int}\} \cup q) & \rightarrow (S, q) \\
(S, \{\text{bool} = \text{bool}\} \cup q) & \rightarrow (S, q) \\
(S, \{a = a\} \cup q) & \rightarrow (S, q)
\end{align*}
\]
UNIFICATION MACHINE

Functions:

\[(S, \{s_{11} \rightarrow s_{12}= s_{21} \rightarrow s_{22}\} \cup q) \rightarrow (S, \{s_{11} = s_{21}, s_{12} = s_{22}\} \cup q)\]

Variable definitions

\[(S,\{a=s\} \cup q) \rightarrow ([a=s] \circ S, q[s/a])\]

\[(S,\{s=a\} \cup q) \rightarrow ([a=s] \circ S, q[s/a])\]
Occurs Check

- What is the solution to \{a = a \rightarrow a\}?
 - There is none!
 - The occurs check detects this situation

\[
\begin{align*}
\text{--} \\
& (a \text{ not in } \text{FV}(s)) \\
& (S,\{s=a\} \cup q) \rightarrow ([a=s] \circ S, q[s/a])
\end{align*}
\]
IRREDUCIBLE STATES

- Recall: final states have the form (S, \emptyset)
- Stuck states (S, q) are such that every equation in q has the form:
 - `int = bool`
 - $s_1 \rightarrow s_2 = s$ (s not function type)
 - $a = s$ (s contains a)
 - or is symmetric to one of the above
- Stuck states arise when constraints are unsolvable
TERMINATION

- We want unification to terminate (to give us a type reconstruction algorithm)
- In other words, we want to show that there is no infinite sequence of states
 - \((S_1, q_1) \rightarrow (S_2, q_2) \rightarrow \ldots\)
TERMINATION

- We associate an ordering with constraints
 - $q < q'$ if and only if
 - q contains fewer variables than q'
 - q contains the same number of variables as q' but fewer type constructors (i.e., fewer occurrences of `int`, `bool`, or `→`)
 - in other words, q is simpler than q'
 - This is a lexicographic ordering
 - There is no infinite decreasing sequence of constraints
 - To prove termination, we must demonstrate that every step of the algorithm reduces the size of q according to this ordering
TERMINATION

- **Lemma:** Every step reduces the size of q
 - **Proof:** By induction on the definition of the reduction relation.

\[
\begin{align*}
(S, \{\text{int} = \text{int}\} \cup q) & \rightarrow (S, q) \\
(S, \{\text{bool} = \text{bool}\} \cup q) & \rightarrow (S, q) \\
(S, \{a = a\} \cup q) & \rightarrow (S, q)
\end{align*}
\]

\[
\begin{align*}
(S, \{s_{11} \rightarrow s_{12} = s_{21} \rightarrow s_{22}\} \cup q) & \rightarrow (S, \{s_{11} = s_{21}, s_{12} = s_{22}\} \cup q) \\
(a \text{ not in } \text{FV}(s)) & \rightarrow (S, \{a = s\} \cup q) \rightarrow ([a = s] \circ S, q[s/a])
\end{align*}
\]
Correctness

- we know the algorithm terminates
- we want to prove that a series of steps:

 \[(I, q_1) \rightarrow (S_2, q_2) \rightarrow (S_3, q_3) \rightarrow \ldots \rightarrow (S, \{\})\]

 solves the initial constraints \(q_1\)

- We’ll do that by induction on the length of the sequence, but we’ll need to define the invariants that are preserved from step to step.
A **complete solution** for \((S, q)\) is a substitution \(T\) such that

1. \(T \leq S\)
2. \(T \models q\)

- **Intuition:** \(T\) extends \(S\) and solves \(q\)

A **principal solution** \(T\) for \((S, q)\) is complete for \((S, q)\) and

3. for all \(T'\) such that 1. and 2. hold, \(T' \leq T\)

- **Intuition:** \(T\) is the most general solution (it’s the least restrictive)
Properties of Solutions

- Lemma 1:
 - Every final state \((S, \{\})\) has a complete solution.
 - It is \(S\):
 - \(S <= S\)
 - \(S |= {}\)

 every substitution is a solution to the empty set of constraints
Properties of Solutions

Lemma 2
- No stuck state has a complete solution (or any solution at all)
 - it is impossible for a substitution to make the necessary equations equal
 - int ≠ bool
 - int ≠ t1 -> t2
 - ...

Properties of Solutions

Lemma 3

- If \((S, q) \rightarrow (S', q')\) then
 - \(T\) is complete for \((S,q)\) iff \(T\) is complete for \((S',q')\)
 - \(T\) is principal for \((S,q)\) iff \(T\) is principal for \((S',q')\)

- Proof: by induction on the derivation of unification step \(-\rightarrow\) (exercise!)

- In the forward direction, this is the preservation theorem for the unification machine!
By termination, \((I, q) \rightarrow^* (S, q') \) where \((S, q')\) is irreducible. Moreover:

- If \(q' = {} \) then:
- \((S, q')\) is final (by definition)
- \(S \) is a principal solution for \(q \)
 - Consider any \(T \) such that \(T \) is a solution to \(q \).
 - Now notice, \(S \) is principal for \((S, q')\) (by lemma 1)
 - \(S \) is principal for \((I, q)\) (by lemma 3)
 - Since \(S \) is principal for \((I, q)\), we know \(T \leq S \) and therefore \(S \) is a principal solution for \(q \).
... Moreover:

- If q' is not {} (and $(I, q) \rightarrow^* (S, q')$ where (S, q') is irreducible) then:
 - (S, q') is stuck. Consequently, (S, q') has no complete solution. By lemma 3, even (I, q) has no complete solution and therefore q has no solution at all.
Type inference algorithm.
- Given a context G, and untyped term u:
 - Find e, t, q such that $G |- u \Rightarrow e : t, q$
 - Find principal solution S of q via unification
 - if no solution exists, there is no reconstruction
 - Apply S to e, i.e., our solution is $S(e)$
 - $S(e)$ contains schematic type variables a, b, c, etc. that may be instantiated with any type
 - Since S is principal, $S(e)$ characterizes all reconstructions.