MANAGING MEMORY

OUTLINE

Memory Organization

Garbage Collection

Reference counting
Mark-and-sweep

Copy collection

MEMORY ORGANIZATION

Memory management 1s the process of binding
values to memory locations.

A process 1s a program 1n execution.

All the memory used by a process must reside in
the process’s address space.

How the address space 1s organized depends on the
operating system and the programming language
being used.

We are primarily concerned with imperative
languages (such as C++/Java) in this lecture.

Techniques developed here applies to all paradigms.

MAJOR AREAS OF MEMORY

Static area:
Storage requirements known in advance and remain constant
allocated at compile time (static or const)

Run-time stack:

local variables that get allocated each time a function is called
(a.k.a. call stack)

center of control for function call and return
Heap:

dynamically allocated objects and data structures

recall the memory store M in last lecture

the least organized and most dynamic storage area

Easily fragmented — needs garbage collection

STRUCTURE OF RUNTIME MEMORY

Memory 0

addresses 1 Static area
o0<a<h<n
o Kach memory word | Stack
can be: -
» Unused a l :
* Undef i i
' !

» An elementary value
h Heap

STATIC MEMORY

Global variables that can be statically allocated get
placed in the static area.

Constants may also be placed in the static area
depending on their type.

The static area may be split into different parts for
variables and for constants.

Data segment: static and global variables/constants

text segment: executable instructions

Values that can be statically bound (e.g. at compile
time) can be placed here.

String literals: “hello world!”

RUNTIME STACK

The stack 1s a contiguous region of memory that
ogrows and shrinks as a process runs.

It 1s used to hold local environments (closures) or
activation records for functions and procedures.
These are also called stack frames.

When a function is called (activated), storage for
1ts local variables, the calling parameters, and
return linkage 1s allocated by growing the stack.

When control 1s returned from the function, the
stack frame 1s de-allocated and the stack shrinks.

A function’s stack frame exists as long as the
function 1s active.

HEAP

Variable storage that 1s dynamically allocate at run-
time 1s placed in the heap.

The heap 1s managed by dividing 1t into blocks.

In many real implementations, a tree structure (binary
heap).

As a process runs space 1s allocated to new variables
from heap space (malloc, new).

When a variable’s lifetime expires its space may be
returned to the heap (deallocated). This can leave
holes in the heap causing fragmentation.

Some languages leave managing the heap in the
hands of the programmer (C, C++, etc.).

Others do heap management (Java, Python, etc.).

ALLOCATING HEAP BLOCKS

o The function new allocates a contiguous block of

heap space to the program.

E.g., new(5) returns the address of the next block of 5

words available in the heap:

" 7 undef 12 0
3 unured | wnuved | wnused
undef 0 wnwved | wnwved
K E - -
wnused | unured | wnwved | wnwved

7 undef 12 0

3 unused | unused | unused
undef 0 undef | undef
undef | undef | wndef | wnwsed

STACK AND HEAP OVERFLOW

Stack overflow occurs when Memory 0
the top of stack, a, would addresses 1
exceed its (fixed) limit, A.

Stack can also go underflow.

a-1
Heap overflow occurs when a
a call to new occurs and the
heap does not have a large
enough block available to h
satisfy the call.

Static area

Stack

Heap

(GARBAGE COLLECTION

Garbage 1s a block of heap memory that cannot
be accessed by the program.

Garbage can occur when either:

1. An allocated block of heap memory has no
reference to it (an “orphan”), or

2. A reference exists to a block of memory that is
no longer allocated (a “widow”).

GARBAGE EXAMPLE

class node {
int value;
node next;

5
node p, g;

P —>

(a)

P = new node();

g = new node();

a= p;
delete p;

q

e

null ?

Widow

(c)

WHY GARBAGE COLLECTION?

Today’s programs consume storage freely
8GB laptops, 16-32 GB desktops, 512GB servers
64-bit address spaces (x64, SPARC, Itanium, Opteron)

.. and mismanage it

Memory leaks, dangling references, double free,
misaligned addresses, null pointer dereference, heap
fragmentation

Poor use of reference locality, resulting in high cache
miss rates and/or excessive demand paging
Explicit memory management breaks high-level
programming abstraction

(G C AND PROGRAMMING LANGUAGES

GC 1s not a language feature

GC 1s a pragmatic concern for automatic and
efficient heap management
Cooperative langs: Lisp, Scheme, Prolog, Smalltalk ...
Uncooperative languages: C and C++
But garbage collection libraries have been built for C/C++
Recent languages have GC built-in:
Object-oriented languages: Modula-3, Java, C#, Python

In Java, runs as a low-priority thread; System.gc may be
called by the program

Functional languages: ML and Haskell

THE PERFECT GARBAGE COLLECTOR

No visible 1impact on program execution
Works with any program and its data structures

For example, handles cyclic data structures
Collects garbage (and only garbage) cells quickly
Incremental; can meet real-time constraints

Has excellent spatial locality of reference
No excessive paging, no negative cache effects

Manages the heap efficiently

Always satisfies an allocation request and does not
fragment

GARBAGE COLLECTION ALGORITHMS

Garbage collection 1s any strategy that reclaims
unused heap blocks for later use by the program.

Three classical garbage collection strategies:

Reference Counting

occurs whenever a heap block 1s allocated, but doesn’t detect
all garbage.

Mark-and-Sweep

Occurs only on heap overflow, detects all garbage, but makes
two passes on the heap.

Copy Collection

Faster than mark-sweep, but reduces the size of the heap
space.

REFERENCE COUNTING

The heap 1s a chain of nodes (the free_list).

Each node has a reference count (RC).
For an assignment, like = p, garbage can occur:

l—Reference count (RC)

Free list —» 1 0

—> 0

P~
q/

null

BUT NOT ALL GARBAGE IS COLLECTED...

Since q’s node has RC = 0, the RC for each of its children i1s
reduced by 1, it is returned to the free list, and this process
repeats for its descendents, leaving:

BUT NOT ALL GARBAGE IS COLLECTED...

Since q’s node has RC = 0, the RC for each of its children i1s
reduced by 1; it is returned to the free list, and this process
repeats for its descendents, leaving:

P~
a"

orphan chain

ADVANTAGES OF REFERENCE COUNTING

Occurs dynamically, overhead of garbage collection is
spread over time

Relatively easy to implement
Can coexist with manual memory management

Spatial locality of reference is good

Access pattern to virtual memory pages no worse than
the program, so no excessive paging

No long jumps.
Can re-use freed cells immediately
If RC == 0, put back onto the free list

DISADVANTAGES OF REFERENCE
COUNTING

Failure to detect inaccessible circular structure and
hence the GC 1s incomplete

Space overhead by appending an integer number to
every node in the heap

Performance overhead created by the book-keeping

done during pointer assignment or when a heap block
1s allocated/de-allocated:

Check to ensure that it is not a self-reference
Decrement the count on the old cell, possibly deleting it
Update the pointer with the address of the new cell
Increment the count on the new cell

MARK-AND-SWEEP

Each node in the free_list has a mark bit (MB) initially O.

Called only when heap overflow occurs:

Pass I: Mark all nodes that are (directly or indirectly) accessible
from the stack by setting their MB=1.

Pass II: Sweep through the entire heap and return all unmarked
(MB=0) nodes to the free list.

Note: all orphans are detected and returned to the free list.

HEAP AFTER PASS I OF MARK-AND-SWEEP

o Triggered by g=new node() and free_list = null.
o All accessible nodes are marked 1.

free_list | null 1 —| .. —1 null

HEAP AFTER PASS 11 OF MARK-AND-
SWEEP

o Now free_list is restored and
o the assignment q=new node() can proceed.

. 0 — > e —> 0 null

7

PrROS AND CONS OF MARK-AND-SWEEP

Pros:
handles cycles correctly

very little space overhead

1 bit used for marking cells may limit max values that can be
stored in a cell (e.g., for integer cells)

Cons:
normal execution must be suspended (noticeable pause)

may touch all virtual memory pages

May lead to excessive paging if the working-set size 1s small
and the heap is not all in physical memory

heap may fragment

Cache misses, page thrashing; more complex allocation

CoPY COLLECTION

Heap partitioned into two halves; only one 1s active.

Triggered by g=new node() and free_list outside the
active half:

h
from_space . I— _
p ”""--j:: > T~ _
— ~. N\ Y
q AN N\

free

to_space

ACCESSIBLE NODES COPIED TO OTHER HALF

o Note: The accessible nodes are packed, orphans
are returned to the free_list, and the two halves
reverse roles.

h

from_space

CHENEY'S ALGORITHM

from-space

pointer

root —

\
to-space

———»
forwarding address

Forwarding addresses
stored 1n from-space

Cells in to-space
are packed

CHENEY'S ALGORITHM

to-space

pointer
———»
forwarding address
*-------- >
from-space
root —» e ® el o
A B C D

PrROS AND CONS OF COPY COLLECTION

Pros:

very low cell allocation overhead
Out-of-space check requires just an addr comparison
Can efficiently allocate variable-sized cells
compacting
Eliminates fragmentation, good locality of reference

Cons:

Twice the memory footprint
Probably Ok for 64-bit architectures (except for paging)

When copying, pages of both spaces need to be swapped in.
For programs with large memory footprints, this could lead
to lots of page faults for very little garbage collected

Large physical memory helps

GARBAGE COLLECTION SUMMARY

Modern algorithms are more elaborate.
Most are hybrids/refinements of the above three.

E.g., generational garbage collection
Nodes that die, die young

Divide the heap into generations, and GC younger generations
more often

Doesn’t reclaim all free space — may need mark & sweep or copy
collection occasionally

Java/.NET: GC a few recent generations only

In Java, garbage collection 1s built-in.
runs as a low-priority thread.
Also, System.gc may be called by the program.

Functional languages have garbage collection built-in.
C/C++ default garbage collection to the programmer.

