
MANAGING MEMORY

1

OUTLINE

¢ Memory Organization
¢ Garbage Collection

¢Reference counting
¢Mark-and-sweep
¢Copy collection

2

MEMORY ORGANIZATION

¢ Memory management is the process of binding
values to memory locations.

¢ A process is a program in execution.
¢ All the memory used by a process must reside in

the process’s address space.
¢ How the address space is organized depends on the

operating system and the programming language
being used.

¢ We are primarily concerned with imperative
languages (such as C++/Java) in this lecture.

¢ Techniques developed here applies to all paradigms.
3

MAJOR AREAS OF MEMORY

¢ Static area:
� Storage requirements known in advance and remain constant
� allocated at compile time (static or const)

¢ Run-time stack:
� local variables that get allocated each time a function is called

(a.k.a. call stack)
� center of control for function call and return

¢ Heap:
� dynamically allocated objects and data structures
� recall the memory store M in last lecture
� the least organized and most dynamic storage area
� Easily fragmented – needs garbage collection

4

STRUCTURE OF RUNTIME MEMORY

¢ 0 ≤ a ≤ h ≤ n
¢ Each memory word

can be:
� Unused
� Undef
� An elementary value

5

STATIC MEMORY

¢ Global variables that can be statically allocated get
placed in the static area.

¢ Constants may also be placed in the static area
depending on their type.

¢ The static area may be split into different parts for
variables and for constants.
� Data segment: static and global variables/constants
� text segment: executable instructions

¢ Values that can be statically bound (e.g. at compile
time) can be placed here.
� String literals: “hello world!”

6

RUNTIME STACK

¢ The stack is a contiguous region of memory that
grows and shrinks as a process runs.

¢ It is used to hold local environments (closures) or
activation records for functions and procedures.
These are also called stack frames.

¢ When a function is called (activated), storage for
its local variables, the calling parameters, and
return linkage is allocated by growing the stack.

¢ When control is returned from the function, the
stack frame is de-allocated and the stack shrinks.

¢ A function’s stack frame exists as long as the
function is active. 7

HEAP
¢ Variable storage that is dynamically allocate at run-

time is placed in the heap.
¢ The heap is managed by dividing it into blocks.

� In many real implementations, a tree structure (binary
heap).

¢ As a process runs space is allocated to new variables
from heap space (malloc, new).

¢ When a variable’s lifetime expires its space may be
returned to the heap (deallocated). This can leave
holes in the heap causing fragmentation.

¢ Some languages leave managing the heap in the
hands of the programmer (C, C++, etc.).

¢ Others do heap management (Java, Python, etc.).
8

ALLOCATING HEAP BLOCKS

¢ The function new allocates a contiguous block of
heap space to the program.
E.g., new(5) returns the address of the next block of 5

words available in the heap:

9

STACK AND HEAP OVERFLOW

¢ Stack overflow occurs when
the top of stack, a, would
exceed its (fixed) limit, h.
� Stack can also go underflow.

¢ Heap overflow occurs when
a call to new occurs and the
heap does not have a large
enough block available to
satisfy the call.

10

GARBAGE COLLECTION

¢ Garbage is a block of heap memory that cannot
be accessed by the program.

¢ Garbage can occur when either:
1. An allocated block of heap memory has no
reference to it (an “orphan”), or
2. A reference exists to a block of memory that is
no longer allocated (a “widow”).

11

GARBAGE EXAMPLE

class node {
int value;
node next;

}
node p, q;

p = new node();
q = new node();
q= p;
delete p;

12Orphan
Widow

slide 13

WHY GARBAGE COLLECTION?
¢ Today’s programs consume storage freely

� 8GB laptops, 16-32 GB desktops, 512GB servers
� 64-bit address spaces (x64, SPARC, Itanium, Opteron)

¢ … and mismanage it
� Memory leaks, dangling references, double free,

misaligned addresses, null pointer dereference, heap
fragmentation

� Poor use of reference locality, resulting in high cache
miss rates and/or excessive demand paging

¢ Explicit memory management breaks high-level
programming abstraction

slide 14

GC AND PROGRAMMING LANGUAGES

¢ GC is not a language feature
¢ GC is a pragmatic concern for automatic and

efficient heap management
� Cooperative langs: Lisp, Scheme, Prolog, Smalltalk …
� Uncooperative languages: C and C++

¢ But garbage collection libraries have been built for C/C++

¢ Recent languages have GC built-in:
� Object-oriented languages: Modula-3, Java, C#, Python

¢ In Java, runs as a low-priority thread; System.gc may be
called by the program

� Functional languages: ML and Haskell

slide 15

THE PERFECT GARBAGE COLLECTOR

¢ No visible impact on program execution
¢ Works with any program and its data structures

� For example, handles cyclic data structures
¢ Collects garbage (and only garbage) cells quickly

� Incremental; can meet real-time constraints
¢ Has excellent spatial locality of reference

� No excessive paging, no negative cache effects
¢ Manages the heap efficiently

� Always satisfies an allocation request and does not
fragment

GARBAGE COLLECTION ALGORITHMS

¢ Garbage collection is any strategy that reclaims
unused heap blocks for later use by the program.

¢ Three classical garbage collection strategies:
� Reference Counting

¢ occurs whenever a heap block is allocated, but doesn’t detect
all garbage.

� Mark-and-Sweep
¢ Occurs only on heap overflow, detects all garbage, but makes

two passes on the heap.
� Copy Collection

¢ Faster than mark-sweep, but reduces the size of the heap
space. 16

REFERENCE COUNTING

¢ The heap is a chain of nodes (the free_list).
¢ Each node has a reference count (RC).
¢ For an assignment, like q = p, garbage can occur:

17

0 0 0

2 2

10

Free list null…

p

q

Reference count (RC)

BUT NOT ALL GARBAGE IS COLLECTED…

¢ Since q’s node has RC = 0, the RC for each of its children is
reduced by 1, it is returned to the free list, and this process
repeats for its descendents, leaving:

18

2 2

1

p

q

0

BUT NOT ALL GARBAGE IS COLLECTED…

¢ Since q’s node has RC = 0, the RC for each of its children is
reduced by 1; it is returned to the free list, and this process
repeats for its descendents, leaving:

19

orphan chain à
memory leak!

2 1

1

p

q

ADVANTAGES OF REFERENCE COUNTING

¢ Occurs dynamically, overhead of garbage collection is
spread over time

¢ Relatively easy to implement
¢ Can coexist with manual memory management
¢ Spatial locality of reference is good

� Access pattern to virtual memory pages no worse than
the program, so no excessive paging

� No long jumps.
¢ Can re-use freed cells immediately

� If RC == 0, put back onto the free list

20

DISADVANTAGES OF REFERENCE
COUNTING

¢ Failure to detect inaccessible circular structure and
hence the GC is incomplete

¢ Space overhead by appending an integer number to
every node in the heap

¢ Performance overhead created by the book-keeping
done during pointer assignment or when a heap block
is allocated/de-allocated:
� Check to ensure that it is not a self-reference
� Decrement the count on the old cell, possibly deleting it
� Update the pointer with the address of the new cell
� Increment the count on the new cell

21

MARK-AND-SWEEP

¢ Each node in the free_list has a mark bit (MB) initially 0.

¢ Called only when heap overflow occurs:
Pass I: Mark all nodes that are (directly or indirectly) accessible

from the stack by setting their MB=1.

Pass II: Sweep through the entire heap and return all unmarked
(MB=0) nodes to the free list.

¢ Note: all orphans are detected and returned to the free list.

22

HEAP AFTER PASS I OF MARK-AND-SWEEP

¢ Triggered by q=new node() and free_list = null.
¢ All accessible nodes are marked 1.

23

HEAP AFTER PASS II OF MARK-AND-
SWEEP

¢ Now free_list is restored and
¢ the assignment q=new node() can proceed.

24

slide 25

PROS AND CONS OF MARK-AND-SWEEP

¢ Pros:
� handles cycles correctly
� very little space overhead

¢ 1 bit used for marking cells may limit max values that can be
stored in a cell (e.g., for integer cells)

¢ Cons:
� normal execution must be suspended (noticeable pause)
� may touch all virtual memory pages

¢ May lead to excessive paging if the working-set size is small
and the heap is not all in physical memory

� heap may fragment
¢ Cache misses, page thrashing; more complex allocation

COPY COLLECTION

¢ Heap partitioned into two halves; only one is active.
¢ Triggered by q=new node() and free_list outside the

active half:

26

ACCESSIBLE NODES COPIED TO OTHER HALF

¢ Note: The accessible nodes are packed, orphans
are returned to the free_list, and the two halves
reverse roles.

27

from-space

to-space

root A

C
B

D

forwarding address

pointer

A
’

B’ C’ D’

Cells in to-space
are packed

CHENEY’S ALGORITHM

Forwarding addresses
stored in from-space

28

to-space

from-space

forwarding address

pointer

A
’

B’ C’ D’

root

CHENEY’S ALGORITHM

29

PROS AND CONS OF COPY COLLECTION

¢ Pros:
� very low cell allocation overhead

¢ Out-of-space check requires just an addr comparison
¢ Can efficiently allocate variable-sized cells

� compacting
¢ Eliminates fragmentation, good locality of reference

¢ Cons:
� Twice the memory footprint

¢ Probably Ok for 64-bit architectures (except for paging)
¢ When copying, pages of both spaces need to be swapped in.

For programs with large memory footprints, this could lead
to lots of page faults for very little garbage collected

¢ Large physical memory helps 30

GARBAGE COLLECTION SUMMARY

¢ Modern algorithms are more elaborate.
� Most are hybrids/refinements of the above three.
� E.g., generational garbage collection

¢ Nodes that die, die young
¢ Divide the heap into generations, and GC younger generations

more often
¢ Doesn’t reclaim all free space – may need mark & sweep or copy

collection occasionally
¢ Java/.NET: GC a few recent generations only

¢ In Java, garbage collection is built-in.
� runs as a low-priority thread.
� Also, System.gc may be called by the program.

¢ Functional languages have garbage collection built-in.
¢ C/C++ default garbage collection to the programmer.

31

