INDUCTIVE DEFINITION

OUTLINE

Judgements
Inference Rules
Inductive Definition
Derivation

Rule Induction

LANGUAGE AND META-LANGUAGE

Language 1s the target programming language,
e.g., Java, Python, ML.

Has 1ts own 1dentifiers, variables, etc.

Meta-language 1s the language 1in which to
describe the target language.

META-VARIABLES

A symbol in a meta-language that is used to describe some
element in an object (target) language
E.g., Let a and b be two sentences of a language L

E.g., Let n be a number, d be a digit and s be a sign in the
language of numerals
435, 535.23, -3847 are all numbers in the language of numerals

meta-variable doesn’t appear in the language itself.
Meta- is a prefix used to indicate a concept, which is an

abstraction from another concept, used to complete or add to
the latter.

Similar use 1n “meta-data”, “meta-theory”, etc.

The syntax, semantics, etc. about a PL (e.g., Java) is the meta-
theory about that language

JUDGEMENTS

A judgement 1s an assertion (in the meta-
language) about one or more syntactic objects.

n nat (n 1s a natural number)
n=n;+n, (n 1s the sum of n; and n,)
T type (T 1s a type)

e:T (expression e has type 1)
el v (expression e has value v)

PP AN {4

“n nat” can also be written as “n 1sa nat”, “ni1s a
natural num”, etc. as long as it’s consistent.

JUDGEMENTS (II)

A judgement states one or more syntactic objects have

a property or have a relation among one another.

The property or the relation itself is called predicate.
E.g.,nnat (thisjudgement involves one object n)

The abstract structure (schema) of a judgement is

called judgement form.
E.g. n nat.

The judgement that a particular object or objects

having that property is an instance of a judgement
form.

E.g., 5 nat, succ(n) nat are all judgements

W.L.O.G., we use “‘judgement” to mean the instance of
judgement form usually.

INFERENCE RULES

An 1inductive definition of a judgement form consists of a
collection of rules of the form:

premises
J, o J,
J .
conclusion
To show J, 1t 1s sufficient to show Jy, ..., J.

A rule without premises is called an axiom;

Otherwise i1t’s called a proper rule.

INDUCTIVE DEFINITION

Definition of judgement form » nat:

n nat
zero nat succ(n) nat \
Péntlon of judgement form ¢ tree: Proper Rules!

Axioms!
\ t, tree t, tree

empty tree node(t; t,) tree

DERIVATION

To show an inductively defined judgement holds = exhibit a
derivation of the judgement.

A derivation 1s an evidence for the validity of the defined
judgement.

Derivation of a judgement is the finite composition of rules
starting from axioms and ending at that judgement.

Usually a tree structure

In compiler, derivation of grammar in the form of a parse tree.

DERIVATION (II)

Derivation of judgement succ(succ(succ(zero))) nat:

zero nat

succ(zero) nat

succ(succ(zero)) nat

succ(succ(succ(zero))) nat

Derivation of

empty tree empty tree

node(empty, empty) tree empty tree

node(node(empty, empty); empty) tree

TYPES OF DERIVATION

Forward chaining (bottom-up):
Starting from axioms, work up to the conclusion
Backward chaining (top-down):

Start from the conclusion, work backwards toward
axioms

Note the terms bottom-up and top-down are
exactly the opposite of the derivation tree we
presented.

TYPE OF DERIVATION

Derivation of judgement succ(succ(succ(zero))) nat:

4

zero nat

succ(zero) nat

succ(succ(zero)) nat

Surureyo pIemioJ

surureyo premyoeyqg

4 succ(succ(succ(zero))) nat Vv

DEDUCTIVE SYSTEMS

A deductive system has 2 parts:

Definition of a judgement form or a collection of
judgement forms

A collection of inference rules about these judgement
forms

We have just introduced two deductive systems:
nat and tree.

A programming language can be represented by
a deductive system, of course with many
judgement forms!

RULE INDUCTION (I)

Reason about rules under an inductive definition
(or within a deductive system)
Principle of rule induction:

To show property P holds of a judgement form J
whenever J 1s derivable, it 1s enough to show that P is
closed under, or respects, the rules defining J.

Write P(J) to mean property P holds for J.
P respects the rule

Jooo
J

if P(J) holds whenever P(J,), ..., P(Jy) hold.
PJ,), ... P(Jy) are inductive hypothesis.
P(J) 1s inductive conclusion.

RULE INDUCTION (II)

For the judgement n nat, to show P(n nat), it 1s
sufficient to show:

P(zero nat).
For every n, if P(n nat), then P(succ(n) nat).

Looks familiar?

This 1s just a generalized version of mathematical
induction.

Step 1 1s called the basis; step 2 1s called the
Iinduction step.

Similar induction can be applied on node(t, to)
tree 2 “tree induction’.

o PROOF BY INDUCTION

OUTLINE

O

OO0O

Proof Principles
Natural Numbers
List

Proof Structure

PROOF PRINCIPLE (RULE INDUCTION)

Recall that...

To show every derivable judgement has some
property P, show for every rule in the deductive
system:

/ JJ” [name]

If J4, ..., J,, have property P then J has property
P.

EXAMPLE (NATURAL NUMBERS)

Given a property P, we know that P 1s true for all
natural numbers, 1if we can prove:

P holds unconditionally for Z. Corresponds to rule Z:

/
/ nat

Assuming P holds for n, then P holds for (S n).
Corresponds to rule S:

n nat

S
Sn nat

Also called “induction on the structure of natural
numbers”.

NATURAL NUMBERS

Natural numbers:

7 n nat

/ nat Sn nat

Addition:
Judgement: add n1 n2 n3

wdd7 add nl n2 n3 2ddS

add Z nn add (S nl)n2 (S n3)

Theorem 1: For all n1, n2, there exists n3 such that add n1 n2 n3.
(if nl nat, n2 nat, then there exists n3 nat such that add nl n2 nd3)

Proof: By induction on the derivation of n nat.

Z
Z nat
Renaming!
Need to prove add n1 n2 n3 where nl =7
(1) add Z n2 n2 (by addZ, and let n1=7, n3=n2)
(2) add n1 n2 n3 (by letting n1=7, n3=n2)
(Case proved) addZ
n nat addZnn
S

Sn nat add nl n2 n3
Need to prove add n1 n2 n3 where n1 = (S n) add (S nl) n2 (S n3)
(1) add n n2 n3’ (by I.H. and let n = n1, n3’=n3)
(2) add (S n) n2 (S n3) (by (1), addS, and

let (Sn) =nl, (S n3)=n3)
(Case proved) QED.

EVEN/ODD NUMBERS

Judgements:
evenn ‘“nis an even number”
odd n “n 1s an odd number”

even/ odd n evenS

even £ even (Sn)

even n

odd (S n)

oddS

Theorem 2: If n nat, then either even n or odd n.

: : : : evenZ
Proof: By induction on the derivation of n nat. even Z
Case: Z sdd @
7 nat evensS
even (Sn)
even Z (By rule evenZ)
Zen " odds
o Sn
Case: n_nat S S
Sn nat

(1) evennor (2) oddn (ByI.H.)
Need to prove: even (S n) or odd (S n)
Assuming (1):

odd (S n) (By (1) and rule oddS)
Assuming (2):
even (S n) (By (2) and rule evenS)

QED.

EVEN/ODD NUMBER (ALT. DEFINITION)

evenZ evenl n evenS
even2 Z even2 (S(Sn))
0dd27 0dd2 n 128

odd2 (S Z) odd2 (S (Sn))

Theorem 3: If even2 n, then even n.

Proof: By induction on the derivation of even2 n.
Case: evenZ
even2 Z
even 7 (by rule evenZ)
Case: even2 n_ en2s
even2 (S (Sn))
(1) even n (by I.H.)
Need to prove: even (S (S n))
(2) odd (S n) (by (1), oddS)
(3) even (S (S n)) (by (2), evenS)

QED.

evenZ

even Z

odd n

evenS

even (Sn)

even n

oddS
odd (Sn)

LIST OF NATURAL NUMBERS

Judgement Form:
1 list “l1s a list”

_ nnat |[list
——— nil — cons
nil list cons(n,l) list

Cons stands for “CONcatenateS”
Means concatenation of a head and a tail of a list.
In cons(n, 1), n is the head and 1 is the tail.

cons(1, cons(2, cons(3, nil))) = 1::2::3::n1l = [1,2,3]

Lemma 1: cons((S Z), cons(Z, nil)) 1s a list.

Proof: By giving a derivation of cons((S Z), cons(Z, nil)) list.

Z nat (by Z) Znat (by Z) mnillist (by nil)

cons((S Z), cons(Z, nil)) list

LIST - LEN

Judgment Form: len 1 n.
“the length of 11s n”.

len —nil

len nil Z

lenln
len — cons

len cons(n,,l) (S n)

LIST - APPEND

Judgment Form: append 1; n L.
“I, 1s the result of appending n to 1,”.

. — append — nil
append nil n cons(n,nil)

append [n, [

append — cons
append cons(n,,) n, cons(n,, [)

LIST - REVERSE

Judgment Form: reverse 1, 1.
“l, 1s the reversed form of list 1,”.

rev —nil

reverse nil nil

reversel, |, appendl,nl,’

—=rev—Cons
reverse cons(n,l,) [,

THEOREM: LENGTH OF REVERSED LIST

Theorem 4: If len 1 n, and reverse 11, then len I’ n.

Proof: To prove this theorem, we first prove the following
lemma:

Lemma 2: If len 1 n, and append 1 n; I, then len I’ (S n).

len — nil

len nil Z

lenln

len — cons
len cons(n,,l) (S n)

Lemma 2: If len 1 n, and append 1 n; I, then len I’ (S n).

Proof: By induction on the derivation of append.

Case:

_ — append — nil
append nil n cons(n,nil)

Need to prove: if len nil n, and append nil n; I, then len I’ (S n)

len nil Z (By len-Z)
append nil n; cons(n;, nil) (By append-nil and let n = n,)
len cons(ny, nil) (S Z) (By len-cons and (1) and

let I’ = cons(n;, nil)
and n =7)

len — nil

len nil Z

lenln
len — cons

len cons(n,,l) (S n)

Case: append | n, ll append — cons

append cons(n,,) n, cons(n,, [,)

len 1 n and append 1 ny 1; (By assumption)
len 1; (S n) (By (1) and I.H.)

Need to prove if len cons(n;, 1) n” and append cons(n;, 1) n, cons (n;,
1,), then len cons(ny, 1) (S n))

len cons(ny, 1) (S n) (By (1) and len-cons)
len cons(ny, 1;) (S (S n)) (By (2) and len-cons
and let n’ = (s n))
QED.

' —— len —nil
Now continue to prove Theorem 4. len nil Z

Proof: By induction on the derivation of len.

Case: — len—nil lenln len - cons
lennil Z len cons(n,,l) (S n)
reverse nil nil (By rev-nil)
len nil Z (by (1) and len-nil)
: lenln
Case: len — cons

len cons(n,,l) (S n)

Need to prove: if reverse cons(ny, 1) I”, then len 1” (S n).

len I n and reversell’ (By assumption)
len'n By (1) & I.H.)
reverse cons(ni, 1) I” (By assumption)
reversel I, append!'n; 1” (By (3) and
inversion of rev-cons)
len1” (S n) (By (2), (4), Lemma 2)
QED.

reversel |, append [, nl)

—= rev—cons
reverse cons(n,l,) [,

PROOF STRUCTURE

Following is the structure you should use when proving
something by structural induction (rule induction)

Theorem: If X then A.
Proof: By induction on the structure of the derivation of J.

(Assuming definition of J has three rules: Foo-1, Foo-2, Bar)

(pl) premisel.. . pn) premisen [Foo—1]

conclusion

(pl) premisel.. (pn) premisen (Foo—2]

conclusion

(pl) premisel.. (pn) premisen [Bar]

conclusion

PROOF STRUCTURE (1I)

Case Foo-1:
... [by (p1) and Lemma 1]
X [by assumption]
... [by (1) and (2)]

(m) A [by (n-3) and (n-1)]

Case Foo-2:
Similar to case Foo-1.

PROOF STRUCTURE (111)

Case Bar:

... [by (p1) and Lemma 1]
... [by (p2) and I.H. on (p3)]
.. [by (1) and (2)]

(m) A [by (n-3) and (n-1)]

RULES TO PROVE BY

Clearly state the induction hypothesis. Convenient to say what you
trying to prove (target property).

Clearly state the proof methodology (what you are doing induction on).
There should be one case for each rule in the inductive definition.

Use a two-column format:
Left side: logical steps toward to target property.
Right side: reasoning for each step.

In general, do not attempt to write your proof in English sentences.

While some written explanations can be useful, normally they
(attempt to) hide the fact that the proof i1s imprecise and has holes in

1t.
Number your steps for easy reference.

Always state where you use the induction hypothesis.

RULES TO PROVE By (I])

If two cases are very similar, you can prove the first and then say
that the second follows similarly. Just be certain that the cases
are really, truly similar. (For example, the case for projecting the
first element of an pair and the case for projecting the second
element of a pair are similar.)

If for some reason you can't prove something in the middle of a
proof (because you don't have time, you don't know how, etc.),
please don't try to hide that fact. Use the fact you need and in the
reasoning next to it, say something like:

Always break down a proof into appropriate lemmas. The result of
not introducing new lemmas where appropriate 1s usually that
you try to proceed with your proof using the wrong induction
hypothesis.

If you need new judgement forms, make sure you clearly define it
before you begin using it.

INDUCTION HYPOTHESIS STRUCTURE

Depending on the structure of your induction
hypothesis (1.e. the property to prove), you make
different assumptions and therefore must prove
different things:

If X and Y then A Xand Y A
If Xor Y then A 1 X A
AND (2) Y A
If X then A and B X A and B
If X then A or B X AorB

Notice in second case, you must prove two things,
1.e., A must be true given just X, and given just Y.

