
INDUCTIVE DEFINITION
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OUTLINE

¢ Judgements
¢ Inference Rules
¢ Inductive Definition
¢ Derivation
¢ Rule Induction
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LANGUAGE AND META-LANGUAGE

¢ Language is the target programming language, 
e.g., Java, Python, ML.
� Has its own identifiers, variables, etc.

¢ Meta-language is the language in which to 
describe the target language.
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META-VARIABLES

¢ A symbol in a meta-language that is used to describe some 
element in an object (target) language
� E.g., Let a and b be two sentences of a language ℒ
� E.g., Let n be a number, d be a digit and s be a sign in the 

language of numerals
¢ 435, 535.23, -3847 are all numbers in the language of numerals

� meta-variable doesn’t appear in the language itself.
¢ Meta- is a prefix used to indicate a concept, which is an 

abstraction from another concept, used to complete or add to 
the latter.

¢ Similar use in “meta-data”, “meta-theory”, etc. 
� The syntax, semantics, etc. about a PL (e.g., Java) is the meta-

theory about that language
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JUDGEMENTS

¢ A judgement is an assertion (in the meta-
language) about one or more syntactic objects.

Judgement Meaning
n nat (n is a natural number)
n = n1 + n2 (n is the sum of n1 and n2)
τ type (τ is a type)
e:τ (expression e has type τ)
e ⇓ v (expression e has value v)

¢ “n nat” can also be written as “n isa nat”, “n is a 
natural num”, etc. as long as it’s consistent. 5



JUDGEMENTS (II)
¢ A judgement states one or more syntactic objects have 

a property or have a relation among one another.
¢ The property or the relation itself is called predicate.

� E.g., n nat (this judgement involves one object n)
¢ The abstract structure (schema) of a judgement is 

called judgement form. 
� E.g. n nat.

¢ The judgement that a particular object or objects 
having that property is an instance of a judgement 
form.
� E.g., 5 nat, succ(n) nat are all judgements

¢ W.L.O.G., we use “judgement” to mean the instance of 
judgement form usually.
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INFERENCE RULES

¢ An inductive definition of a judgement form consists of a 
collection of rules of the form:

¢ To show J, it is sufficient to show J1, …, Jk.
¢ A rule without premises is called an axiom;
¢ Otherwise it’s called a proper rule.
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J1 ... Jk
J

premises

conclusion



INDUCTIVE DEFINITION

¢ Definition of judgement form n nat:

¢ Definition of judgement form t tree:
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zero nat
n nat

succ(n) nat

t1 tree t2 tree
node(t1; t2 ) treeempty tree

Axioms!
Proper Rules!



DERIVATION

¢ To show an inductively defined judgement holds à exhibit a 
derivation of the judgement.

¢ A derivation is an evidence for the validity of the defined 
judgement.

¢ Derivation of a judgement is the finite composition of  rules 
starting from axioms and ending at that judgement.

¢ Usually a tree structure
� In compiler, derivation of grammar in the form of a parse tree.
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DERIVATION (II)
¢ Derivation of judgement succ(succ(succ(zero))) nat:

¢ Derivation of node(node(empty, empty), empty) tree:
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empty tree empty tree
node(empty; empty) tree empty tree
node(node(empty; empty); empty) tree

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat



TYPES OF DERIVATION

¢ Forward chaining (bottom-up):
� Starting from axioms, work up to the conclusion

¢ Backward chaining (top-down):
� Start from the conclusion, work backwards toward 

axioms
¢ Note the terms bottom-up and top-down are 

exactly the opposite of the derivation tree we 
presented.
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TYPE OF DERIVATION

¢ Derivation of judgement succ(succ(succ(zero))) nat:
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zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

Forw
ard chaining

Backw
ard chaining



DEDUCTIVE SYSTEMS

¢ A deductive system has 2 parts:
� Definition of a judgement form or a collection of 

judgement forms
� A collection of inference rules about these judgement

forms

¢ We have just introduced two deductive systems: 
nat and tree.

¢ A programming language can be represented by 
a deductive system, of course with many 
judgement forms! 13



RULE INDUCTION (I)
¢ Reason about rules under an inductive definition 

(or within a deductive system)
¢ Principle of rule induction: 

� To show property P holds of a judgement form J 
whenever J is derivable, it is enough to show that P is
closed under, or respects, the rules defining J.

� Write P(J) to mean property P holds for J.
� P respects the rule

if P(J) holds whenever P(J1), ..., P(Jk) hold.
� P(J1), … P(Jk) are inductive hypothesis.
� P(J) is inductive conclusion. 14

J1 ... Jk
J



RULE INDUCTION (II)
¢ For the judgement n nat, to show P(n nat), it is 

sufficient to show:
1. P(zero nat).
2. For every n, if P(n nat), then P(succ(n) nat).

¢ Looks familiar?
¢ This is just a generalized version of mathematical 

induction.
¢ Step 1 is called the basis; step 2 is called the 

induction step.
¢ Similar induction can be applied on node(t1, t2) 

tree à “tree induction”. 15



PROOF BY INDUCTION
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OUTLINE
¢ Proof Principles
¢ Natural Numbers
¢ List
¢ Proof Structure
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PROOF PRINCIPLE (RULE INDUCTION)
¢ Recall that…
¢ To show every derivable judgement has some 

property P, show for every rule in the deductive 
system:

¢ If J1, …, Jn have property P then J has property 
P.

18

][1 name
J
JJ n!



EXAMPLE (NATURAL NUMBERS)
¢ Given a property P, we know that P is true for all 

natural numbers, if we can prove:
� P holds unconditionally for Z. Corresponds to rule Z:

� Assuming P holds for n, then P holds for (S  n). 
Corresponds to rule S:

¢ Also called “induction on the structure of natural 
numbers”. 19

Z
natZ

n nat
S n nat

S



NATURAL NUMBERS

¢ Natural numbers:

¢ Addition:
� Judgement: add n1 n2 n3
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Z nat
Z n nat

S n nat
S

add Z n n
addZ add n1n2 n3

add (S n1) n2 (S n3)
addS



Theorem 1: For all n1, n2, there exists n3 such that add n1 n2 n3. 
(if n1 nat, n2 nat, then there exists n3 nat such that add n1 n2 n3)
Proof: By induction on the derivation of n nat.
Case:

Need to prove add n1 n2 n3 where n1 = Z
(1) add Z n2 n2 (by addZ, and let n1=Z, n3=n2)
(2) add n1 n2 n3 (by letting n1=Z, n3=n2)

(Case proved)
Case:

Need to prove add n1 n2 n3 where n1 = (S n)
(1) add n n2 n3’ (by I.H. and let n = n1, n3’=n3)
(2) add (S n) n2 (S n3’) (by (1), addS, and 

let (S n) = n1, (S n3’)=n3)
(Case proved)   QED.
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Z nat
Z

n nat
S n nat

S

Renaming!



EVEN/ODD NUMBERS

¢ Judgements:
� even n “n is an even number”
� odd n “n is an odd number”
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even Z
evenZ odd n

even (S n)
evenS

even n
odd (S n)

oddS



Theorem 2: If n nat, then either even n or odd n.

Proof: By induction on the derivation of n nat.
Case: 

even Z (By rule evenZ)

Case: 

(1) even n or (2) odd n (By I.H.)
Need to prove:  even (S n) or odd (S n)
Assuming (1):
odd (S n) (By (1) and rule oddS)
Assuming (2):
even (S n) (By (2) and rule evenS)
QED.
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Z nat
Z

n nat
S n nat

S



EVEN/ODD NUMBER (ALT. DEFINITION)
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even2 Z
even2Z even2 n

even2 (S (S n))
even2S

odd2 (S Z )
odd2Z

odd2 n
odd2 (S (S n))

odd2S



Theorem 3: If even2 n, then even n.
Proof: By induction on the derivation of even2 n.
Case: 

even Z (by rule evenZ)

Case: 

(1) even n (by I.H.)
Need to prove: even (S (S n))
(2) odd (S n) (by (1), oddS)
(3) even (S (S n)) (by (2), evenS)
QED. 25

even2 Z
even2Z

even2 n
even2 (S (S n))

even2S



LIST OF NATURAL NUMBERS

¢ Judgement Form:
� l  list   “l is a list”

¢ Cons stands for “CONcatenateS”
¢ Means concatenation of a head and a tail of a list.
¢ In cons(n, l), n is the head and l is the tail.
¢ cons(1, cons(2, cons(3, nil))) = 1::2::3::nil = [1,2,3]
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nil list
nil

n nat l list

cons(n, l) list
cons



Lemma 1: cons((S Z), cons(Z, nil)) is a list.

Proof: By giving a derivation of cons((S Z), cons(Z, nil)) list.

Z nat (by Z)             Z nat (by Z)     nil list  (by nil)
-------------- (by S)     --------------------------------------------- (by cons)
(S Z) nat cons(Z, nil) list

--------------------------------------------------------------------------- (by cons)
cons((S Z), cons(Z, nil))  list
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LIST - LEN

¢ Judgment Form: len l n.
� “the length of l is n”.
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len nil Z
len− nil

len l n
len cons(n1, l) (S n)

len− cons



LIST - APPEND

¢ Judgment Form: append l1 n l2.
� “l2 is the result of appending n to l1”.
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append nil n cons(n,nil)
append − nil

append l n2 l1
append cons(n1, l) n2 cons(n1, l1)

append − cons



LIST - REVERSE

¢ Judgment Form: reverse l1 l2.
� “l2 is the reversed form of list l1”.
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reverse nil nil
rev− nil

consrev
llnconsreverse
lnlappendllreverse

-
'),(
'

21
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THEOREM: LENGTH OF REVERSED LIST

Theorem 4: If len l n, and reverse l l’, then len l’ n.
Proof: To prove this theorem, we first prove the following 
lemma:

Lemma 2: If len l n, and append l n1 l’, then len l’ (S n).
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Lemma 2: If len l n, and append l n1 l’, then len l’ (S n).
Proof: By induction on the derivation of append.
Case: 

Need to prove: if len nil n, and append nil n1 l’, then len l’ (S n)
(1) len nil Z (By len-Z)
(2) append nil n1 cons(n1, nil) (By append-nil and let n = n1)
(3) len cons(n1, nil)  (S Z) (By len-cons and (1) and 

let l’ = cons(n1, nil) 
and n = Z)
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append nil n cons(n,nil)
append − nil



Case: 

(1) len l n and append l n2 l1 (By assumption) 
(2) len l1 (S n) (By (1) and I.H.)

Need to prove if len cons(n1, l) n’ and append cons(n1, l) n2 cons (n1, 
l1), then len cons(n1, l1) (S n’)
(3) len cons(n1, l) (S n) (By (1) and len-cons)
(4) len cons(n1, l1)  (S (S n)) (By (2) and len-cons 

and let n’ = (s n)) 
QED.
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append l n2 l1
append cons(n1, l) n2 cons(n1, l1)

append − cons



Now continue to prove Theorem 4.
Proof: By induction on the derivation of len.
Case: 

(1) reverse nil nil (By rev-nil)
(2) len nil Z (by (1) and len-nil)

Case:

Need to prove: if reverse cons(n1, l) l”, then len l” (S n).
(1) len l n and reverse l l’ (By assumption)
(2) len l’ n (By (1) & I.H.)
(3) reverse cons(n1, l) l” (By assumption)
(4) reverse l  l’, append l’ n1 l’’ (By (3) and 

inversion of rev-cons)
(5) len l” (S n) (By (2), (4), Lemma 2)

QED.
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len nil Z
len− nil

len l n
len cons(n1, l) (S n)

len− cons

consrev
llnconsreverse
lnlappendllreverse

-
'),(
'
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PROOF STRUCTURE

¢ Following is the structure you should use when proving 
something by structural induction (rule induction)

Theorem: If X then A.
Proof: By induction on the structure of the derivation of J. 
(Hint: J is usually part of X. X is called assumption)
(Assuming definition of J has three rules: Foo-1, Foo-2, Bar)
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]1[)(1)1(
-Foo

conclusion
npremisepnpremisep !

]2[)(1)1(
-Foo

conclusion
npremisepnpremisep !

][)(1)1( Bar
conclusion

npremisepnpremisep !



PROOF STRUCTURE (II)
Case Foo-1:
(1) … [by (p1) and Lemma 1]
(2) X [by assumption]
(3) … [by (1) and (2)]
… …
(n) A [by (n-3) and (n-1)]

Case Foo-2:
Similar to case Foo-1.
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PROOF STRUCTURE (III)
Case Bar:
(1) … [by (p1) and Lemma 1]
(2) … [by (p2) and I.H. on (p3)]
(3) … [by (1) and (2)]
… …
(n) A [by (n-3) and (n-1)]
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RULES TO PROVE BY

¢ Clearly state the induction hypothesis. Convenient to say what you 
trying to prove (target property).

¢ Clearly state the proof methodology (what you are doing induction on). 
¢ There should be one case for each rule in the inductive definition.
¢ Use a two-column format: 

� Left side: logical steps toward to target property.
� Right side: reasoning for each step. 

¢ In general, do not attempt to write your proof in English sentences. 
While some written explanations can be useful, normally they 
(attempt to) hide the fact that the proof is imprecise and has holes in 
it.

¢ Number your steps for easy reference.
¢ Always state where you use the induction hypothesis.
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RULES TO PROVE BY (II)
¢ If two cases are very similar, you can prove the first and then say 

that the second follows similarly. Just be certain that the cases 
are really, truly similar. (For example, the case for projecting the 
first element of an pair and the case for projecting the second 
element of a pair are similar.)

¢ If for some reason you can't prove something in the middle of a 
proof (because you don't have time, you don't know how, etc.), 
please don't try to hide that fact. Use the fact you need and in the 
reasoning next to it, say something like:  "I can't figure out how to 
conclude this, but it should be true".

¢ Always break down a proof into appropriate lemmas. The result of 
not introducing new lemmas where appropriate is usually that 
you try to proceed with your proof using the wrong induction 
hypothesis.

¢ If you need new judgement forms, make sure you clearly define it 
before you begin using it. 39



INDUCTION HYPOTHESIS STRUCTURE

¢ Depending on the structure of your induction 
hypothesis (i.e. the property to prove), you make 
different assumptions and therefore must prove 
different things:

¢ Notice in second case, you must prove two things, 
i.e., A must be true given just X, and given just Y. 40

Induction Hypothesis Can Assume Must Prove
If X and Y then A X and Y A
If X or Y then A (1) X

AND (2) Y
A
A

If X then A and B X A and B
If X then A or B X A or B


