D3: Abnormal Driving Behavior Detection and Identification Using Smartphone Sensors

Zhongyang Chen†, Jiadi Yu†, Yanmin Zhu†, Yingying Chen‡, and Minglu Li†
†Department of Computer Science and Engineering, Shanghai Jiao Tong University
‡Department of Electrical and Computer Engineering, Stevens Institute of Technology
Traffic Accidents
Human Factors

Fatigued

Distracted

Drunk
Abnormal Driving Detection

- Alcohol sensor
- Infrared sensor
- Camera

Cost
Smartphones

80% of the world’s population now has a mobile phone

5 Billion

Mobile Phones in World

Number of Smartphones in U.S

91.4 Million

Out of which only 1.08 Billion are smart phones
Abnormal Driving Behaviors

weaving swerving sideslipping fast u-turn turning with a wide radius sudden braking

Fine-grained Abnormal Driving Behaviors Monitoring
System Architecture

Modeling Driving Behaviors (offline)
- Collected Data
- Feature Extracting:
 - Max (acc_x)
 - Min (acc_y)
 - Std (ori_x)
- Training
- Model

Monitoring Driving Behaviors (online)
- Data Sensing:
 - Acceleration
 - Orientation
- Coordinate Reorientation
- Cutting Driving Behaviors' Patterns
- Identifying:
 - weaving
 - fast u-turn
 - swerving
 - sudden braking
 - sideslipping
 - turning with a wide radius
- Alerting
System Architecture

Modeling Driving Behaviors (offline)

Collected Data

Feature Extracting

Max (acc_x)
Min (acc_y)
Std (ori_x)

Training

Model

Identification

Data Sensing

Acceleration
Orientation

Coordinate
Reorientation

Cutting Driving Behaviors' Patterns

weaving
fast u-turn
swerving
sudden braking
sideslipping
turning with a wide radius

Alerting
Data Collection

• Training Set
 – 6 months: Jan. 11 to July 12, 2014
 – 20 smartphones of 5 types:
 • Huawei Honor3C ZTE U809 HTC sprint
 • SAMSUNG Nexus3 SAMSUNG Nexus4
 – 20 drivers/vehicles:
 • commute to work, shopping, touring
 • 60 – 80 km/day
 – Car DVR: record driving behaviors
 – Totally 4029 abnormal driving behaviors
Pattern Analysis

(a) Weaving
(b) Swerving
(c) Sideslipping
(d) Fast U-turn
(e) Turning with a wide radius
(f) Sudden braking
Pattern Analysis

(a) Weaving

(b) Swerving

(c) Sideslipping

(d) Fast U-turn

(e) Turning with a wide radius

(f) Sudden braking
Weaving

range[accX] – Big
μ[accX] ≈ 0
σ[accX] – Big
T – Long
Pattern Analysis

(a) Weaving

(b) Swerving

(c) Sideslapping

(d) Fast U-turn

(e) Turning with a wide radius

(f) Sudden braking
Swerving

range[accX] – Big
range[oriX] – Big
σ[accX] – Big
σ[oriX] – Big
μ[accX] ≠ 0
T – Short
Pattern Analysis

(a) Weaving
(b) Swerving
(c) Sideslipping
(d) Fast U-turn
(e) Turning with a wide radius
(f) Sudden braking
\[
\min[\text{accY}] < 0 \\
\mu[\text{accY}] < 0 \\
\text{range}[\text{accY}] \rightarrow \text{Big} \\
\mu[\text{accX}] \neq 0 \\
T \rightarrow \text{Short}
\]
Pattern Analysis

(a) Weaving

(b) Swerving

(c) Sideslipping

(d) Fast U-turn

(e) Turning with a wide radius

(f) Sudden braking
σ[accX] – Big at beginning/end
μ[accX] ≠ 0
range[accX] – Big
oriX across 0 point
T – Long

Fast U-turn
Pattern Analysis

(a) Weaving
(b) Swerving
(c) Sideslipping
(d) Fast U-turn
(e) Turning with a wide radius
(f) Sudden braking
Turning with a wide radius

\[\sigma[\text{accX}] - \text{Big} \]

\[\mu[\text{accX}] \neq 0 \]

\[\sigma[\text{oriX}] - \text{Big} \]

\[\sigma[\text{oriY}] \approx 0 \]

\[\mu[\text{oriX}] \neq 0 \]

T – Long
Pattern Analysis

(a) Weaving (b) Swerving (c) Sideslipping

(d) Fast U-turn (e) Turning with a wide radius (f) Sudden braking
Sudden braking

σ[accX] – Small
σ[accY] – Big
range[accY] – Big
oriX across 0 point
T – Short
Feature Extraction

- Normal vs. Abnormal
- Weaving vs. Swerving
- Weaving vs. Sideslipping
- Weaving vs. Fast T-turn
- Weaving vs. Turning with a wide radius
- Weaving vs. Sudden braking
Feature Extraction

Normal vs. Abnormal
(range[acc,x], range[acc,y])

Weaving vs. Swerving
(σ[acc,x], σ[ori,y])

Weaving vs. Sideslapping
(μ[acc,x], range[acc,y])

Weaving vs. Fast T-turn
(μ[acc,x], max[ori,y])

Weaving vs. Turning with a wide radius
(μ[acc,x], σ[ori,y])

Weaving vs. Sudden braking
(range[acc,x], min[acc,y])
Machine Learning

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{range}_{\text{acc},x})</td>
<td>subtraction of maximum minus minimum value of (\text{acc}_x)</td>
</tr>
<tr>
<td>(\text{range}_{\text{acc},y})</td>
<td>subtraction of maximum minus minimum value of (\text{acc}_y)</td>
</tr>
<tr>
<td>(\sigma_{\text{acc},x})</td>
<td>standard deviation of (\text{acc}_x)</td>
</tr>
<tr>
<td>(\sigma_{\text{acc},y})</td>
<td>standard deviation of (\text{acc}_y)</td>
</tr>
<tr>
<td>(\sigma_{\text{ori},x})</td>
<td>standard deviation of (\text{ori}_x)</td>
</tr>
<tr>
<td>(\sigma_{\text{ori},y})</td>
<td>standard deviation of (\text{ori}_y)</td>
</tr>
<tr>
<td>(\mu_{\text{acc},x})</td>
<td>mean value of (\text{acc}_x)</td>
</tr>
<tr>
<td>(\mu_{\text{acc},y})</td>
<td>mean value of (\text{acc}_y)</td>
</tr>
<tr>
<td>(\mu_{\text{ori},x})</td>
<td>mean value of (\text{ori}_x)</td>
</tr>
<tr>
<td>(\mu_{\text{ori},y})</td>
<td>mean value of (\text{ori}_y)</td>
</tr>
<tr>
<td>(\mu_{\text{acc},x,1})</td>
<td>mean value of 1(^{st}) half of (\text{acc}_x)</td>
</tr>
<tr>
<td>(\mu_{\text{acc},x,2})</td>
<td>mean value of 2(^{nd}) half of (\text{acc}_x)</td>
</tr>
<tr>
<td>(\text{max}_{\text{ori},x})</td>
<td>maximum value of (\text{ori}_x)</td>
</tr>
<tr>
<td>(\text{max}_{\text{ori},y})</td>
<td>maximum value of (\text{ori}_y)</td>
</tr>
<tr>
<td>(\text{min}_{\text{acc},y})</td>
<td>minimum value of (\text{acc}_y)</td>
</tr>
<tr>
<td>(t)</td>
<td>time duration between the beginning and the ending of a driving behavior</td>
</tr>
</tbody>
</table>

SVM

Classifier Model
System Architecture

Modeling Driving Behaviors (offline)

Collected Data → Feature Extracting
- Max (acc_x)
- Min (acc_y)
- ...
- Std (ori_x)

→ Training → Model

Monitoring Driving Behaviors (online)

Data Sensing
- Acceleration
- Orientation

Coordinate Reorientation → Cutting Driving Behaviors’ Patterns

Identifying
- weaving
- fast u-turn
- swerving
- sudden braking
- sideslipping
- turning with a wide radius

Alerting
System Architecture

Modeling Driving Behaviors (offline)

- Collected Data
- Feature Extracting
 - \(\text{Max (acc}_x \) \)
 - \(\text{Min (acc}_y \) \)
 - \(\text{Std (ori}_x \) \)
- Training
- Model

Monitoring Driving Behaviors (online)

- Data Sensing
 - Acceleration
 - Orientation
- Coordinate Reorientation
- Cutting Driving Behaviors' Patterns
- Identifying
 - weaving
 - fast u-turn
 - swerving
 - sudden braking
 - sideslipping
 - turning with a wide radius
- Alerting
Evaluation

• **Metrics:**

 Accuracy: The probability that the identification of a behavior is the same as the ground truth.

 Precision: The probability that the identifications for behavior A is exactly A in ground truth.

 Recall: The probability that all behavior A in ground truth are identified as A.

 FPR: The probability that a behavior of type Not A is identified as A.
Test Set

– 4 months: July 21 to Nov. 30, 2014
– 20 smartphones of 5 types:
 • Huawei Honor3C, ZTE U809, SAMSUNG Nexus3
 • HTC sprint, SAMSUNG Nexus4
– 20 drivers/vehicles:
 • commute to work, shopping, touring
 • 60 – 80 km/day
– Car DVR: record driving behaviors
– Totally 3141 abnormal driving behaviors
Prototype

<table>
<thead>
<tr>
<th>Abnormal Driving Behavior Analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D3: abnormal driving behavior detection and identification system</td>
<td></td>
</tr>
<tr>
<td>Weaving</td>
<td>→ 11</td>
</tr>
<tr>
<td>Swerving</td>
<td>→ 3</td>
</tr>
<tr>
<td>Sideslipping</td>
<td>→ 4</td>
</tr>
<tr>
<td>Fast U-turn</td>
<td>→ 20</td>
</tr>
<tr>
<td>Turning with a wide radius</td>
<td>→ 17</td>
</tr>
<tr>
<td>Sudden braking</td>
<td>→ 36</td>
</tr>
<tr>
<td>Total</td>
<td>→ 91</td>
</tr>
</tbody>
</table>

Abnormal Driving Behavior Analysis

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
</table>

Car DVR

Testbeds

D3: abnormal driving behavior detection and identification system

- Weaving: 11
- Swerving: 3
- Sideslipping: 4
- Fast U-turn: 20
- Turning with a wide radius: 17
- Sudden braking: 36
- Total: 91
Accuracy Evaluation (1)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Accuracy(%)</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>FPR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>99.84</td>
<td>98.80</td>
<td>100.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Abnormal</td>
<td>94.81</td>
<td>100.00</td>
<td>99.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Weaving</td>
<td>98.43</td>
<td>92.55</td>
<td>87.87</td>
<td>0.63</td>
</tr>
<tr>
<td>Swerving</td>
<td>97.94</td>
<td>92.29</td>
<td>94.15</td>
<td>1.39</td>
</tr>
<tr>
<td>Sideslapping</td>
<td>98.60</td>
<td>87.96</td>
<td>71.43</td>
<td>0.37</td>
</tr>
<tr>
<td>Fast U-turn</td>
<td>98.49</td>
<td>85.71</td>
<td>76.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Turning with a wide radius</td>
<td>98.68</td>
<td>89.30</td>
<td>92.72</td>
<td>0.86</td>
</tr>
<tr>
<td>Sudden braking</td>
<td>95.74</td>
<td>97.88</td>
<td>99.04</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Total Accuracy 95.36%
Accuracy Evaluation (1)

Total Accuracy 95.36%
Accuracy Evaluation (1)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Accuracy(%)</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>FPR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>99.84</td>
<td>98.80</td>
<td>100.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Abnormal</td>
<td>94.81</td>
<td>100.00</td>
<td>99.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Weaving</td>
<td>98.43</td>
<td>92.55</td>
<td>87.87</td>
<td>0.63</td>
</tr>
<tr>
<td>Swerving</td>
<td>97.94</td>
<td>92.29</td>
<td>94.15</td>
<td>1.39</td>
</tr>
<tr>
<td>Sideslapping</td>
<td>98.60</td>
<td>87.96</td>
<td>71.43</td>
<td>0.37</td>
</tr>
<tr>
<td>Fast U-turn</td>
<td>98.49</td>
<td>85.71</td>
<td>76.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Turning with a wide radius</td>
<td>98.68</td>
<td>89.30</td>
<td>92.72</td>
<td>0.86</td>
</tr>
<tr>
<td>Sudden braking</td>
<td>95.74</td>
<td>97.88</td>
<td>99.04</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Total Accuracy 95.36%
Accuracy Evaluation (1)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Accuracy(%)</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>FPR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>99.84</td>
<td>98.80</td>
<td>100.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Abnormal</td>
<td>94.81</td>
<td>100.00</td>
<td>99.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Weaving</td>
<td>98.43</td>
<td>92.55</td>
<td>87.87</td>
<td>0.63</td>
</tr>
<tr>
<td>Swerving</td>
<td>97.94</td>
<td>92.29</td>
<td>94.15</td>
<td>1.39</td>
</tr>
<tr>
<td>Sideslapping</td>
<td>98.60</td>
<td>87.96</td>
<td>71.43</td>
<td>0.37</td>
</tr>
<tr>
<td>Fast U-turn</td>
<td>98.49</td>
<td>85.71</td>
<td>76.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Turning with a wide radius</td>
<td>98.68</td>
<td>89.30</td>
<td>92.72</td>
<td>0.86</td>
</tr>
<tr>
<td>Sudden braking</td>
<td>95.74</td>
<td>97.88</td>
<td>99.04</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Total Accuracy 95.36%
Accuracy Evaluation (1)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Accuracy(%)</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>FPR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>99.84</td>
<td>98.80</td>
<td>100.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Abnormal</td>
<td>94.81</td>
<td>100.00</td>
<td>99.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Weaving</td>
<td>98.43</td>
<td>92.55</td>
<td>87.87</td>
<td>0.63</td>
</tr>
<tr>
<td>Swerving</td>
<td>97.94</td>
<td>92.29</td>
<td>94.15</td>
<td>1.39</td>
</tr>
<tr>
<td>Sideslipping</td>
<td>98.60</td>
<td>87.96</td>
<td>71.43</td>
<td>0.37</td>
</tr>
<tr>
<td>Fast U-turn</td>
<td>98.49</td>
<td>85.71</td>
<td>76.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Turning with a wide radius</td>
<td>98.68</td>
<td>89.30</td>
<td>92.72</td>
<td>0.86</td>
</tr>
<tr>
<td>Sudden braking</td>
<td>95.74</td>
<td>97.88</td>
<td>99.04</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Total Accuracy

95.36%
Accuracy Evaluation (1)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Accuracy(%)</th>
<th>Precision(%)</th>
<th>Recall(%)</th>
<th>FPR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>99.84</td>
<td>98.80</td>
<td>100.00</td>
<td>0.19</td>
</tr>
<tr>
<td>Abnormal</td>
<td>94.81</td>
<td>100.00</td>
<td>99.80</td>
<td>0.00</td>
</tr>
<tr>
<td>Weaving</td>
<td>98.43</td>
<td>92.55</td>
<td>87.87</td>
<td>0.63</td>
</tr>
<tr>
<td>Swerving</td>
<td>97.94</td>
<td>92.29</td>
<td>94.15</td>
<td>1.39</td>
</tr>
<tr>
<td>Sideslipping</td>
<td>98.60</td>
<td>87.96</td>
<td>71.43</td>
<td>0.37</td>
</tr>
<tr>
<td>Fast U-turn</td>
<td>98.49</td>
<td>85.71</td>
<td>76.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Turning with a wide radius</td>
<td>98.68</td>
<td>89.30</td>
<td>92.72</td>
<td>0.86</td>
</tr>
<tr>
<td>Sudden braking</td>
<td>95.74</td>
<td>97.88</td>
<td>99.04</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Total Accuracy **95.36%**
Accuracy Evaluation (2)

FPRs of identifying different types of driving behaviors.
Thanks!