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SUMMARY

In this paper, we propose an effective data pipelining technique, SPDP (Scratch-Pad Data Pipelining), for
dynamic scratch-pad memory (SPM) management with DMA (Direct Memory Access). Our basic idea is
to overlap the execution of CPU instructions and DMA operations. In SPDP, based on the iteration access
patterns of arrays, we group multiple iterations into a block to improve the data locality of regular array
accesses. We allocate the data of multiple iterations into different portions of the SPM. In this way, when
the CPU executes instructions and accesses data from one portion of the SPM, DMA operations can be
performed to transfer data between the off-chip memory and another portion of SPM simultaneously.
We perform code transformation to insert DMA instructions to achieve the data pipelining. We have
implemented our SPDP technique with the IMPACT compiler, and conduct experiments using a set of loop
kernels from DSPstone, Mibench, and Mediabench on the cycle-accurate VLIW simulator of Trimaran.
The experimental results show that our technique achieves performance improvement compared with the
previous work. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ever-widening performance gap between CPU and off-chip memory requires effective tech-
niques to reduce memory accesses. To alleviate the gap, scratch-pad memory (SPM), a small fast
software-managed on-chip SRAM (Static Random Access Memory), is widely used in embedded
systems with its advantages in energy and area [1]. A recent study [1] shows that SPM has 34%
smaller area and 40% lower power consumption than the cache of the same capacity. As the cache
typically consumes 25–50% of the total energy and area of a processor, SPM can help to signif-
icantly reduce the energy consumption for embedded processors. Embedded software is usually
optimized for specific applications, hence we can utilize SPM to improve the performance and
predictability by avoiding cache misses. Owing to these advantages, SPM has become the most
common SRAM in embedded processors. However, it poses a big challenge for the compiler to
fully explore SPM since it is completely controlled by software.
To effectively manage SPM, two kinds of compiler-managed methods have been proposed:

static method [2] and dynamic method [3,4]. Basically, based on the static SPM management,
the content in SPM is fixed and is not changed during the running time of applications. With the
dynamic SPM management, the content of SPM is changed during the running time based on
the behavior of applications. For dynamic SPM management, it is important to select an effective
approach to transfer data between off-chip memory and SPM. This is because the latency of off-
chip memory access is about 10–100 times of that of SPM [3], and many embedded applications
in image and video processing domains have significant data transfer requirements in addition
to their computational requirements. To reduce off-chip memory access overheads, the dedicated
cost-efficient hardware, DMA (Direct Memory Access), is used to transfer data. In this paper, we
focus on how to combine SPM and DMA in dynamic SPM management for optimizing loops
that are usually the most critical sections in some embedded applications, such as DSP and image
processing.
Our work is closely related to the work in [4–8]. In [4], DMA is applied for data transfer between

SPM and off-chip memory. The same cost model using DMA for data transfer has been used in
[7] to accelerate data transfer between off-chip memory and SPM. The work in [8] used DMA
to pre-fetch data only from off-chip memory to SPM. However, the above work focuses on array
allocation for SPM without considering the data parallelization between DMA and CPU. In our
technique, we show that we can achieve data parallelization for multiple iterations of a loop.
In this paper, we propose an effective data pipelining technique, SPDP (Scratch-Pad Data

Pipelining), for dynamic SPM management with DMA. Our basic idea is to overlap the execution
of CPU instructions and DMA operations. In SPDP, based on the iteration access patterns of arrays,
we group multiple iterations into a block to improve the data locality of regular array accesses. We
allocate the data of multiple iterations into different portions of the SPM. In this way, when the
CPU executes instructions and accesses data from one portion of the SPM, DMA operations can
be performed to transfer data between the off-chip memory and another portion of SPM simultane-
ously. We perform code transformation to insert DMA instructions to achieve the data pipelining.
We implement our technique with IMPACT [9], and conduct experiments using a set of loop kernels
from DSPstone [10], Mibench [11], and Mediabench [12] on the cycle-accurate VLIW simulator
of Trimaran [13]. The experimental results show that the SPDP technique achieves performance
improvement compared with the previous work [5,6,8].
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The remainder of this paper is organized as follows. In Section 2, we present the system model. In
Section 3, we give motivational examples. We propose the SPDP technique in Section 4. We present
the experimental results in Section 5. The related work is presented in Section 6. The conclusion
is given in Section 7.

2. BASIC CONCEPTS AND MODELS

2.1. System model

The system model shown in Figure 1 has a similar architecture as that in [4,14]. Basically, the
system consists of CPU, SPM, DMAC (Direct Memory Access Controller), and off-chip memory.
On-chip SPM can be accessed by CPU through on-chip bus, and DMA is used to transfer data
between SPM and off-chip memory. CPU can directly access data in off-chip memory through
the system bus, and the access time is much bigger than that between CPU and SPM. A DMAC
may have more than one DMA channels, and every channel can be used to transfer a block of
data. The block-level data transfer between CPU and SPM is controlled by setting DMA control
registers with source and destination accesses and data size. Thus, we can use compiler to insert
instructions to control DMA operations for data transfer. In this paper, we assume that the SPM
supports simultaneous accesses based on the dual ported SPM system in [14] that is associated with
multiple software managed SRAMs with specialized address generators.

CPU SPM DMAC

off-chip
memory

on-chip

System bus

On-chip bus

DMA channels

SPM1

off-chip
memory

CPU

SPM0

... Ci+1 Ci ... Bi+1 Bi ... Ai+1 Ai... ... ...

(a)

(b)

Figure 1. The system model.
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Figure 2. Data transfer between the SPM and off-chip memory.In this paper, we focus on array allocation in SPM. Each array is divided into blocks, and block-level data are transferredbetween SPM and off-chipmemorythrough DMA. Only necessary datablocks that are accessed by a set of iterations are put into SPM. Therefore, we can more effectivelyutilize the space of SPM that is usually small.An example is given in Figure 2. Based on iteration access patterns, we divide each array intob l o c k s a n d a l l o c a t e s p a c e f o r e a c h a r r a y i n t h e S P M . A t o n e t i m e , f o r o n e a r r a y , o n l y o n e b l o c k o f data is put into the SPM. In the later sections, we will discuss how to determine the size of datablock and insert DMA operations for block-level data transfer.B a s e d o n t h e m o d e l i n [4], the cost of transferring a data block between SPM and off-chipmemory is approximated by(Cdi+Cdt*n)

in cycles, where Cdi is the initialization cost of DMAC

for one block, including all the latencies of arbitration and synchronization, Cdt is the cost perb y t e t r a n s f e r a n dn is the number of bytes in a block. The total cost of transferring an array isa p p r o x i m a t e d b y N b *

(Cdi+Cdt*n), w h e r e N b i s t h e n u m b e r o f b l o c k s o f a n a r r a y . I n o u r a p p r o a c h , w e c a n r e d u c e N b b y e x p l o i t i n g s p a c e o v e r l a p p i n g a m o n g a r r a y s i n i t e r a t i o n s . T h e b a s i c i d e a i st h a t i f w e c a n a l l o c a t e m o r e s p a c e f o r a r r a y s , t h e n w e c a n p u t m o r e a r r a y e l e m e n t s i n t o o n e b l o c k i n t h i s w a y t h a t t h e t o t a l n u m b e r o f b l o c k s f o r a n a r r a y i s r e d u c e d . 2.2. Data pipeliningWe assume that DMA operations can be executed simultaneously with CPU instructions, which issupported by the dual ported SPM system in

[1 4 ]. Based on this architecture, as shown in Figure 3(a),CPU accesses the first part of SPM, SPM0, whereas DMA transfers data blocks between SPM1and off-chip memory at the same time. In this way, data pipelining is achieved. We focus on datapipelining for array elements in this paper.3. MOTIVATIONAL EXAMPLESIn this section, we present motivational examples to show how our technique works. The C codeof the example loop is shown in Figure 4(a). In this example, there are three arrays,
W, X, a n dY.W e h a v e l o a d o p e r a t i o n s f o r a r r a y Xa n d s t o r e o p e r a t i o n s f o r a r r a yY. F o r a r r a yW, we have bothload and store operations. The data of array references is put into SPM for execution. We assumethat the SPM can hold 64 array elements, and we have two DMA channels. With this SPM size,
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Figure 3. Data pipelining.

we group 20 iterations of the loop into a block, and put the data of this block into SPM. DMA is
used to transfer the required data block between the off-chip memory and the SPM.
The SPM layout without data pipeline is shown in Figure 4(b). In this figure, based on the iteration

access patterns of arrays, the array elements are allocated to SPM. These elements are required
by or calculated in iterations 20–40. The execution of this case is shown in Figure 4(d). Without
the data pipeline, we have to use DMA to load the required data into SPM for execution. After
CPU instructions finish computation, DMA operations are performed to store data to the off-chip
memory. Accordingly, the iterations of the loop are executed sequentially.
Using our technique, the SPM layout with data pipeline is shown in Figure 4(c). Our SPDP

technique divides the SPM into two parts. We put the array elements of iterations 20–30 into the
first half of the SPM, and put the array elements of the next 10 iterations into the second half.
In this way, the data pipeline is generated. With this pipeline, the execution status is shown in
Figure 4(e). Using our technique, when CPU instructions of the first 10 iterations execute, DMA
operations are performed to transfer the data of the next 10 iterations at the same time. Thus,
the data required by the next 10 iterations are ready when CPU finishes the computation of the
current 10 iterations. Similarly, when CPU processes the data in the second half of the SPM, DMA
operations are executed simultaneously to fetch or store data for the first half of the SPM. With the
overlapping between the execution of CPU instructions and DMA operations, our SPDP technique
can improve the performance of loops.

4. THE PROPOSED ALGORITHM

The overview of our SPDP technique is shown in Figure 5. It mainly consists of the following three
steps:

• Array classification: Based on iteration access patterns of arrays, we classify arrays into four
groups: write-only arrays, read-only arrays, write-advance-read arrays, and others. Then, we
allocate the SPM space to the array elements.
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data loaded from off-chip memory

data stored to off-chip memory

for i = 2; i < 202; i + +
  Y[i]= W[i] + W[i+1] + W[i+2];
  W[i]= X[i] - W[i+1] -  W[i+2];

end for

(a)

(b)

the whole SPM

half of SPM half of SPM

X[22]-X[41] Y[22]-Y[41]

X[22]-X[31] Y[22]-Y[31] X[32]-X[41] Y[32]-Y[41]

W[22]-W[43]

W[22]-W[41]

W[22]-W[33]

W[22]-W[31]

W[32]-W[43]

W[32]-W[41]

(c)

(e)(d)

 whole SPM half SPM half SPM

CPU compute

W[22]-W[31],

Y[22]-Y[31]

DMA store

W[12]-W[21]

Y[12]-Y[21]

DMA load

X[32]-X[41]

W[32]-W[43]

CPU compute

W[32]-W[41]

Y[32]-Y[41]

DMA store

W[22]-W[31]

Y[22]-Y[31]

DMA load

X[42]-X[51]

W[42]-W[53]

DMA load

W[22]-W[43]

X[22]-X[41]

CPU compute

W[22]-W[41]

Y[22]-Y[41]

 DMA store

W[22]-W[41]

Y[22]-Y[41]

Figure 4. Data pipelining.

• Data pipelining: In this step, we discuss how to compute the number of iterations in a block
considering the SPM size.

• Code transformation: We propose an algorithm to generate the transformed code by applying
data pipelining. Basically, we insert instructions for DMA transfer and transform array refer-
ences.

Next, we present the details of each step in the later sections.
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Array Classification

Data Pipelining

Code Transformation

(Section 4.1)

(Section 4.2)

(Section 4.3)

Source code of the loop,
SPM size, loop stride

Transformed
loop

SPDP

Figure 5. The overview of our SPDP technique.

4.1. Array classification

In SPDP, we first classify arrays into four different groups based on memory access patterns.
To achieve this, for each array in a loop, its corresponding memory operations are collected. Then,
we classify arrays into the following groups:

• Read-only arrays: For an array, if all of its memory operations in the loop are load operations,
then this array is a read-only array.

• Write-only arrays: For an array, if all of its memory operations in the loop are write operations,
then this array is a write-only array.

• Write-advance-read arrays: For an array, if the following two conditions are satisfied for all
of its memory operations in the loop, this array is a write-advance-read array: (1) if there are
both read and write (load/store) operations for the same memory location, the first operation
must be the write operation and (2) the maximum subscript among all of the array elements
related to the read operations must not be larger than the maximum subscript among all of the
array elements related to the write operations in the loop.

• Others: For an array, if it is not in any one of the above three groups, then it is in others.

4.2. Data pipelining

Based on the iteration access patterns of arrays, we perform data pipelining considering the size of
SPM. Our basic idea is to execute CPU instructions and DMA operations at the same time. In our
technique, we divide the SPM into two blocks for data allocation. Considering the size of SPM, we
can calculate how many iterations we can put into one block based on the memory required for all
arrays. To initialize the SPM, we group a number of iterations into the first block, and put the data
accessed by the arrays of next iterations into the second block. When CPU instructions execute and
access data from the second block, we use DMA operations to transfer and update data between
the first block and the off-chip memory. In this way, we have a data pipeline in which there is an

Copyright q 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1874–1892
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overlapping between the execution of CPU instructions and DMA operations. In the following, we
present how we calculate the number of iterations to be put into one block.
In our SPDP technique, taking the SPM size into account, we can group Nit iterations into a block.

Assume that the arrays of a loop are in the form of ‘X [ f (i)]= X [coef(X)∗i+offset(X)]’. Here,
X is an array, the expression f (i) is an affine function of loop index i , coef(X) is the coefficient
and offset(X) is the offset. As we assign one space for each array in each block of SPM, we have
the following equation:

Sspm=2×
Na∑
i=1

SAi (1)

Here, Sspm denotes the size of the whole SPM. ‘Na’ denotes the number of arrays in the iteration.
SAi denotes the SPM space occupied by array Ai for Nit1 iteration, and Ai is any array in iteration.
We express Equation (1) in detail as follows:

Sspm=2×
Na∑
i=1

(max(offset(Ai ))−min(offset(Ai ))+1)+(Nit1−1)×coef(Ai )×k) (2)

According to the above equations, we can compute the number of iterations, Nit1, as follows:

Nit1 =
⌊
Sspm×0.5−∑Na

i=1 bound(Ai )∑Na
i=1 coef(Ai )×k

+1

⌋
(3)

bound(Ai ) =max(offset(Ai ))−min(offset(Ai ))+1 (4)

For example, in the motivational example of Figure 4, we have the following parameters:
Sspm=64, bound(W )=3, bound(X)=bound(Y )=1, coef(W )=coef(X)=coef(Y )=1, and k=1.
According to Equation (3), we can get the value of Nit1 as 10.

4.3. Code transformation

Based on the data analysis in Section 4.2, in this section, we perform code transformation to
implement the data pipelining. The code transformation algorithm is shown in Figure 6.
Basically, based on the number of iterations for one block, the code transformation consists of

the following steps: (1) group iteration into blocks and change array references and (2) insert DMA
operations for data transfer between SPM and off-chip memory. In Section 4.2, we have illustrated
how to compute the number of iteration Nit in a block. Next, we introduce the instructions we adopt
for DMA transfer.
There are two kinds of DMA instructions: DMA initialization and DMA ready. The instruction

of DMA initialization includes three fields: the source address, the destination address, and the
size of the data block. When DMA is used to load blocks from off-chip memory to SPM, the
source address is AD address and the destination address is AS address. The size of the block is
determined by the number of iterations in a block. Here, Ai is an array and AD address denotes
the off-chip memory address of block of array Ai . AS address denotes the SPM address of block
of array Ai . When DMA is used to store blocks from SPM to off-chip memory, the source address
is AS address, and the destination address is AD address.

Copyright q 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1874–1892
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B1 B2 B3 B4 B2n-1 B2n

Blocks ofother arrays Blocks ofother arrays

Array A

SPM0 SPM1

Block store

Block load

Other arrays

Load onlyLoad and store Store only

22 32 44 54 630 12

WB2,4,6...20 XB2,4,6...20 YB2,4,6...20 WB1,3,5...19 XB1,3,5...19 YB1,3,5...19

 SPM 0 SPM 1

(a)

(b)

Figure 7. (a) The address mapping and (b) an example of address mapping for the example of Figure 4.

Table I. The configurations of the simulator.

Parameters Configurations

Functional units Two integer ALUs; two floating point ALUs; two load-store units; one branch unit;
five issue slots

Instruction latency One cycle for integer ALU; one cycle for floating point ALU; two cycles for load in
cache; one cycle for store; one cycle for branch

SPM, we extend it by adding an additional data buffer as the SPM and the customized DMA
instructions for data transfer between the main memory and SPM. In the experiments, for each
benchmark, we first generate Lcode by IMPACT. Based on the Lcode obtained, we apply the code
transformation, insert DMA instructions into loop kernels and conduct experiments with the loop
kernels on the Trimaran simulator. The configurations for the Trimaran simulator are shown in
Table I.
In the experiments, we extract nine loop kernels from DSPstone [10], Mediabench [12], and

Mibench [11] as shown in Table II based on the Lcode generated by IMPACT. In Table II, the
required memory size for each loop kernel is given in column ‘Data Size’.
To evaluate the run-time performance, we use five parameters, Cdi, Cdt, Ccs, Cct, and the SPM

size. Here, Cdi is the number of clock cycles for the DMA initialization. Cdt is the number of
clock cycles for the DMA to transfer one byte between the SPM and off-chip memory. Ccs is the
number of clock cycles for the CPU to transfer one byte between the CPU and SPM, and Cct is the
number of cycles for CPU to transfer one byte between the CPU and off-chip memory. Based on
the parameters in [4], we set Ccs as 1. In the experiments, we adopt five ratios of 〈Cdi:Cdt:Cct〉,
and they are 〈5 :5 :10〉, 〈9 :1 :20〉, 〈10 :2.5 :10〉, 〈20 :1 :20〉, and 〈100 :1 :100〉.
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Table II. The benchmarks.

Benchmark Description Data size (kB)

DSPstone
Dbiq biquad section 90.01
Dlms lms filter 155.98
Dfir fir2dim filter 80.03
Dupd n real updates 62.92

Mediabench
Mrea Read source pictures 48.04
Rfft Fourier analysis 75.95
Rpos Auditory processing 78

Mibench
Tfou FFT operations 128.04
Hreo Loop-reorder test 89.96

5.2. Results and discussion

In the experiments, we compare our SPDP technique with the following three techniques:

• NDMA: DMA is not used for data transfer [5].
• ADMA: DMA is used to accelerate data transfer, and the data transfer between off-chip memory

and SPM relies on DMA completely [6].
• PDMA: DMA is used to pre-fetch data for the next data block [8].
In the following, we first present the results of the performance improvement obtained by our

technique with a fixed SPM size. Then, we give the results to show the performance improvements
with different parameters.
(1) Performance improvement with fixed SPM size. Figure 8 shows the normalized run-time

performance when we use a fixed SPM size. The run-time performance is normalized to that of
NDMA. In the NDMA technique, DMA is not used in data transfer and there exists no overlapping
between CPU execution and DMA data transfer. Figures 8(a)–(e) demonstrate the normalized run-
time performance with various parameters 〈5 :5 :1 :10〉, 〈9 :1 :1 :20〉, 〈20 :1 :1 :20〉, 〈100 :1 :1 :100〉,
and 〈10 :2.5 :1 :10〉, respectively. Figure 8(f) shows the average normalized run-time performance.
On average, compared with the performance obtained by NDMA, ADMA, and PDMA, our SPDP
achieves a performance improvement of 46.74, 33.27, and 58.68%, respectively, when the parameter
is set as 〈5,5,1,10〉. When we set the parameter as 〈10,2.5,1,10〉, the average gain is 71.09, 46.53
and 79.07%, respectively. When the parameter is <9,1,1,20>, the average gain is 91.79, 55.37
and 94.38%, respectively. When the parameter 〈20,1,1,20〉 is considered, the gain is 91.73, 55.25
and 94.27%, respectively. With the parameter of 〈100,1,1,100〉, the respective gain is 98.2, 57.92,
and 98.65%.
From the results, we have two observations. The first observation is that, for all the applications

and experimental parameters, our SPDP technique achieves the best run-time performance. This
is because compared with the other techniques, SPDP achieves the overlapping of CPU execution
and DMA data transfer. The second observation is that the parameter, 〈Cdi, Cdt, Ccs, Cct〉, affects
the run-time performance. For example, in Figure 8(f) when the parameter is set as <5,5,1,10>,

Copyright q 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:1874–1892
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Table III. The performance improvement of SPDP.

Average improvement (%) over

Parameters NDMA ADMA PDMA

SPM Size= 2k
〈5,5,1,10〉 0.4132 0.7772 0.6223
〈9,1,1,20〉 0.0562 0.6846 0.1331
〈20,1,1,20〉 0.0573 0.6929 0.1354
〈100,1,1,100〉 0.0135 0.7494 0.0337
〈10,2,5,1,10〉 0.2093 0.7035 0.3990

SPM Size= 5% of the data size of the benchmark
〈5,5,1,10〉 0.4126 0.7766 0.6221
〈9,1,1,20〉 0.0557 0.6809 0.1321
〈20,1,1,20〉 0.0562 0.6849 0.1332
〈100,1,1,100〉 0.0124 0.7131 0.0309
〈10,2,5,1,10〉 0.2082 0.7014 0.3980

Table IV. Normalized runtime for different techniques with various parameters.

Parameters NDMA ADMA PDMA SPDP

SPM Size= 2k
〈9,1,1,20〉 1.0000 0.0821 0.4463 0.0562
〈18,2,1,40〉 1.0000 0.0666 0.4471 0.0454
〈27,3,1,60〉 1.0000 0.0613 0.4487 0.0444
〈36,4,1,80〉 1.0000 0.0586 0.4500 0.0446
〈45,5,1,100〉 1.0000 0.0570 0.4508 0.0446

SPM Size = 5% of the data size of the benchmark
〈5,5,1,10〉 1.0000 0.5346 0.6718 0.4170
〈18,2,1,40〉 1.0000 0.5193 0.6939 0.4304
〈27,3,1,60〉 1.0000 0.5112 0.7055 0.4374
〈36,4,1,80〉 1.0000 0.5084 0.7095 0.4399
〈45,5,1,100〉 1.0000 0.5070 0.7115 0.4411
〈45,5,1,100〉 1.0000 0.5062 0.7127 0.4418

(3) Impact of the cost for DMA initialization. Based on the above analysis, we can find that
both SPDP and ADMA are independent of the parameter of Cct. With different settings of Cdi,
in Figure 10, we compare the corresponding performance improvements obtained by our SPDP
technique and that of the ADMA technique. The results for the comparison are reported using a
ratio of 〈SPDP: ADMA〉.
According to Figure 10, we can see that when parameter Cdt is unchanged, the bigger the

parameter Cdi, the less the gain obtained by our SPDP technique. Even with the worst case ratio of
100:1, our SPDP still outperforms the ADMA technique. For all of the benchmarks, comparing our
SPDP technique with ADMA, we achieve performance improvements ranging from 7.76 to 59.94%,
with an average of 28.69%. The improvements are achieved due to the overlapping between data
transfer and CPU execution generated by our technique.
(4) Impact of SPM size. Table V shows the normalized run-time performance with different SPM

size. From the results, we can observe that the performance of SPDP, ADMA, and PDMA is slightly
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(a) (b)

Figure 11. The normalized performance for benchmarks with different data access patterns, when
(a) SPM Size=2k and (b) SPM Size=5% of the data size of the benchmark.

(5) Impact of iteration access pattern. Figure 11 illustrates the normalized performance for the
benchmarks with different iteration access patterns. From the results, we can observe that SPDP has
more gain in the first three applications as compared with the other six applications. The discussions
are as follows. Basically, our SPDP improves the performance from two aspects. One is to reduce
the total size of data transfer, and the other is to achieve the overlapping between the CPU execution
and data transfer. However, for the latter six applications, our technique can only generate the
overlapping. These results show that our SPDP is able to take the iteration access pattern into
account.

6. RELATED WORK

In this section, we present the related work in terms of SPM allocation methods and DMA-based
SPM management approaches, in Sections 6.1 and 6.2, respectively.

6.1. SPM allocation methods

The objects of SPM allocation can be classified into three categories: stack variables, global vari-
ables, and heap data. The study in [15] was the first compiler-managed method for allocating heaps
data to SPM. In [7], the authors presented a general-purpose compiler approach, called memory
coloring, to automatically allocate the arrays in a program to an SPM. In studies [4,5,16,17], both
data and code can be allocated into SPM, such as [4] allocate global variable, stack variables, and
program code to SPM. Except for studies [17,18], the size of the SPM must be known at compile
time to determine the optimal SPM allocation. The scope of the SPM allocation object is either in
a loop [19–22] or in whole program [4,5,23].
There are two methods of SPM allocation: static and dynamic. When the size of object of SPM

allocation is greater than the size of SPM, the dynamic method is superior to the static method. This
is because the content of SPM can be changed during run-time using dynamicmethod. The technique
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proposed in [23] can place all global and stack variables in SPM dynamically, even in the presence of
unrestricted pointers. In [4], the authors analyzed the program to identify locations called program
pints where it may be beneficial to insert code to copy a variable from off-chip memory into SPM.
However, the static SPM allocation method can not demonstrate the run-time SPM behavior since
the content of SPM is fixed before execution. In both static method and dynamic methods, there
are two common approaches to allocate SPM. On one side, [1] is a knapsack-based allocation. On
another, the studies in [2,5,16,24–26]model the allocation problem as an integer linear programming
model (ILP). The authors in [2] proposed an algorithm for assigning data elements onto the SPM,
and the proposed algorithm was based upon profiling the application and solving a system of binary
linear equations. In [16], the authors proposed a compiler extension which partitions program code
and data into smaller segments whenever it is beneficial. In their scheme, the best set of program
and data values are identified using integer linear programming, and the selected objects are placed
onto SPM. In [27,28], SPM allocation methods for multi-processor and multiple applications have
been proposed.

6.2. DMA-based SPM management approaches

Many embedded applications have significant data transfer requirements. In particular, many codes
from video processing and signal-processing domains manipulate large arrays. Important issues of
compiler-managed SPM are to maintain good data locality and transfer data between SPM and
off-chip memory. To transfer data transfer with compiler control, software approaches have been
used, in which the compiler not only inserts instructions of loading data from off-chip memory
to SPM for computing, but also inserts instructions of storing data from SPM to off-chip memory
for saving the result data and making space for incoming data. In the software approaches, CPU
is fully responsible for both data transfer and data computing. Previous studies [29,30] show that
high off-chip memory latencies are likely to be the limiting factor for future embedded systems. To
reduce the serious off-chip memory access overheads, many studies have adopted the cost efficient
hardware, DMA [4,8,15,23,31,32] or the same transfer cost model as DMA [6,7,19,26], to accelerate
data transfer. Most of the above DMA-based SPM management techniques only focus on the data
access frequency. For example, in [23], a profile-driven cost model was presented to estimate the
benefit and cost. In this scheme, the complier identifies the variables repeatedly accessed and inserts
instructions of DMA to allocate the variable into SPM. To reduce the run-time overhead and code
size, the work in [4] used DMA to implement the data copy between off-chip memory and SPM.

7. CONCLUSION

In this paper, we proposed a compiler-assisted iteration-access-pattern-based data pipelining tech-
nique for dynamic SPMmanagement with DMA. In the proposed technique, we exploited the chance
to overlap the execution of CPU instructions and DMA operations so as to fully utilize the limited
SPM space and to improve the performance of applications. We implemented our technique with the
IMPACT compiler, and conducted experiments using a set of loop kernels from DSPstone, Mibench
and Mediabench on the cycle-accurate VLIW simulator of Trimaran. The experimental results show
that our technique achieves performance improvements compared with the previous work.
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