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so on, until  XI,^ = X2,k = * * . = x,,k. It is assumed that all 
combinations of each input vector can be received by the comparator. 

Put inverters on bit lines of half input vectors as follows. 

Qm = (322m,lr * . . t f2rn.k) 

where m = [ n/2], the minimum integer larger than or equal to n/2. 
Therefore, 

... ... 

= ( x z ~ - I , I ,  X~rn. lr  *.., XZm-l ,k ,  X2m.k) 

are two-rail encoded inputs. If n is even, 2m = n. If n is odd, let V,, ,  

Applying the design procedure given in Section III to design the K- 
= v;. 
unit TSCC as a comparator, we can get 

ZI =f(x1,1, * * , X I $ )  

ZZ=fZ(X3,lr ’ ’, X3.k) 

Z, = f m ( X Z m  - 1 . 1 ,  * ‘ 9  ~ 2 m -  I ,&)  

when m 5 k. It is easy to verify that B produces all combinations of 
(zl, * e ,  z,,,). As a result of Theorem 3, we have the following 
theorem. 

Theorem 4: The K-unit network implementing 

f m ( X Z m - l , l ,  * * 0 3  X Z ~ - I , ~ ) )  

is a TSC comparator. 
The comparison of the K-unit network to the multipattern 

comparator proposed in [lo] shows that the advantage of the K-unit 
TSC comparator is not only the reduction of gate delays, but also the 
significant reduction of the number of logic gates needed. 

V. CONCLUSIONS 
Totally self-checking circuits have caught our attention in the area 

of testing and fault-tolerant computing. VLSI technology enables the 
reality of TSC circuits. TSC circuits using PLA’s are very appropri- 
ate for VLSI implementation. This correspondence presents a general 
approach to designing a circuit using PLA’s that achieves the TSC 

For the functional SFS PLA’s, concurrent SFS PLA’s with two- 
rail encoded outputs are suggested to simplify the design of the 
associated TSCC. A design of an SFS multiplexer illustrates the 
concurrent SFS PLA. 

For the TSC checker, a general design procedure of TSCC is given 
to meet the requirement that a given codeword set sufficiently 
exercises the TSCC. A K-unit TSC comparator with an arbitrary 
number of inputs is a successful application of this kind of TSCC. 
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Topological Properties of Hypercubes 

YOUCEF SAAD AND MARTIN H. SCHULTZ 

Abstract-The n-dimensional hypercube is a highly concurrent loosely 
coupled multiprocessor based on the binary n-cube topology. Machines 
based on the hypercube topology have been advocated as ideal parallel 
architectures for their powerful interconnection features. In this paper, 
we examine the hypercube from the graph theory point of view and 
consider those features that make its connectivity so appealing. Among 
other things, we propose a theoretical characterization of the n-cube as a 
graph and show how to map various other topologies into a hypercube. 

Index Terns-Binary n-cube, characterization of hypercube graphs, 
hypercube imbeddings, hypercube networks, hypercube topology. 

I. INTRODUCTION 
Hypercubes are loosely coupled parallel processors based on the 

binary n-cube network and introduced under different names (cosmic 
cube, n-cube, binary n-cube, Boolean n-cube, etc.). A few machines 
based on the hypercube topology have been experimented in several 
institutions, see [8] for references, and others are now being built. An 
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n-cube parallel processor consists of 2" identical processors, each 
provided with its own sizable memory, and interconnected with n 
neighbors. 

There are essentially two broad classes of MIMD parallel 
processor design with a large number of processors, presently 
competing against each other. The first type of architecture consists 
of a large number of identical processors interconnected to one 
another according to some convenient pattern. In this type of 
machine, there is no shared memory and no global synchronization. 
Moreover, intercommunication is achieved by message passing and 
computation is data driven (although some designs incorporate a 
global bus, this does not constitute the main way of intercommunica- 
tion). By message passing, it is meant that data or possibly code are 
transferred from processor A to processor B by traveling across a 
sequence of nearest neighbor nodes starting with node A and ending 
with B. Synchronization is driven by data in the sense that 
computation in some node is performed only when its necessary data 
are available. Examples include grid networks such as the finite 
element machine [l], tree machines [4], the cosmic cube [8], and 
many others. At the border line of this class, one might also include 
the data flow machines which utilize the same concept of data-driven 
synchronization but adopt a more dynamic way of circulating data. 
The main advantage of such architectures, often referred to as 
ensemble architectures, is the simplicity of their design. The nodes 
are identical, or are of a few different kinds, and can therefore be 
fabricated at relatively low cost. 

The second important class of parallel processors consists of a set of 
N identical processors interconnected via a large switching network 
to N memories. Thus, the memory can be viewed as split into N 
"banks," and shared between the N processors. Variations on this 
scheme are numerous, but the essential feature here is the switching 
network. Examples include the Ultracomputer developed at NYU [SI 
which uses an omega network. The main advantage of this second 
configuration is that it enables us to make the data access transparent 
to the user who may regard data as being held in a large memory 
which is readily accessible to any processor. This greatly facilitates 
the programming of the machine but memory conflicts can lead to 
degraded performance. Also, the network can simulate any of the 
intercommunication patterns of the first type of architecture. On the 
other hand, shared memory models cannot easily take advantage of 
proximity of data in problems where communication is local. 
Moreover, the switching network becomes exceedingly complex to 
build as the number of nodes increases. In fact, to connect N nodes, 
the Ultracomputer requires a total of O(N log2 N)  identical 2 x 2 
switches. In particular, this raises the problem of reliability as the 
probability of failure increases proportionally with the number of 
components. The first models can easily be made fault tolerant by 
shutting down failing nodes: at the difference with the shared memory 
models, the decision of shutting down failing nodes and choosing 
alternate routes is a local one. 

As is mentioned above, it is clear that one of the most important 
advantages of the first class of designs is the ability to exploit 
particular topologies of problems or algorithms in order to minimize 
communication costs. Thus, a two-dimensional grid network is 
perfectly suitable for solving discretized elliptic partial differential 
equations, e.g., by assigning each grid point to its counterpart in the 
array, because the iterative methods for solving the resulting linear 
systems require only nearest neighbor grid-point interaction. This 
means that if a general purpose ensemble architecture is to be 
designed, it must have powerful mapping capabilities, i.e., it must be 
capable of mapping easily many common geometries such as grids or 
linear arrays. The hypercube is a machine of the first class which has 
excellent mapping capabilities. This explains in part the growing 
interest that hypercube-based architectures are currently arousing. 

It is the purpose of this paper to study the topological properties of 
the hypercube. We will first derive some simple properties of the 
hypercube regarded as a graph and will propose a theorem that will 
describe an n-cube by a few characteristic properties. Mapping other 
topologies is very important for designing efficient algorithms that 
map perfectly into those topologies. We will consider this problem in 
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Fig. 1 .  3-D view of the 3-cube. 

Fig. 2. 3-D view of the 4-cube 

detail and show how to map rings, linear arrays, and multidimen- 
sional meshes into hypercubes. 

11. THE HYPERCUBE GRAPH AND ITS BASIC PROPERTIES 
In what follows, the hypercube is regarded as a graph and we will 

often use the terms vertices or nodes interchangeably for the 
processors they represent. A 3-cube can be represented as an 
ordinary cube in three dimensions where the vertices are the 8 = Z3 
nodes of the 3-cube, see Fig. 1. More generally, one can construct an 
n-cube as follows. First, the 2" nodes are labeled by the 2" binary 
numbers from 0 to 2" - 1 .  Then a link between two nodes is drawn if 
and only if their binary numbers differ by one and only one bit. In this 
paper, we will refer to the hypercube graph, or hypercube, as the 
graph thus defined. 

Definition 2.1: An n-cube graph is an undirected graph consisting 
of k = 2" vertices labeled from 0 to 2" - 1 and such that there is an 
edge between any two vertices if and only if the binary representa- 
tions of their labels differ by one and only one bit. 

The first important property of the n-cube is that it can be 
constructed recursively from lower dimensional cubes. More pre- 
cisely, consider two identical (n - 1)-cubes whose vertices are 
numbered likewise from 0 to 2"-'. By joining every vertex of the 
first (n - 1)-cube to the vertex of the second having the same 
number, one obtains an n-cube. Indeed, it suffices to renumber the 
nodes of the first cube as 0 A a, and those of the second by 1 A a, 
where a, is a binary number representing the two similar nodes of the 
(n - 1)-cubes and where A denotes the concatenation of binary 
numbers. This is illustrated for n = 4 in Fig. 2, where a 4-cube is 
obtained by joining all corners of an inner 3-cube with the 
corresponding comers of an outer 3-cube. An interesting geometric 
property of the illustration is that it provides one way of constructing 
higher dimensional cubes from 3-cubes by simply repeating the above 
process with more enclosing cubes. 
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Separating an n-cube into the subgraph of all the nodes whose 
leading bit is 0 and the subgraph of all the n d e s  whose leading bit is 
1, the two subgraphs are such that each node of the first is connected 
to one node of the second. If we remove the edges between these two 
graphs, we get two disjoint (n - 1)-cubes. This operation of splitting 
the n-cube into two (n - 1)-cubes so that the nodes of the two (n  - 
1)-cubes are in a one-to-one correspondence will be referred to as 
tearing. The tearing suggested above gives privilege to the leading bit 
but there is no particular reason for this. More generally, for a given 
numbering, tearing simply amounts to separating the graph into two 
subgraphs obtained by considering all the nodes whose ith bit is 0 and 
those whose ith bit is 1. This will be referred to as tearing along the 
ith direction. Since there are n bits, there are also n directions. These 
simple properties are summarized in the following proposition. 

Proposition 2.1: There are n different ways of tearing an n-cube, 
i.e., of splitting it into two (n - 1)-subcubes so that their respective 
vertices are connected in a one-to-one way. Given the labeling of 
Definition 2.1, each different tearing corresponds to splitting the n- 
cube graph into two subgraphs: one whose node labels have a one in 
position i and one whose node labels have a zero in position i. 

The following result tells us how many ways there for labeling an 
n-cube. 

Proposition 2.2: There are n!2" different ways in which the 2" 
nodes of an n-cube can be numbered so as to conform with Definition 
2.1. 

Proof.' The proof is by induction. The result is trivial for n = 0. 
Assume it is true for n - 1. To number the nodes of the n-cube, we 
will first choose their leading bits to be either zero or one. To do so, 
we will tear the n-cube into two n - 1 cubes (there are n different 
ways to do it). Then we number the nodes of the first (n - 1)-cube 
(in (n - 1)!2"-' different ways) and add a one as leading bit, and the 
nodes of the second cube in the same way and then add a zero as 
leading bit. A second numbering is obtained by reversing the bits zero 
and one. We thus obtain a total of 

n [ ( n -  1)!2"-'+(n- 1)!2"-'] =n!2" 

different numberings of the vertices of the n-cube. 
Note that without the restriction that the numbering must conform 

to Definition 2.1, we would have a total of (2")! different ways of 
numbering 2" different vertices, a much larger number than that of 
Proposition 2.2. 

Proposition 2.1 has the following important consequence. 
Proposition 2.3: Any two adjacent nodes A and B of an n-cube 

are such that the nodes adjacent to A and those adjacent to B are 
connected in a one-to-one fashion. 

Proof: Since the nodes considered are neighbors, their node 
numbers A and B differ by one bit, say the ith bit. Let us tear the n- 
cube along the ith direction. Then the neighbors of A and those of B 
can be put in a one-to-one correspondence by mapping a node whose 
label has a one in its ith position to the one whose label has a zero in 

We can define the parity of a node to be positive if the number of 
ones in its binary label is even and negative otherwise. It is clear that 
neighboring nodes have opposite parity. The following result follows 
from this simple property. 

Proposition 2.4: There are no cycles of odd length in an n-cube. 
, A,, with A i  = A,. As we 

travel from node A, to node A,, 1 s i I t - 1, the parity changes. 
Since A I  = A,, there must be an even number of changes, i.e., the 

Given two nodes of an n-cube, there is always a path between 
them. One way of reaching node B from node A is to modify the bits 
of A one at a time in order to transform the binary number A into B.  
Each time one bit is changed, this means that we have crossed one 
edge. This provides a simple way of constructing a path of length a t  
most n between any two vertices of an n-cube. Therefore, recalling 
that the diameter of a graph is the maximum distance between any 
two nodes in the graph, we can state Proposition 2.5. 

Proposition 2.5: The n-cube is a connected graph of diameter n. 

its ith position. 

Proof: Consider a cycle A I ,  A2, 

length of the cycle is necessarily even. 

The above propositions establish some basic properties of the n- 
cube as a graph. The important question we would like to answer next 
is how to recognize a hypercube in a simple way, i.e., how to 
characterize an n-cube by a few simple rules. As an example of 
application, looking at a four by four grid with nearest neighbor 
connection and wraparound at the edges (of the grid) one might ask 
whether the corresponding graph is an n-cube, i.e., whether its 16 
nodes can be numbered according to the rule of Definition 2.1. It is 
clear that without the wraparound at the edges, the grid cannot be a 
cube since all the vertices of an n-cube have the same degree. The 
next result will answer this question. 

Theorem 2.1: A graph G = (V, E) is an n-cube if and only if 
1) V has 2" vertices; 
2) every vertex has degree n; 
3) G is connected; 
4) any two adjacent nodes A and B are such that the nodes adjacent 

to A and those adjacent to B are linked in a one-to-one fashion. 
Proof: Necessary Condition: Conditions 1-4 are clearly 

satisfied for an n-cube as a result of the definition and some of the 
previous propositions. 

Sufficient Condition: The proof is by induction. It is clear that the 
property is true for n = 1. Assume that it is true for n - 1, i.e., that 
any graph having 2"-' nodes satisfying Properties 1-4 is an (n - 1)- 
cube. The proof consists in separating the graph in two subgraphs 
each of which has the same properties for n - 1. 

Consider any two adjacent nodes R (for red) and B (for black) of 
the graph. According to Property 4, the neighbors of R and those of B 
are connected in a one-to-one fashion. We can, therefore, color the 
neighbors of the red nodes (except the one node which is already 
black) in red and the neighbors of the black node (except the one node 
which is already red) in black. This process can be continued until 
exhaustion of all links. We refer to two nodes of different colors that 
are linked by an edge as two opposite nodes. After this is done we 
have the following. 

a) All the nodes have been colored either B or R .  This is because 
the graph is connected and therefore there is a path between the 
original node R (or B) to any node. 

b) Exactly half the nodes have the color red and the other half have 
the color black, because all the B nodes and the R nodes are linked in 
a one-to-one fashion. 

c) It is clear that the R nodes constitute a connected graph, since, 
by construction, each node is connected to the original R node. The 
same property holds for the black nodes. 

d) Consider the two subgraphs obtained by removing all red-black 
links. Thus, each node loses exactly one edge, i.e., its degree is (n - 
1). (In the graph theory terminology, the set of R-B edges is called a 
cut set.) Then Property 4 is satisfied for the subgraph of the red nodes 
(resp., the black nodes). 

e) Because of Property 4, and by construction, two red nodes are 
adjacent if and only their black opposites are adjacent. 

By the induction hypothesis and by b), c), d), and e), the subgraph 
of the red nodes is an (n - 1)-cube. Now label the red nodes 
according to the definition and use the same labeling for the black 
nodes opposite to them [we can use the same labeling thanks to e)]. 
Adding the bit zero in front of the red nodes and the bit one in front of 
the black nodes, we obtain a labeling of the nodes of the initial 

A consequence of the theorem is that the 4 X 4 grid with 
wraparound at the edges (often referred to as the torus) is a 4-cube. A 
generalization is the 4 x 4 x 4 grid in three dimensions with again 
wraparound at the edges. From the theorem, this is nothing but a 6- 
cube. Thus, these mappings provide simple three-dimensional geo- 
metric representations of n-cubes when n 5 6. 

graph. w 

111. DISTANCES AND PATHS IN HYPERCUBES 

Any multiprocessor system should allow for its processors to 
exchange data between all of its nodes. Let A and B be any two nodes 
of the n-cube and consider the problem of sending data from node A 
to node B. The way in which this is achieved in ensemble 
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architectures is to move the data (ideally in packets) along a path from 
A to B crossing a (possibly small) number of processors. By 
definition, the length of a path between two nodes is simply the 
number of edges of the path. As was already mentioned in Section 11, 
there exists a path of length at most n between any two nodes. To 
reach B from A, it suffices to cross successively the nodes whose 
labels are those obtained by modifying the bits of A one by one in 
order to transform A into B.  Assuming that A and B differ only in i 
bits, i.e., that their Hamming distance is H(A,  B) = i, the length of 
the path will be i. Clearly, there is no path of smaller length between 
the nodes A and B. This elementary result can be formalized as 
follows. 

Proposition 3. I: The minimum distance between the nodes A and 
B is equal to the number of bits that differ between A and B, i.e., to 
the Hamming distance H(A, B). 

For future reference we would like to write down explicitly one of 
the paths suggested by the proof of the above proposition. This path 
corresponds to correcting the first different bit in A and B, then the 
second, and so on to the last bit different in A and B. Let A = ala2 

b, be the labels of A and B where a, and b, 
are the bits zero or one. For convenience we assume without loss of 
generality that A and B differ in their i leading bits. Then one path 
from A to I? is the following 

- a, and B E bl b2 - 

A=node O=ala2a3 0 . .  a,,; 

node l=blaza3 ... a,,; 

node 2=b162a3 a,,; 

... ... 
B=node i=b1b2 - - .  bia,+l a,. 

The generalization to the case where the different bits in A and B are 
not necessarily the leading ones is straightforward. 

One important question we would like to address is whether there 
are different paths between A and B. The existence of such paths 
might be useful for speeding up transfers of large amounts of data 
between two nodes. It also provides a way of selecting alternative 
routes in case a given node in a path is failing [3]. In order for this to 
be possible, the paths must not cross each other, i.e., they must not 
have common nodes, except for nodes A and B. We will refer to such 
paths as node-disjoint paths or parallelpaths. So the above question 
caq be reformulated as follows: how many parallel paths are there 
between any two nodes A and B? 

A simple look at the above path between A and B reveals that there 
is no reason why to start by correcting the first different bit. More 
generally, assuming again that the i bits different in A and B are in 
front, one might start correcting thejth bit, where 1 5 j I i, then the 
( j  + 1)st bit, and so forth until the ith bit is reached, after which we 
correct, in turn, bits 1, 2, . . * ( j  + I) .  We can thus define i different 
paths and number them from j = 1 to j = i. It is easy to prove that 
any two such paths are parallel. Indeed, the label h, of the node Xh of 
anypathXo,Xl,  * * - X h ,  - . - , X , , ( w i t h X o  E A ) o f t h e a b o v e i  
paths, differs from the label of A in exactly h bits. By construction, 
any two different paths starting the correction in positions j o  and j ,  , 
respectively, cannot reach the same node Xh in the same number of 
steps. Also, they cannot reach this same node in two different 
numbers of steps, otherwise one path would correct A into Xh in 
changing Il bits while the other will achieve the same result in 
changing l2 bits with I I  # I,, which is a contradiction. Therefore, we 
can state the following proposition. 

Proposition 3.2: Let A, B be any two nodes and assume that 
H(A , B) < n . Then there are H(A , B) parallel paths of length H(A , 
B) between the nodes A and B.  

Note that the choice of a set of i = H(A,  B) parallel paths is by no 
means unique. Also observe that when i = n, the result is optimal in 
that we can use the maximum allowable number of paths leaving from 
node A,  since the degree of any node is n. We would like now to 
improve the above result by showing that if we relax the restriction 

that the length must be i, then as many as n parallel paths can be 
found even for the case i < n. This is important as it will allow us to 
use the furl bandwidth of the multiprocessor for data transfer 
operations between two given processors. 

Proposition 3.3: Let A ,  B be any two nodes of an n-cube and 
assume that H(A,  B) < n. Then there are n parallel paths between A 
and B. Moreover, the length of each path is at most H(A, B) + 2. 

Proof: In addition to the i paths described prior to Proposition 
3.2 and numbered from 1 to i, consider the paths which we will 
number fromj = i + 1 to n obtained as follows. First modify the bit 
a, into its complement a,. Thus, the additional paths start as their first 
node the node 

node 1:  @')=ala2 * e -  d , ~ , , ~  a,,. 

Then correct bits 1 through i according to one of the i paths of the 
previous proposition to reach, after i steps, the node 

node i + l :  6"'=blbz b,b,+l O,a,+l a,. 

Finally, remodify the bit aJ into aJ to reach the final destination B. It is 
clear by construction that the additional paths thus defined will never 
cross each other and that they will not cross any of the initial i paths. 
Moreover, the length of each of the additional paths is i + 2. 

Note that the constructive proof given above yields i paths of length 
i each and n - i paths of length i + 2 each but there are generally 
more than just n - i paths of length i + 2. What the proof indicates 
is that the first i paths do not use all possible tearings of the cube. The 
additional paths exploit the unused (n - i)-cubes corresponding to 
the bits in labels of nodes A and B which agree. 

N. MAPPING OTHER GEOMETRIES INTO HYPERCUBES 
In this section, we will be concerned with the problem of mapping 

other topologies (rings and meshes) into the hypercube. What is 
meant by mapping other geometries is the following. We are given 
some graph G = (V,  E) having no more than 2" vertices and we 
would like to assign the vertices of the graph into the nodes of the n- 
cube so that every adjacent vertex of the graph belongs to neighboring 
nodes of the n-cube. There are mainly two different reasons why such 
mappings are important. 

1) Some algorithm may be developed for another architecture for 
which it fits perfectly. Then one might wish to implement the same 
algorithm with little additional programming effort. If the original 
architecture can be mapped into the hypercube, this will be easy to 
achieve. 

2) A given problem may have a well-defined structure which leads 
to a particular pattern of communication. Mapping the structure may 
result in substantial savings in communication time. The best example 
is that of mesh geometries that arise from the dicretization of elliptic 
partial differential equations in one, two, or three dimensions. Most 
iterative methods for solving elliptic PDE's require only local 
communication, i.e., communication between mesh points that are 
neighbors. If the mesh is perfectly mapped into the cube, then only 
local communication will be required between the nodes of the 
hypercube thus resulting in important savings in transfer times. 

In this section, we consider mapping ring and grid structures into 
hypercubes. 

A. Mapping Rings and Linear Arrays into Hypercubes 
Given a ring-structured graph of 2" vertices, consider the problem 

of assigning its vertices into the nodes of a hypercube in such a way as 
to preserve the proximity property, i.e., so that any two adjacent 
vertices belong to neighbor nodes. Another way of viewing this 
problem is that we are seeking a cycle of length N = 2" that crosses 
each node once and only once. In graph theory terminology, we are 
looking for a Hamiltonian circuit in a hypercube. 

If we number the nodes of a hypercube according to Definition 2.1, 
i.e., so that two neighbor nodes differ by one and only one bit, a 
Hamiltonian circuit simply represents a sequence of n-bit binary 
numbers such that any two successive numbers have only one 
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represented. Binary sequences with these properties are called Gray 
codes, and have been extensively studied in coding theory, see, e.g., 

different bit and so that all binary numbers having n bits are 10 

161. 11 

There are many different ways in which Gray codes can be 
generated but the best known method leading to the so-called binary 
reflected Gray code is as follows. One starts with the sequence of the 
two 1-bit numbers 0 and 1. This is a 1-bit Gray code. To build a 2-bit 
Gray code, take the same sequence and insert a zero in front of each 

o1 

number, then take the sequence in reverse order and insert a one in 00 1 1 1 I 1 
front of each number. In other words, we get the sequence 

1 
Orm 001 011 010 110 111 101 100 

* . 
a t  T T T ? 

,, 

G2={00,  01, 11, 10). Fig. 3. Two-dimensional Gray code for an 8 x 4 grid. 

We can then repeat the process to build a 3-bit Gray code by taking 
the above sequence inserting a zero in front, then taking the reverse 
sequence and inserting a one in front: 

dimensional 8 + p z  
= 5 .  A binary number A of any node of the 5-cube can be regarded 
as consisting of two parts: its first 3 bits and its last 2 bits, which we 

4 mesh, i.e., d = 2, = 3, pz  = 2, = 

G3= {OOO, 001, 011, 010, 110, 111, 101, 100). (4.1) write in the form 

A = 61 bzb3CICz More generally, denoting by Gf the sequence obtained from Gi by 
reversing its order, and by OG; (resp., 1 4 )  the sequence obtained 
from G; by prepending a zero (resp., a one) to each element of the  

recursion 

where bi and cj are bits zero or one. It is clear from the definition of 

nodes form apl-cube (withp1 = 3). Likewise, whenever we fix the 
first 3 bits we obtain a pz-cube. The mapping then becomes clear. 
Choosing a 3-bit Grav code for the x direction and a 2-bit Grav code 

sequence, then Gray codes of arbitrary order can be generated by the an n-cube that when the last 2 bits are fixed, then the resulting 2P1 

G n + I = { O G n ,  1G;). (4*2) 

It is easy to verify that such sequences are Gray codes [6]. 
Gray codes allow us to map rings whose lengths are powers of two 

into hypercubes. Suppose now that we have a ring of arbitrary length 
I which we would like to map into a hypercube. First observe that the 
mapping is possible only when I is even since, according to 
Proposition 2.4, a hypercube does not admit odd cycles. Therefore, 
assume that 4 s I 5 2”. The problem is to find a cycle of length I in 
the n-cube, where 1 is even. 

Let m = ( I  - 2)/2 and denote by G,- ~ ( m )  the partial (n - 1)-bit 
Gray code consisting of the first m elements of G, - 1. Then using the 
above notation, a cycle having the desired property is the following: 

Observe that when 1 = 2“, we obtain as a particular case the formula 
(4.2). We can, therefore, state the following. 

Proposition 4. I :  A ring of length I can be mapped into the n-cube 
when I is even and 4 5 I 5 2“. 

Finally, we point out that there is no difficulty in embedding a 
linear array, instead of a ring, into the n-cube. It suffices to map the 
nodes of the linear array Po, P 1 ,  . * , PI of arbitrary length I 5 2“ - 
1 successively into the nodes go, g,, . * e ,  gI. Given a linear array of 
arbitrary length I, the smallest dimension n-cube into which it can be 
mapped is clearly the cube of dimension n = [log? ( I  + 1)1. 
B. Mapping Grids into Hypercubes 

One of the most attractive properties of the binary n-cube topology 
is that meshes of arbitrary dimensions can be imbedded in it. This is 
one of the main reasons for the success of hypercube architectures. 
Consider an ml x m2 . . x md mesh in the d-dimensional space Rd 
and assume that the mesh size in each direction is a power of 2, i.e., it 
is such that mi = 2P;.  Let n = p ,  + p 2  + pd and consider the 
problem of mapping the mesh points into the n-cube, one mesh point 
per node. Observe that we have just enough nodes to accommodate 
one mesh point per node. 

What is meant by a mapping of the mesh into the cube is an 
assignment of the mesh points into the nodes of the cube so that the 
proximity property ispreserved, i.e., so that two neighbor points of 
the mesh are assigned to neighbor nodes in the cube. In the case d = 
1, the problem was solved in the previous section by using Gray 
codes. We show next how to extend the ideas of the previous section 
to more than one dimension. 

Our argument is best illustrated by an example. Consider a two- 

I 

for the y direction, the point (x;, y,) of the mesh is assigned to the 
node bl bzb3~1 cz where 61 b2b3 is the 3-bit Gray code for x; while c1 cz 
is the 2-bit Gray code for yj. This mapping is illustrated in Fig. 3 
where the binary node number of any grid point is obtained by 
concatenating its binary x coordinate and its binary y coordinate. 

Thus, if we call a Gray sequence any subsequence of a Gray code, 
we observe that any column of grid points forms a Gray sequence and 
any row of grid points forms a Gray sequence. Therefore, we will 
refer to the codes defined above as 2-D Gray codes. 

Generalizations to higher dimensions are straightforward and one 

Theorem 4.1: Any ml x m2 * * . x md mesh in the d-dimensional 
space Rd, where mi = 2P; can be mapped into an n-cube where n = 
p ,  + p z  + p d .  The numbering of the grid points is any 
numbering such that its restriction to each ith variable is a Gray 
sequence. 

Note that the assumption that all mi’s be powers of 2 is not 
essential and the theorem can be generalized by using the remark 
following Proposition 4.1 concerning mapping general one-dimen- 
sional meshes. In particular, it suffices to redefine pi  in the above 
theorem as p i  = [log2 (mi) ] .  

can state the following general theorem. 

V. CONCLUSION 
We have shown a few properties of hypercubes that put in light 

some of the reasons why hypercubes are attractive networks. For 
reasons of limited space, we have skipped one other important reason 
which is that trees can also be nicely mapped into hypercubes. These 
properties are now discussed elsewhere in the literature, for example, 
see [7], [2], [9].  These very useful mapping properties make the 
hypercube an ideal network and outweigh some of its inherent 
drawbacks such as the high cost and complexity of building large 
hypercubes. 
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An Experimental Study to Determine Task Size for Rollback 
Recovery Systems 

SHAMBHU J. UPADHYAYA AND KEWAL K. SALUJA 

Absfract-The effects of using a recovery cache to save the variables of 
a program are studied. A new optimization model for rollback is 
formulated to include the effects of a recovery cache in rollback systems. 
The parameters of the model proposed in this correspondence are the 
maximum recovery time, the cache size, and the save and load times 
associated with the task size. We also discuss the results of an 
experimental study conducted to estimate the parameters of the programs 
that are critical for arriving at a suitable task size or cache size to 
minimize the cost of recovery. 

Index Terms-Program graph, recovery cache, recovery time, rollback 
recovery, task size. 

I. INTRODUCTION 
Rollback recovery [ 11, [Z] is an effective technique to recover from 

transient failures during a program execution. The variables of the 
program should be protected from any damage that may be caused by 
the transients in order to have successful recovery. The mechanism of 
protecting the recovery data, i.e., data pertinent to successful 
recovery from failures is often termed as state saving [Z]. 

In some applications such as database systems, the state saving is 
done in secondary storage [ 11, [2]. Due to the inherent low speed, the 
use of a secondary store for state saving introduces unnecessarily 
long delay. Large size buffers may be required if any measures to 
reduce this delay are employed. Furthermore, loading the saved state 
back to the main memory from a secondary store during recovery 
may take large time. Postprocessing of the saved information (such as 
elimination of multiple copies) can be employed to reduce the time 
for loading back the saved state. But, this may require an independent 
processor since any such postprocessing should be done in real-time 
for rapid recovery. 

Alternatively, a special hardware unit can be used for state saving 
[3], [4]. Lee, Ghani, and Heron [4] have proposed a recovery cache 
for the PDP- 11, for use in recovery block schemes [ 5 ] .  This concept 
was extended for application in rollback recovery schemes in [6] and 
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[7]. However, introduction of a recovery cache in rollback systems 
influences the rollback point insertion strategy and needs to be 
investigated. 

Rollback recovery can be implemented in two ways. In one 
method, rollback points are inserted at some regular intervals. Some 
analytic models for rollback recovery and determination of optimal 
checkpoint intervals are discussed in [2] and [8]. The second method 
is applicable to those real-time applications in which maximum 
permissible recovery time may be a critical parameter. For example, 
in a space-borne system, at some stage of operation a “launch 
window” may be specified. While the system is in the “launch 
window” state, it is important that recovery from any failure take 
place within a specified time because the penalty for nonrecovery can 
be prohibitively high. Chandy and Ramamoorthy [l] have studied the 
automatic rollback insertion under the constraint that at every point in 
the program, recovery should be possible within a specified time. 

In the method employing an automatic rollback insertion strategy, 
a program is analyzed before hand and represented as a sequence of 
tasks. Then, based on certain parameters of the program, the rollback 
points are inserted in an automatic manner. For a quick recovery, in a 
real-time system described above, the task size cannot be made 
arbitrary. Furthermore, the finite size of the recovery cache also 
effects the rollback point insertion strategy as well as the task size. In 
this correspondence, we look into the rollback problem from both 
perspectives, the maximum recovery time and the maximum cache 
she. In Section II, we present some basic concepts and definitions. In 
Section III, the interdependency of task size, maximum recovery 
time, and cache size are brought out and the rollback problem is 
formulated. Section IV outlines an experimental solution of the 
problem and conclusions are given in Section V. The simulation 
technique used to obtain estimates of parameters required for the 
rollback recovery scheme is given in the Appendix. 

U. BASIC CONCEPTS AND DEFINITIONS 

A program is represented as a sequence of tasks in a program 
graph, in order to automate and optimize the rollback point insertion. 
With each task i, a quantity ti is associated which is defined as the 
maximum possible execution time for the task. We assume that if an 
error occurs within a task, it is detected before the completion of the 
task [l]. Thus, ti is the expected time of completion for the task i, 
considering the longest path in the task i .  

Definition I :  The save time Si for a task i is defined as the time 
required to make a copy of the modified variables of the task i, during 
its execution. 

Definition 2: The load time L; for a task i is the time required to 
load the saved variables of the task i back into the main memory. 

The load time obviously depends on the speed of the loading 
mechanism but is directly proportional to the amount of data saved. 
The constant of proportionality relating the load time and the amount 
of data saved will be denoted by k. 

In Chandy and Ramamoorthy’s algorithm [ 11, determination of the 
insertion of rollback points requires an interrogation at each edge of 
the program graph. The save time and the load time are associated 
with the edges of the program graph. In practice, however, saving of 
variables can be done during the execution of a task [4], [6] as 
opposed to storing the entire set of variables before the execution of a 
task. Let ei denote the execution time for a task i when no rollback 
strategy is implemented and let ri represent the execution time 
including the time for making a copy of the variables. Then the worst 
case value of Si is given by max (ri - ei) taken over all possible paths 
in the task i .  Note that this will be the path along which the maximum 
number of variables are changed. 

Definition 3: Save space Pi for a task i is defined as the space 
required to store the variables of the task i modified during the time 
Si. 

The load time Lj and the save space Pi can be related as Li = kPj, 
where the constant k has the dimension of timekpace. Note that a 
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