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Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems



Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V.
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NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle Γ that contains every node in V?

Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.
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Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  ⇒
 Suppose G has a directed Hamiltonian cycle Γ.
 Then G' has an undirected Hamiltonian cycle (same order).

Pf.  ⇐
 Suppose G' has an undirected Hamiltonian cycle Γ'.
 Γ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

 Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or 
reverse of one.   ▪
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT ≤ P DIR-HAM-CYCLE.

Pf.   Given an instance Φ of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.
 Intuition:  traverse path i from left to right  ⇔ set variable xi = 1.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance Φ with n variables xi and k clauses.
 For each clause:  add a node and 6 edges.
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.   Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.  ⇒
 Suppose 3-SAT instance has satisfying assignment x*.
 Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i from left to right
– if x*i = 0, traverse row i from right to left
– for each clause Cj , there will be at least one row i in which we are 

going in "correct" direction to splice node Cj into tour
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim.   Φ is satisfiable iff G has a Hamiltonian cycle.

Pf.  ⇐
 Suppose G has a Hamiltonian cycle Γ.
 If Γ enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are connected by an 
edge e in G

– removing Cj from cycle, and replacing it with edge e yields 
Hamiltonian cycle on G - { Cj  }

 Continuing in this way, we are left with Hamiltonian cycle Γ' in
G - { C1 , C2 ,  . . . , Ck }.

 Set x*i = 1 iff Γ' traverses row i left to right.
 Since Γ visits each clause node Cj , at least one of the paths is 

traversed in "correct" direction, and each clause is satisfied.   ▪
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at least k edges?

Claim.  3-SAT ≤ P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE ≤ P LONGEST-PATH.
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The Longest Path t

Lyrics.  Copyright © 1988 by Daniel J. Barrett.
Music.  Sung to the tune of The Longest Time by Billy Joel.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final. 
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE ≤ P TSP.
Pf.
 Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function

 TSP instance has tour of length ≤ n iff G is Hamiltonian.  ▪

Remark.  TSP instance in reduction satisfies ∆-inequality.

 

d(u, v)  =  
 1 if (u, v) ∈  E
 2 if (u, v) ∉  E

 
 
 
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Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.

 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.6  Partitioning Problems



3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of 
the possible courses and times each instructor is willing to teach, is it 
possible to make an assignment so that all courses are taught at 
different times?

Instructor Course Time
Wayne COS 423 MW 11-12:20
Wayne COS 423 TTh 11-12:20
Wayne COS 226 TTh 11-12:20
Wayne COS 126 TTh 11-12:20
Tardos COS 523 TTh 3-4:20
Tardos COS 423 TTh 11-12:20
Tardos COS 423 TTh 3-4:20

Kleinberg COS 226 TTh 3-4:20
Kleinberg COS 226 MW 11-12:20
Kleinberg COS 423 MW 11-12:20
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3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set 
T ⊆ X × Y × Z of triples, does there exist a set of n triples in T such 
that each element of X ∪ Y ∪ Z is in exactly one of these triples?

Claim.  3-SAT ≤ P 3D-MATCHING.
Pf.  Given an instance Φ of 3-SAT, we construct an instance of 3D-
matching that has a perfect matching iff Φ is satisfiable.
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3-Dimensional Matching

Construction.  (part 1)
 Create gadget for each variable xi with 2k core and tip elements.
 No other triples will use core elements.
 In gadget i, 3D-matching must use either both grey triples or both 

blue ones.

x1 x3x2

core

set xi = true set xi = false

number of clauses

k = 2 clauses
n = 3 variables

true

false

clause 1 tips
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3-Dimensional Matching

Construction.  (part 2)
 For each clause Cj create two elements and three triples.
 Exactly one of these triples will be used in any 3D-matching.
 Ensures any 3D-matching uses either (i) grey core of x1 or (ii) blue 

core of x2 or (iii) grey core of x3.

x1 x3x2

clause 1 tips core

  

 

Cj  =  x1 ∨ x2 ∨ x3each clause assigned
its own 2 adjacent tips

true

false

clause 1 gadget
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3-Dimensional Matching

Construction.  (part 3)
 For each tip, add a cleanup gadget.

x1 x3x2

core

cleanup gadget

true

false

clause 1 gadget

clause 1 tips
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3-Dimensional Matching

Claim.  Instance has a 3D-matching iff Φ is satisfiable.

Detail.  What are X, Y, and Z?  Does each triple contain one element 
from each of X, Y, Z?

x1 x3x2

core

cleanup gadget

true

false

clause 1 gadget

clause 1 tips
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3-Dimensional Matching

Claim.  Instance has a 3D-matching iff Φ is satisfiable.

Detail.  What are X, Y, and Z?  Does each triple contain one element 
from each of X, Y, Z?

x1 x3x2

core

cleanup gadget

clause 1 gadget

clause 1 tips
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Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring



3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have the 
same color?

yes instance
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Register Allocation

Register allocation.  Assign program variables to machine register so 
that no more than k registers are used and no two program variables 
that are needed at the same time are assigned to the same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem iff 
interference graph is k-colorable.

Fact.  3-COLOR ≤ P k-REGISTER-ALLOCATION for any constant k ≥ 3.
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3-Colorability

Claim.  3-SAT ≤ P 3-COLOR.

Pf.  Given 3-SAT instance Φ, we construct an instance of 3-COLOR that 
is 3-colorable iff Φ is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒ Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.

T

B

F

 

x1

 

x1

 

x2

 

x2

 

xn

 

xn

 

x3

 

x3

true false

base
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒ Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

T F

B

 

x1

 

x2

 

x3   

 

Ci = x1 V x2 V x3

6-node gadget

true false
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇒ Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

  

 

Ci = x1 V x2 V x3

T F

B

 

x1

 

x2

 

x3

not 3-colorable if all are red

true false

contradiction
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3-Colorability

Claim.  Graph is 3-colorable iff Φ is satisfiable.

Pf.  ⇐ Suppose 3-SAT formula Φ is satisfiable.
 Color all true literals T.
 Color node below green node F, and node below that B.
 Color remaining middle row nodes B.
 Color remaining bottom nodes T or F as forced.  ▪

T F

B

 

x1

 

x2

 

x3

a literal set to true in 3-SAT assignment

  

 

Ci = x1 V x2 V x3

true false

34



Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3-COLOR, 3D-MATCHING.
 Numerical problems: SUBSET-SUM, KNAPSACK.

8.8  Numerical Problems



Subset Sum

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

Ex:  { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 },  W = 3754.
Yes.  1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in 
binary. Polynomial reduction must be polynomial in binary encoding.

Claim.  3-SAT ≤ P SUBSET-SUM.
Pf.  Given an instance Φ of 3-SAT, we construct an instance of SUBSET-
SUM that has solution iff Φ is satisfiable.
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Subset Sum

Construction.  Given 3-SAT instance Φ with n variables and k clauses, 
form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim.  Φ is satisfiable iff there exists a subset that sums to W.
Pf.  No carries possible.

 

C1 = x ∨ y ∨ z
C2 = x ∨ y ∨ z
C3 = x ∨ y ∨ z

dummies to get clause
columns to sum to 4

y

x

z

0 0 0 0 1 0
0 0 0 2 0 0
0 0 0 1 0 0
0 0 1 0 0 1

0 1 0 0 1 1
0 1 0 1 0 0
1 0 0 1 0 1
1 0 0 0 1 0

0 0 1 1 1 0

x y z C1 C2 C3

0 0 0 0 0 2
0 0 0 0 0 1
0 0 0 0 2 0

1 1 1 4 4 4

¬ x

¬ y

¬ z

W

10

200

100

1,001

10,011

10,100

100,101

100,010

1,110

2

1

20

111,444
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My Hobby

Randall Munro
http://xkcd.com/c287.html
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Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time 
ti, release time ri, and deadline di, is it possible to schedule all jobs on a 
single machine such that job i is processed with a contiguous slot of ti

time units in the interval [ri, di ] ? 

Claim.  SUBSET-SUM ≤ P SCHEDULE-RELEASE-TIMES.
Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,
 Create n jobs with processing time ti = wi, release time ri = 0, and no 

deadline (di =  1 + Σj wj).
 Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0
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8.10  A Partial Taxonomy of Hard Problems



Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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